• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高指數(shù)晶面結(jié)構(gòu)氧化鐵化學(xué)鏈燃燒反應(yīng)活性及深層還原反應(yīng)機(jī)理

    2015-01-04 12:52:11林常楓龍東騰肖顯斌董長(zhǎng)青華北電力大學(xué)可再生能源學(xué)院生物質(zhì)發(fā)電成套設(shè)備國(guó)家工程實(shí)驗(yàn)室北京102206
    物理化學(xué)學(xué)報(bào) 2015年4期
    關(guān)鍵詞:載氧體氧化鐵單質(zhì)

    覃 吳 林常楓 龍東騰 肖顯斌 董長(zhǎng)青(華北電力大學(xué)可再生能源學(xué)院,生物質(zhì)發(fā)電成套設(shè)備國(guó)家工程實(shí)驗(yàn)室,北京102206)

    高指數(shù)晶面結(jié)構(gòu)氧化鐵化學(xué)鏈燃燒反應(yīng)活性及深層還原反應(yīng)機(jī)理

    覃 吳*林常楓 龍東騰 肖顯斌 董長(zhǎng)青
    (華北電力大學(xué)可再生能源學(xué)院,生物質(zhì)發(fā)電成套設(shè)備國(guó)家工程實(shí)驗(yàn)室,北京102206)

    采用密度泛函理論計(jì)算和實(shí)驗(yàn)研究形貌可控制備氧化鐵作為高效載氧體用于化學(xué)鏈燃燒的可行性.首先從理論上對(duì)比分析Fe2O3高指數(shù)晶面[104]和低指數(shù)晶面[001]的反應(yīng)活性及深層還原反應(yīng)機(jī)理.表面反應(yīng)結(jié)果顯示,Fe2O3[104]氧化CO的反應(yīng)活性遠(yuǎn)高于Fe2O3[001],Fe2O3[104]被還原成為低價(jià)的鐵氧化物或單質(zhì),這些低價(jià)的鐵氧化物或單質(zhì)可被O2氧化再生.載氧體和CO深層反應(yīng)結(jié)果顯示Fe2O3[104]可被CO徹底還原成Fe單質(zhì),Fe2O3[104]釋放氧能力強(qiáng),反應(yīng)活性高;而Fe2O3[001]還原到一定程度后反應(yīng)能壘高,抑制表面進(jìn)一步還原,釋放氧能力有限.最后,實(shí)驗(yàn)結(jié)果進(jìn)一步證明了Fe2O3[104]作為載氧體用于化學(xué)鏈燃燒的高反應(yīng)活性及穩(wěn)定性.

    燃燒;表面;吸附;Fe2O3;密度泛函理論

    1 Introduction

    Chemical looping combustion(CLC)has received great attraction for its efficient use of energy and inherent separation of CO2.1-3CLC is a promising technology that produces heat and energy using oxygen carrier(OC)to supply oxygen instead of air for combustion of fuel,which results in the generation of a sequestration-ready stream of CO2that is not diluted with N2or flue gas and also reduces NOxemissions.4-10Fig.1 shows the principleof CLC.

    ?Editorial office ofActa Physico-Chimica Sinica

    Fig.1 Principle of chemical-looping combustion Me:metal

    OC acts as one of the most important factors deciding the efficiency of CLC.Till now,many OCs mainly including the oxides of Fe,Ni,Co,Cu,Mn,and Cd,have been developed for CLC. Among these OCs,NiO exhibits high reactivity but thermodynamic limitation and potential carcinogenic tendency of NiO,11CuO shows exothermic characteristic but low melting point and thus is low resistance to sintering,12CoO shows satisfactory reactivity and oxygen transfer capacity but high cost,13Fe2O3becomes the candidate for CLC process recently due to its environmentally harmlessness,high oxygen capacity,good mechanical strength,and low price.14However,enhancing the oxygen transfer capacity and reactivity of Fe2O3becomes urgent problem.

    Loaded Fe2O3and combined iron based OC have received great interest for their enhanced reactivity,avoidance of carbon deposition,and good repeatability.15-26But the application of these compounds in CLC systems may not be feasible due to expensive production cost.Recently,controlled synthesis of metal oxide with a large percentage of certain exposed facets causesresearcher's attention,owing to their scientific importance associated with highly reactive surfaces.27,28The surface energies of hematite calculated based on density functional theory(DFT)for[001], [101],and[104]facets are 1.146,1.308,1.453 J·m-2,respectively,29which shows that surface energy of the[104]facet is higher than those of[001]and[101]facets.Single crystals of hematite with exposed[104]facets have been prepared for potential application as carbon-alternative anode materials for lithium ion batteries, showing high capacity,improved cyclability,and good rate performance.30The unique α-Fe2O3crystals with[104]high-index facets are highly advantageous for gas sensors with high performance.31Single crystals of hematite with nearly 100%exposed [012]facets show improved photocatalytic properties over nanoplates with dominant[001]facets.32

    Fe2O3with high-index facets shows a noticeable catalytic activity.However,differing from catalytic reaction course,Fe2O3is gradually reduced and structurally destroyed during CLC process. Whether such high index Fe2O3surface is active enough for fuel CLC and whether the reduced surface can be regenerated remain unknown.In addition,the reaction mechanism between fuel molecule and the high index Fe2O3surface,especially the deep reduction reaction mechanism of the high index Fe2O3surface,has not been investigated before.To address these problems,we compared the electronic properties,surface reaction activity, oxygen transfer,and deep reduction of the high index Fe2O3surface[104]with those of the low index Fe2O3surface[001],one of the dominant growth faces of the natural hematite.33Then we experimentally verified the enhanced performance and re-use property of the high index Fe2O3surface.

    2 Experimental and computational details

    2.1 Preparation and chemical looping combustion

    According to the reported method,315.38 g FeCl3·6H2O(AR, Sinopharm Chemical Reagent Beijing Co.,Ltd.)and 5.82 g urea (AR,Sinopharm Chemical Reagent Beijing Co.,Ltd.)were dissolved in 200 mL of distilled water to form a clear yellow solution,and then appropriate amount of Al2O3(AR,Sinopharm Chemical Reagent Beijing Co.,Ltd.)and 7.25 g formamide(AR, Sinopharm Chemical Reagent Beijing Co.,Ltd.)were added.The reacting solution was transferred to 200 mLTeflon-lined stainless autoclave and heated to 120°C for 12 h.After cooled down to room temperature,the product was collected by centrifugation and washed with distilled water and absolute ethanol(AR,Sinopharm Chemical Reagent Beijing Co.,Ltd.)4 times,and then dried at 80°C for several hours.The obtained solid was sintered at 900°C for 2 h.Finally,the as-synthesized Fe2O3[104]/Al2O3(60%,mass fraction)samples were further ground and sieved to 63-106 μm for use.

    The referenced Fe2O3/Al2O3was prepared following the traditional precipitation method.34The morphological characterizations of the prepared and the regenerated OCs were performed by LEO-1450 scanning electron microscope(SEM,LEO,USA),H-9000NAR high-resolution transmission electron microscopy (HRTEM,Hitachi,Japan),D/MAX-RB X-ray diffraction(XRD, Rigaku,Japan),and Autosorb-iQ-MP Brunauer-Emmett-Teller (BET,Quantachrome,USA).

    The reaction between the synthesized OCs and CO was conducted in a simultaneous thermal analyzer(TGq500)under N2at 900°C.The flow rate of N2is 100 mL·min-1.As comparison, reaction between CO and the referenced Fe2O3/Al2O3was also performed under the same conditions.Reactivity data as a function of time were obtained from the mass variations during the reduction-oxidation cycles.The degree of solid conversion χ is defined as follow:

    where m is the actual mass of sample,moxis the mass of the sample when it was fully oxidized;mredis the mass of the sample in the fully reduced form.

    2.2 Computational model and methods

    All density functional theory calculations were performed by the CASTEP35with the generalized gradient approximation(GGA)36for describing electron-electron interactions,since GGA can predict the ground state of bulk iron more accurately than local density approximation(LDA)or local spin density approximation (LSDA).37Hubbard parameter(Ueff)was set to be 4.5 eV in our calculation,which provides the best match to the experimentalband gaps of hematite.38The magnetic configuration(+--+)was set for Fe atoms in the rhombohedral unit cell of Fe2O3,which makes the optimized cell at the lowest total energy,39-42+anddesignated up-and down-spin directions with respect to the z-axis. The interaction between the valence electrons and the ionic core was described by the Perdew,Burke,and Ernzerhof(PBE)gradient-corrected functional and the effective core potential (ECP).43Valence electron wave functions were expanded by double numeric with polarization(DNP).The kinetic energy cutoff(Ecut)was 350 eV;the Monkhorst-Pack k-mesh was 4×4×1. Calculation used an energy convergence tolerance of 1×10-4eV and a gradient convergence of 5×10-1eV·nm-1.The formulation of the linear synchronous transit(LST)and quadratic synchronous transit(QST)methods were used to search the transition states for each reaction.44

    Fig.2 3-layer model and site terminology of the stoichiometric(a)Fe2O3[001]2×2 super-cell surface and

    Fe2O3[104]2×1 super-cell surface and Fe2O3[001]2×2 supercell surface slabs were cleaved from the optimized α-Fe2O3bulk structure,as shown in Fig.2.The stoichiometric[001]surface exhibits two nonequivalent Fe sites(Fe4-folded-1 and Fe4-folded-2)that bond to three O atoms on the top layer and one O atom on the second layer.The stoichiometric[104]surface exhibits four different Fe sites,including two nonequivalent Fe5-folded-1 and Fe5-folded-2 that bond to four O atoms on the top layer and one O atom on the second layer,respectively,Fe4-folded-1 that bonds to three O atoms on the top layer and one O atom on the second layer,and Fe4-folded-2 that bonds to four O atoms on the top layer.All the Fe atoms on[001]surface or[104]surface are unsaturated,since the coordination number of bulk Fe is six.Geometry optimization was performed using DFT calculations and the optimized structure was obtained after fully relaxation by minimizing total energy.Then the electronic properties,reaction behavior,and oxygen transfer were detected.

    Fig.3 3dFe-DOS of(a)Fe2O3[104]and(b)Fe2O3[001]

    3 Results and discussion

    3.1 Electronic property

    C atom of CO prefers to binding to the metal site of oxide mainly due to σ donation from 3pzof CO and 3dz2of metal oxide surface.45Therefore,we compared the partial density of states (PDOS)for these Fe atoms of Fe2O3[104]and Fe2O3[001],as shown in Fig.3.For Fe2O3[104],the DOS curves show that the 3d electrons of Fe atoms on the top layer delocalizes below and near the Fermi level(Ef=0.0 eV).The highest occupation molecular orbital(HOMO)of Fe5-folded-1 is at higher energy level than those of Fe5-folded-2,Fe4-folded-1,and Fe4-folded-2,while the lowest unoccupied molecular orbital(LUMO)of Fe5-folded-1 appears at lower energy level than those of Fe5-folded-2,Fe4-folded-1,and Fe4-folded-2 above theFermi level(0.0 eV).Therefore,the energy gap(Egap)between HOMO and LUMO for Fe5-folded-1 is the smallest(~1.0 eV),while Egapfor Fe5-folded-2 is~1.5 eV,and Egapfor Fe4-folded-1 and Fe4-folded-2 is about 2.0 eV.

    The calculated Egapof Fe4-folded-1 and Fe4-folded-2 of Fe2O3[001]are about 2.0 eV,close to the results of 2.0-2.1 eV,46,47which is larger than that of Fe5-folded-1 on Fe2O3[104].The small Egapfor the Fe5-folded-1 atom of Fe2O3[104]will benefit the acceptance of electron.We adopt LUMO energies of Fe2O3[104]and Fe2O3[001]to characterize their Lewis acidity and the HOMO energy of CO to characterize their Lewis basicity,respectively.The energy gap between the two orbitals can be used to predict how CO interacts with Fe2O3,which can be calculated using the equation below:

    where ELUMO(Fe2O3)and EHOMO(CO)are the LUMO energy of Fe2O3and the HOMO energy of CO,respectively.The ELUMO-HOMOof the CO-Fe2O3[104]system is-3.82 eV,while the ELUMO-HOMOof the COFe2O3[001]system is-4.91 eV.The ELUMO-HOMOimplies that Fe2O3[104]will be more active than Fe2O3[001]for initiating CLC reaction of CO.

    3.2 Reaction activity of surface

    CO was approached to the active site Fe5-folded-1 of Fe2O3[104] and Fe4-folded-1 of Fe2O3[001]to do optimization.Results show that CO binds to Fe5-folded-1 and Fe4-folded-1,respectively.For the stable configuration of CO-Fe2O3[104],the tilt angle is 171°414′,the bond length of the adsorbed CO is 0.115 nm,the distance between CO and Fe5-folded-1 is 0.180 nm.For the stable configuration of COFe2O3[001],the tilt angle is 171°414′,the bond length of the adsorbed CO is 0.116 nm,the distance between CO and Fe4-folded-1 is 0.186 nm.Hybrid occurred between C and Fe for both the COFe2O3[104]interaction system and the CO-Fe2O3[001]interaction system.The hybrid weakened the CO bond,resulting in a red shift of the C―O bond of the adsorbed CO to lower wavenumbers with respect to that of the gas-phase CO.

    The binding energy for CO on Fe2O3[104]and Fe2O3[001], Ebind-CO,was calculated respectively using the following expression as mentioned in previous works:48,49

    where E(CO-OC)and E(OC)are the total energies of the Fe2O3[104]or Fe2O3[001]with and without the presence of CO molecule,respectively,and E(CO)is the total energy of an isolated CO molecule.The interaction between CO and Fe2O3[104],in terms of binding energies,is-0.221 eV,while Ebind-COfor the interaction between CO and Fe2O3[001]is-0.786 eV.Both the absorption of CO on Fe2O3[104]and the absorption of CO on Fe2O3[001]are exothermic processes.The less heat release from the absorption process of CO on Fe2O3[104]will lead to better adsorption of CO on the surface at high temperature during CLC,while compared to the CO-Fe2O3[001]case.

    Then we discussed the oxidation of CO into CO2by the surface lattice oxygen(①,②,③,and④)bonded to Fe5-folded-1 on Fe2O3[104],and by the surface lattice oxygen atom(①,②,and③) bonded to Fe4-folded-1 on Fe2O3[001],respectively.The reaction initiates from the stable adsorption configurations of CO on Fe5-folded-1 of Fe2O3[104]and CO on Fe4-folded-1 of Fe2O3[001].Fig.4 shows the calculated potential energy profiles for the most accessible channels of CO oxidation into CO2on Fe5-folded-1 of Fe2O3[104]and on Fe4-folded-1 of Fe2O3[001].Aqualitatively similar twostep reaction mechanism for the reaction between CO and Fe2O3[104]{and Fe2O3[001]}was obtained.The first step relates to the conversion from the initial state(IS)to a carbonate species at the intermediate state(MS).The second reaction step initiated from the MS and changed into the final state(FS)with the release of CO2from the surface.The total activation energy(Ea)and reaction enthalpy(Er)for CO+Fe2O3[104]→CO2+Fe2O3[104]red(reduced Fe2O3[104])are 0.681 and-0.776 eV,respectively,while Eaand Erfor CO+Fe2O3[001]→CO2+Fe2O3[001]red(reduced Fe2O3[001]) are 1.203 and-0.392 eV,respectively.The latter Eais almost twice as high as the former,which suggests that the oxidation of CO by Fe2O3[104]is more accessible than by Fe2O3[001].The reaction CO+Fe2O3[104]→CO2+Fe2O3[104]redreleases more energy than CO+Fe2O3[001]→CO2+Fe2O3[001]red.Results show that Fe2O3[104]surface is more chemically active than Fe2O3[001]surface for oxidizing CO during CLC.

    3.3 Regeneration behavior

    During CLC processes,after the CO was oxidized by Fe2O3[104]and Fe2O3[001],Fe2O3[104]and Fe2O3[001]were reduced; then the reduced Fe2O3[104]redand Fe2O3[001]redwould be transferred to the air reactor,where Fe2O3[104]redand Fe2O3[001]redwould be oxidized by O2into Fe2O3[104]and Fe2O3[001]. Therefore,the regeneration reaction was initiated from the adsorption of O2on Fe2O3[104]redand Fe2O3[001]red,which were then oxidized by the adsorbed O2.Actually,only one O atom is needed for oxidizing Fe2O3[104]redor Fe2O3[001]redinto Fe2O3[104]or Fe2O3[001].We pushed one O of O2to the defected site of Fe2O3[104]redor[Fe2O3[001]redto do geometrical optimization to define the final reaction state.At the stable final configuration of the O2-Fe2O3[104]redsystem,one O atom from O2fixes into the defected site of Fe2O3[104]redvery well in an one-step oxidation reaction mecha-nism,as shown in the upper reaction path in Fig.5a.However,the oxidation reaction of Fe2O3[001]redcrossed the barrier of 0.374 eV at the MS which subsequently overcome a barrier of 0.397 eV into the final state(FS),as shown in the lower reaction path in Fig.5a. At the final state of O2-Fe2O3[001]red,one O atom of O2embedded into the surface of Fe2O3[001]redand the other excess O atom is adsorbed on the top layer.Both the oxidation of Fe2O3[104]redand the oxidation of Fe2O3[001]redby O2are energetically accessible.

    Fig.4 Calculated potential energy profiles for CO oxidation on Fe5-folded-1 of Fe2O3[104]and on Fe4-folded-1 of Fe2O3[001]

    Fig.5 (a)Potential energy profiles for the oxidation of Fe2O3[104]redand Fe2O3[001]redby O2,and(b)comparison of DOS for the fresh and the regenerated OC

    However,surface reconstructions help in understanding surface chemistry of oxygen carriers,especially in the case where the surfaces can be structurally regenerated.Table 1 lists the average relaxation of Fe and O atoms on the regenerated surfaces in the direction vertically to the slab models.The average relaxations of Fe and O atoms on Fe2O3[104]redare smaller than those on Fe2O3[001]red.But,in general,both Fe2O3[104]redand Fe2O3[001]redunderwent slight surface atom relaxation after regeneration.The change of electronic state will therefore occur with the atom relaxation,as the DOS shown in Fig.5b.Except for little change happened to the DOS before and after regeneration,the DOS of the regenerated surface,especially the regenerated Fe2O3[104], matches that of the fresh surface very well.Results of the oxidation reactions energetically and structurally verified that the possibility of regeneration of the reduced Fe2O3[104].

    Table 1 Average relaxation of Fe and O atoms on the regenerated surfaces in the direction vertically to the slab models

    3.4 Oxygen transfer

    Oxygen carrying capacity and transfer in the OC system plays an important role in CLC.We examined the oxygen transfer on the surfaces of Fe2O3[104]and Fe2O3[001]by gradually removing the top layer O atoms to form non-stoichiometric surfaces during the further reductions of Fe2O3[104]and Fe2O3[001],results of which are listed in Fig.6.In Fig.6a,after the top layer O atoms of Fe22O33,Fe22O29,Fe22O22,and Fe22O15are removed,oxygen atoms of the inner layers transfer to the top layer.Then,Fe atom dominates the top layer after Fe22O15.In Fig.6b,the optimized Fe32O48, Fe32O44,and Fe32O36show relatively high O atom coverage;then the surface of the optimized Fe32O26is almost completely covered by Fe atoms except for only one O atom.Fe atoms hinder further oxidation of CO into CO2.Instead,hybrid between CO and Fe would promote Fe-catalyzed carbon deposit reaction(2CO?FeC+ CO2),48rather than CO oxidation reaction.In comparison with the low oxygen transfer on Fe2O3[001],the higher oxygen transfer capacity of Fe2O3[104]would result in more complete reduction of Fe2O3[104].

    3.5 Deep reduction

    To further investigate the deep reduction of Fe2O3[104]and Fe2O3[001],we initiated the reactions from the stable physisorption of CO on the top layers of Fe22O33,Fe22O29,Fe22O20, Fe22O15,Fe22O10,Fe32O48,Fe32O44,Fe32O36,and Fe32O26,respectively. The energy profiles for the most possible redox reaction(with the lowest Ea)on these surfaces are illustrated in Fig.7,respectively, where y-ordinate is the energy in eV and the x-ordinate is the gradual reduction reaction coordinate for Fe2O3[104]and Fe2O3[001]by CO.Reduction of Fe22O33,Fe22O29,Fe22O20,Fe22O15,and Fe22O10by CO followed a two-step reaction mechanism,where the first step led to the generation of carbonate species on the surfaces while the second step was for the desorption of the carbonate species that changed into a free CO2,which is similar to our previous discovery on Fe2O3[112]49and Fe2O3cluster34.Eafor every reaction step on Fe22O33,Fe22O29,Fe22O20,Fe22O15,and Fe22O10is below 2 eV.Results show that Eaincreases slightly with the decrease of the valence states(Qv)of Fe atoms of Fe22O33,Fe22O29, Fe22O20,Fe22O15,and Fe22O10.

    The reduction of Fe32O48,Fe32O44,and Fe32O36by CO followed a two-step reaction mechanism,while the reduction of Fe32O26followed a one-step reaction mechanism.Eafor the reduction of Fe32O48and Fe32O40is below 2 eV,respectively,while Eafor the reduction of Fe32O44and Fe32O36is a bit higher than 2 eV.However, the reaction between CO and Fe32O26crossed rather high barrier (Ea>14 eV).The high Eatogether with the limited oxygen carrying capacity decides the lower reaction activity and reduction degree of Fe2O3[001],in comparison with Fe2O3[104].If completelycovered by the[001]facet,the reduction of the single crystal ironbased oxygen carrier should be very limited.However,it is known that different facets(including low and high index facets)expose on the iron-based oxygen carrier used for the chemical looping combustion in previous research works,14,34where the high index facet could benefit the deep reduction of Fe2O3into Fe.Obviously, surface morphology greatly decides the reaction performance of iron-based OC during CLC.

    Fig.6 Oxygen transfer on(a)Fe2O3[104]and(b)Fe2O3[001]

    Fig.7 Energy profile for oxidation of CO using(a)Fe2O3[104]and(b)Fe2O3[001]

    3.6 Experimental control

    Fig.8a shows the CLC reactions between CO and Fe2O3[104]/Al2O3and the referenced Fe2O3/Al2O3,which were conducted in a simultaneous thermal analyzer at 900°C.It could be observed that Fe2O3[104]/Al2O3reached a conversion(χ)of 100%without carbon deposit after 4 min,implying that Fe2O3[104]could be completely reduced by CO into metallic iron(Fe2O3+3CO→2Fe+ 3CO2).Compared to Fe2O3[104]/Al2O3,a two-stage reaction process was identified for the referenced Fe2O3/Al2O3.The first stage shows a rapid rise of reaction rates at the first minute, reaching the χ of 33.3%.The second reduction stage is at a relatively consistent reaction rate,showing an indicator of its poor reactivity,where the maximum χ is 72.0%and the formation of carbon should be in the ascendancy.50Results correspond to the theoretical analysis of oxygen transfer and deep reduction above. Five reduction-oxidation cycles were further performed to detect the effect of re-use of Fe2O3[104]/Al2O3on CLC,results of which are depicted in Fig.8b.The weight loss of 2%was found after its first use,whereas,the activity differences were inconspicuous among the second to the fifth re-use of Fe2O3[104]/Al2O3,which implies the stability of Fe2O3[104]/Al2O3for further cycles.

    Fig.8 (a)Conversion(χ)as a function of reaction time for the reaction between CO and Fe2O3[104]/Al2O3,and the referenced reaction between CO and Fe2O3/Al2O3,at 900°C;(b)re-use of Fe2O3[104]/Al2O3at 900°C

    Fig.9 (a)SEM image(with the inset HRTEM image)and(b)XRD pattern of Fe2O3[104]/Al2O3,(c)SEM image(with the inset HRTEM image)and(d)XRD pattern of the referenced Fe2O3/Al2O3

    Fig.9 depicts the XRD patterns,SEM images,and HRTEM images of the fresh Fe2O3[104]/Al2O3and the regenerated Fe2O3[104]/Al2O3after five reduction-oxidation cycles,in comparison with those of the referenced Fe2O3/Al2O3.The SEM image shows that porosity of this rough structure mainly oriented along[104] on the surface of the prepared Fe2O3[104]/Al2O3according to the inset HRTEM images in Fig.9a.Fig.9b shows that all the iden-tified diffraction peaks of Fe2O3can be assigned to α-Fe2O3(JCPDS card No.33-0664),no other phase is observed,indicating a high phase purity and the well dispersion of Fe2O3on the support Al2O3.The sharp diffraction peaks suggest good crystallinity of the prepared Fe2O3[104]/Al2O3and confirm the regenerated renewable of the used Fe2O3[104]/Al2O3.Fig.9c shows that the surface of the referenced Fe2O3/Al2O3is also porous but smoother than Fe2O3[104]/Al2O3,and the surface of Fe2O3/Al2O3is oriented along different crystallographic directions.XRD pattern in Fig.9d verifies the high crystallization and regeneration of the referenced Fe2O3/Al2O3.Further,the regenerated Fe2O3[104]/Al2O3and the referenced Fe2O3/Al2O3keep a specific surface area of around 40 m2·g-1as those for the fresh Fe2O3[104]/Al2O3and the fresh referenced Fe2O3/Al2O3.

    4 Conclusions

    We have theoretically and experimentally demonstrated that morphological control of Fe2O3is very rewarding:Fe2O3[104] exhibits surprisingly high activity for CO CLC and can be regenerated for further reuse.The fundamental understanding shows that morphological control of metal oxides allows preferential exposure of active sites,improves reaction activity and oxygen transfer,decreases carbon deposit during chemical looping combustion.

    (1) Horst,J.R.;Karl,F.K.Am.Chem.Soc.1983,7,71.

    (2) Ishida,M.;Jin,H.Ind.Eng.Chem.Res.1996,35,2469.doi: 10.1021/ie950680s

    (3) Fan,L.S.;Zeng,L.;Wang,W.;Luo,S.W.Energy Environ.Sci. 2012,5,7254.doi:10.1039/c2ee03198a

    (4) Adanez,J.;Abad,A.;Garcia-Labiano,F.;Gayan,P.;de Diego, L.F.Prog.Energy Combust.Sci.2012,38,215.doi:10.1016/j. pecs.2011.09.001

    (5) Zhang,Y.;Doroodchi,E.;Moghtaderi,B.Energy Fuels 2012, 26,287.

    (6) Fang,H.;Haibin,L.;Zengli,Z.Int.J.Chem.Eng.2009,710515

    (7) Lyngfelt,A.;Leckner,B.;Mattisson,T.Chem.Eng.Sci.2001, 56,3101.doi:10.1016/S0009-2509(01)00007-0

    (8) Johansson,M.;Mattisson,T.;Lyngfelt,A.J.Therm.Sci.2006, 10,93.doi:10.2298/TSCI0603093J

    (9) Saha,C.;Bhattacharya,S.Int.J.Chem.Eng.2011,36,12048.

    (10) Cho,P.;Mattisson,T.;Lyngfelt,A.Fuels 2004,83,1215.doi: 10.1016/j.fuel.2003.11.013

    (11) Zhao,H.B.;Liu,L.M.;Wang,B.W.;Xu,D.;Jiang,L.L.; Zheng,C.G.Energy Fuels 2008,22,898.doi:10.1021/ ef7003859

    (12) Dennis,J.S.;Scott,S.A.Fuels 2010,89,1623.doi:10.1016/j. fuel.2009.08.019

    (13) Lee,J.B.;Park,C.S.;Choi,S.I.;Song,Y.W.;Kim,Y.H.; Yang,H.S.J.Ind.Engin.Chem.2005,11,96.

    (14) Yang,J.B.;Cai,N.S.;Li,Z.S.Energy Fuels 2007,21,360.

    (15) Guo,L.;Zhao,H.B.;Ma,J.C.;Mei,D.F.;Zheng,C.G.Chem. Eng.Technol.2014,37,1211.doi:10.1002/ceat.v37.7

    (16) Zhu,X.;Li,K.Z.;Wei,Y.G.;Wang,H.;Sun,L.Y.Fuels 2014, 28,754.doi:10.1021/ef402203a

    (17) Wang,C.P.;Cui,H.R.;Di,H.S.;Guo,Q.J.;Huang,F.Fuels 2014,28,4162.doi:10.1021/ef500354w

    (18) Azimi,G.;Leion,H.;Mattisson,T.;Rydén,M.;Snijkers,F.; Lyngfelt,A.Ind.Eng.Chem.Res.2014,53,10358.doi: 10.1021/ie500994m

    (19) Qin,W.;Wang,Y.;Dong,C.;Zhang,J.;Chen,Q.;Yang,Y. Energ.Appl.Surf.Sci.2013,282,718.doi:10.1016/j. apsusc.2013.06.041

    (20) Wang,B.W.;Yan,R.;Zhao,H.B.;Zheng,Y.;Liu,Z.H.; Zheng,C.G.Energy Fuels 2011,25,3344.doi:10.1021/ ef2004078

    (21) Qin,W.;Chen,Q.;Wang,Y.;Dong,C.;Zhang,J.;Li,W.;Yang, Y.Energ.Appl.Surf.Sci.2013,266,350.doi:10.1016/j. apsusc.2012.12.023

    (22) Wang,S.Z.;Wang,G.X.;Jiang,F.;Luo,M.;Li,H.Y.Energy Environ.Sci.2010,3,1353.doi:10.1039/b926193a

    (23) Liu,L.;Zachariah,M.R.Energy Fuels 2013,27,4977.doi: 10.1021/ef400748x

    (24) Bao,J.;Li,Z.;Cai,N.Ind.Eng.Chem.Res.2013,52,6119. doi:10.1021/ie400237p

    (25) Ksepko,E.;Siriwardane,R.V.;Tian,H.J.;Simonyi,T.; Sciazko,M.Energy Fuels 2012,26,2461.doi:10.1021/ ef201441k

    (26) Moghtaderi,B.;Song,H.Energy Fuels 2010,24,5359.

    (27) Yang,H.G.;Sun,C.H.;Qiao,S.Z.;Zou,J.;Liu,G.;Smith,S. C.;Cheng,H.M.;Lu,G.Q.Nature 2008,453,638.doi: 10.1038/nature06964

    (28) Xie,X.W.;Li,Y.;Liu,Z.Q.;Haruta,M.;Shen,W.J.Nature 2009,458,746.doi:10.1038/nature07877

    (29) Zhou,X.;Xu,Q.;Lei,W.;Zhang,T.;Qi,X.;Liu,G.;Deng,K.; Yu,J.Small 2014,10,674.doi:10.1002/smll.201301870

    (30) Zhu,J.;Ng,K.Y.S.;Deng,D.Cryst.Growth Des.2014,14, 2811.doi:10.1021/cg5000777

    (31) Liu,X.H.;Zhang,J.;Wu,S.H.;Yang,D.J.;Liu,P.;Zhang,H. M.;Wang,S.R.;Yao,X.D.;Zhu,G.S.;Zhao,H.J.RSC Adv. 2012,2,6178.doi:10.1039/c2ra20797d

    (32) Guo,H.;Barnard,A.S.J.Colloid Interface Sci.2012,386,315. doi:10.1016/j.jcis.2012.07.011

    (33) Cornell,R.M.;Schwertmann,U.The Iron Oxides:Structure, Properties,Reactions,Occurrence and Uses;Wiley-VCH:New York,USA,2003.

    (34) Dong,C.Q.;Liu,X.L.;Qin,W.;Lu,Q.;Wang,X.Q.;Shi,S. M.;Yang,Y.P.Appl.Surf.Sci.2012,258,2562.doi:10.1016/j. apsusc.2011.10.092

    (35) Payne,M.C.;Teter,M.P.;Allan,D.C.;Arias,T.A.; Joannopoulos,J.D.Rev.Mod.Phys.1992,64,1045.doi:10.1103/RevModPhys.64.1045

    (36) Perdew,J.P.;Chevary,J.A.;Vosko,S.H.;Jackson,K.A.; Pederson,M.R.;Singh,D.J.;Fiolhais,C.Phys.Rev.B: Condens.Matter Mater.Phys.1992,46,6671.doi:10.1103/ PhysRevB.46.6671

    (37) Leung,T.C.;Chan,C.T.;Harmon,B.N.Phys.Rev.B 1991,44, 2923.doi:10.1103/PhysRevB.44.2923

    (38) Guo,H.B.;Barnard,A.S.Phys.Rev.B 2011,83,094112.doi: 10.1103/PhysRevB.83.094112

    (39) Song,J.J.;Niu,X.Q.;Ling,L.X.;Wang,B.J.Fuel Process. Technol.2013,115,26.doi:10.1016/j.fuproc.2013.04.003

    (40) Wong,K.;Zeng,Q.H.;Yu,A.B.J.Phys.Chem.C 2011,115, 4656.doi:10.1021/jp1108043

    (41) Martin,G.J.;Cutting,R.S.;VauGhan,D.J.;Warren,M.C.Am. Mineral.2009,94,1341.doi:10.2138/am.2009.3029

    (42) Sandratskii,L.M.;Uhl,M.;Kübler,J.J.Phys.:Condes.Matter 1996,8,983.doi:10.1088/0953-8984/8/8/009

    (43) White,J.A.;Bird,D.M.Phys.Rev.B:Condes.Matter Mater. Phys.1994,50,4954.doi:10.1103/PhysRevB.50.4954

    (44) Govind,N.;Petersen,M.;Fitzgerald,G.;King-Smith,D.; Andzelm,J.Comput.Mater.Sci.2003,28,250.doi:10.1016/ S0927-0256(03)00111-3

    (45)Rohmann,C.;Metson,J.B.;Idriss,H.Phys.Chem.Chem. Phys.2014,16,14287.doi:10.1039/c4cp01373e

    (46) Gilbert,B.;Frandsen,C.;Maxey,E.R.;Sherman,D.M.Phys. Rev.B 2009,79,035108.doi:10.1103/PhysRevB.79.035108

    (47) Al-Kuhaili,M.F.;Saleem,M.;Durrani,S.M.A.J.Alloy. Compd.2012,521,178.doi:10.1016/j.jallcom.2012.01.115

    (48) Turkdogan,E.T.;Vinters,J.V.Metall.Trans.1974,5,11.

    (49) Dong,C.Q.;Sheng,S.H.;Qin,W.;Lu,Q.;Zhao,Y.;Wang,X. Q.;Zhang,J.J.Appl.Surf.Sci.2011,257,8647.doi:10.1016/j. apsusc.2011.05.042

    (50) Wang,B.W.;Yan,R.;Lee,D.H.;Liang,D.T.;Zheng,Y.;Zhao, H.B.;Zheng,C.G.Energy Fuels 2008,22,1012.doi:10.1021/ ef7005673

    Reaction Activity and Deep Reduction Reaction Mechanism of a High Index Iron Oxide Surface in Chemical Looping Combustion

    QIN Wu*LIN Chang-Feng LONG Dong-Teng XIAO Xian-Bin DONG Chang-Qing
    (National Engineering Laboratory for Biomass Power Generation Equipment,School of Renewable Energy Engineering, North China Electric Power University,Beijing 102206,P.R.China)

    The possibility of morphological control of iron oxide as an oxygen carrier for chemical looping combustion was investigated using density functional theory and experiment.First,we calculated the reactivity of Fe2O3with high-index facets[104]and low-index facets[001],as well as the deep reduction reaction mechanism of these two facets.Surface reaction results show that the activity of Fe2O3[104]for oxidizing CO is greater than that of Fe2O3[001].Fe2O3[104]was reduced into iron oxide at lower oxidation state or into iron, which could then be regenerated after being oxidized by O2.The deep reduction reaction mechanism between oxygen carrier and CO shows that Fe2O3[104]can be completely reduced into Fe,and Fe2O3[104]exhibits high oxygen transfer ability.However,Fe2O3[001]can only be reduced to a limited extent,with a high energy barrier preventing further reduction,while it also exhibits limited oxygen transfer capacity.Results of experiments further verify the high reactivity and stability of Fe2O3[104].

    Combustion;Surface;Adsorption;Fe2O3;Density functional theory

    O641

    10.3866/PKU.WHXB201502061www.whxb.pku.edu.cn

    Received:October 13,2014;Revised:February 6,2015;Published on Web:February 6,2015.

    ?Corresponding author.Email:qinwugx@126.com;Tel:+86-10-61772457.

    The project was supported by the National Natural Science Foundation of China(51106051),111 Project,China(B12034),and Fundamental Research Funds for the Central Universities,China(2014MS36,2014ZD14).

    國(guó)家自然科學(xué)基金(51106051),111計(jì)劃(B12034)和中央高校基金(2014MS36,2014ZD14)資助項(xiàng)目

    猜你喜歡
    載氧體氧化鐵單質(zhì)
    基于銅、錳基的CaSO4復(fù)合載氧體反應(yīng)活性改善的實(shí)驗(yàn)研究
    鈣鈦礦型BaFeO3-δ載氧體的制備與氣化性能
    諸單質(zhì)運(yùn)動(dòng)的含義
    NiFeAlO4載氧體制備及煤化學(xué)鏈燃燒反應(yīng)特性
    納米氧化鐵的制備及形貌分析
    《鐵單質(zhì)的化學(xué)性質(zhì)》教學(xué)設(shè)計(jì)
    朗盛集團(tuán)增設(shè)顏料級(jí)氧化鐵新廠
    軋后控冷的高碳鋼盤(pán)條表面氧化鐵皮組織的研究
    上海金屬(2016年4期)2016-11-23 05:38:59
    提高高碳鋼盤(pán)條氧化鐵皮附著性研究
    上海金屬(2016年3期)2016-11-23 05:19:55
    負(fù)鈦銅基載氧體在煤化學(xué)鏈燃燒中多環(huán)芳烴的生成
    国产亚洲av高清不卡| 欧美成人免费av一区二区三区| 听说在线观看完整版免费高清| 在线永久观看黄色视频| 国产在线观看jvid| 97人妻精品一区二区三区麻豆| 欧美日本亚洲视频在线播放| 国产三级中文精品| 12—13女人毛片做爰片一| 精品一区二区三区视频在线观看免费| 国产精品亚洲一级av第二区| 国产精品98久久久久久宅男小说| 日韩国内少妇激情av| 黑人操中国人逼视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品合色在线| 白带黄色成豆腐渣| av福利片在线观看| 国产免费男女视频| 色老头精品视频在线观看| 欧美日韩精品网址| 在线观看66精品国产| 一边摸一边做爽爽视频免费| 国产精品亚洲一级av第二区| 男人舔女人的私密视频| 亚洲精品一区av在线观看| 97人妻精品一区二区三区麻豆| 午夜福利欧美成人| 黄色女人牲交| 欧美黄色片欧美黄色片| avwww免费| 精品国产美女av久久久久小说| 久久精品aⅴ一区二区三区四区| 午夜影院日韩av| 日韩精品免费视频一区二区三区| 国产精品av视频在线免费观看| 一进一出好大好爽视频| 色综合亚洲欧美另类图片| 免费高清视频大片| 国产三级黄色录像| 亚洲av电影在线进入| 中文字幕熟女人妻在线| av有码第一页| 亚洲无线在线观看| 国产黄色小视频在线观看| 在线观看美女被高潮喷水网站 | 国产在线观看jvid| 久久这里只有精品中国| 久久精品aⅴ一区二区三区四区| 深夜精品福利| 国产三级黄色录像| 精品国产乱码久久久久久男人| 久久久久久久精品吃奶| 99久久无色码亚洲精品果冻| 男人的好看免费观看在线视频 | 国产视频一区二区在线看| 999久久久精品免费观看国产| 身体一侧抽搐| 此物有八面人人有两片| 啦啦啦免费观看视频1| 久久精品国产亚洲av香蕉五月| 99精品欧美一区二区三区四区| 亚洲精品美女久久久久99蜜臀| 午夜福利免费观看在线| 国产黄色小视频在线观看| 高清毛片免费观看视频网站| 欧美成狂野欧美在线观看| 午夜老司机福利片| 老司机午夜福利在线观看视频| 欧美另类亚洲清纯唯美| 中文在线观看免费www的网站 | 天堂动漫精品| 国产精品一及| 深夜精品福利| 久久精品影院6| 最近最新中文字幕大全免费视频| 久久久久九九精品影院| 亚洲人成伊人成综合网2020| 蜜桃久久精品国产亚洲av| 怎么达到女性高潮| 亚洲午夜理论影院| 国产乱人伦免费视频| 999久久久精品免费观看国产| 精品久久久久久,| 日韩欧美一区二区三区在线观看| 亚洲国产欧美人成| 一夜夜www| 亚洲一卡2卡3卡4卡5卡精品中文| 性欧美人与动物交配| 后天国语完整版免费观看| 亚洲av电影在线进入| 狠狠狠狠99中文字幕| 俺也久久电影网| 狂野欧美白嫩少妇大欣赏| 午夜福利成人在线免费观看| 淫妇啪啪啪对白视频| 国产成+人综合+亚洲专区| 三级男女做爰猛烈吃奶摸视频| 亚洲人成网站在线播放欧美日韩| 此物有八面人人有两片| 日本免费一区二区三区高清不卡| 美女免费视频网站| 国内揄拍国产精品人妻在线| 99国产极品粉嫩在线观看| 久久久久久人人人人人| 麻豆成人av在线观看| 精品不卡国产一区二区三区| 91字幕亚洲| 一a级毛片在线观看| 十八禁网站免费在线| 嫩草影院精品99| 久久精品91无色码中文字幕| 在线看三级毛片| 国产又黄又爽又无遮挡在线| 欧美日本视频| 国产精品免费视频内射| 日本免费一区二区三区高清不卡| 一区福利在线观看| 国产欧美日韩精品亚洲av| 大型av网站在线播放| 我要搜黄色片| 亚洲色图 男人天堂 中文字幕| 精品午夜福利视频在线观看一区| 日日夜夜操网爽| 岛国在线观看网站| 亚洲全国av大片| 久久天堂一区二区三区四区| 午夜福利免费观看在线| 嫁个100分男人电影在线观看| 美女 人体艺术 gogo| 国产aⅴ精品一区二区三区波| 一本大道久久a久久精品| 精品国产超薄肉色丝袜足j| 国产野战对白在线观看| 久久天堂一区二区三区四区| 丝袜美腿诱惑在线| 久久久国产成人免费| 色av中文字幕| 久久久久久久久中文| 成人特级黄色片久久久久久久| 亚洲成人中文字幕在线播放| 久久香蕉国产精品| 丝袜美腿诱惑在线| 久9热在线精品视频| 国产精品永久免费网站| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲精品久久久久久毛片| 女人高潮潮喷娇喘18禁视频| 88av欧美| 99久久无色码亚洲精品果冻| 国产日本99.免费观看| 黑人欧美特级aaaaaa片| 国内精品一区二区在线观看| 色哟哟哟哟哟哟| 久久婷婷人人爽人人干人人爱| 免费看美女性在线毛片视频| 欧美色视频一区免费| 国内久久婷婷六月综合欲色啪| 日韩大尺度精品在线看网址| 亚洲欧美精品综合一区二区三区| 身体一侧抽搐| 一a级毛片在线观看| av有码第一页| 在线观看午夜福利视频| 色综合欧美亚洲国产小说| 一级毛片高清免费大全| 亚洲电影在线观看av| 国产主播在线观看一区二区| 欧美日韩乱码在线| 一进一出抽搐动态| 成人18禁高潮啪啪吃奶动态图| 欧美精品亚洲一区二区| 美女大奶头视频| 亚洲无线在线观看| 欧美色视频一区免费| 91大片在线观看| 特级一级黄色大片| 小说图片视频综合网站| 国产精品影院久久| 99热只有精品国产| 国产成人精品无人区| 国产麻豆成人av免费视频| 亚洲第一电影网av| 麻豆一二三区av精品| 全区人妻精品视频| 美女午夜性视频免费| 久久人妻福利社区极品人妻图片| 1024手机看黄色片| 天堂影院成人在线观看| 亚洲国产精品合色在线| 午夜影院日韩av| 免费高清视频大片| 国产成人影院久久av| 精品日产1卡2卡| 搡老熟女国产l中国老女人| 精品国产超薄肉色丝袜足j| 国产精品香港三级国产av潘金莲| 欧美日韩中文字幕国产精品一区二区三区| 日韩大码丰满熟妇| 国产精品久久电影中文字幕| 国产伦一二天堂av在线观看| 少妇粗大呻吟视频| 在线免费观看的www视频| 亚洲av第一区精品v没综合| 一级作爱视频免费观看| 观看免费一级毛片| bbb黄色大片| svipshipincom国产片| 老熟妇乱子伦视频在线观看| 人人妻人人澡欧美一区二区| 中文字幕熟女人妻在线| 麻豆成人午夜福利视频| svipshipincom国产片| 国内精品一区二区在线观看| 人人妻人人澡欧美一区二区| 亚洲中文av在线| 国产欧美日韩一区二区精品| 久久国产精品人妻蜜桃| 757午夜福利合集在线观看| 国产成人系列免费观看| 欧美性猛交黑人性爽| 嫁个100分男人电影在线观看| 亚洲精品国产一区二区精华液| 不卡av一区二区三区| 99国产极品粉嫩在线观看| 国产一区二区激情短视频| 两性夫妻黄色片| 久久热在线av| 国产亚洲av高清不卡| 国产免费av片在线观看野外av| av超薄肉色丝袜交足视频| 精品日产1卡2卡| 欧美日韩瑟瑟在线播放| 少妇人妻一区二区三区视频| 久久中文字幕一级| 亚洲人成电影免费在线| 久久人妻av系列| 在线十欧美十亚洲十日本专区| 色在线成人网| 久久中文字幕一级| 国产精品亚洲av一区麻豆| 黄色毛片三级朝国网站| 久久久久久九九精品二区国产 | 黄色片一级片一级黄色片| 免费观看精品视频网站| 亚洲中文字幕一区二区三区有码在线看 | 99热这里只有精品一区 | 久久久精品国产亚洲av高清涩受| 精品国内亚洲2022精品成人| 国产视频一区二区在线看| 国产精品久久久人人做人人爽| 午夜福利在线观看吧| 蜜桃久久精品国产亚洲av| 国内精品一区二区在线观看| 99国产极品粉嫩在线观看| 变态另类丝袜制服| 国产精品美女特级片免费视频播放器 | 高清毛片免费观看视频网站| 成人18禁在线播放| 不卡av一区二区三区| 国产成人系列免费观看| 欧美性猛交黑人性爽| 无人区码免费观看不卡| 国产亚洲精品av在线| 男人舔奶头视频| 91成年电影在线观看| 亚洲人成电影免费在线| 中文字幕av在线有码专区| 国产精品久久久久久亚洲av鲁大| 欧美一区二区国产精品久久精品 | 蜜桃久久精品国产亚洲av| 在线观看免费视频日本深夜| 亚洲av成人不卡在线观看播放网| 琪琪午夜伦伦电影理论片6080| 亚洲人与动物交配视频| 91九色精品人成在线观看| 婷婷精品国产亚洲av在线| 最近视频中文字幕2019在线8| 操出白浆在线播放| 丁香六月欧美| ponron亚洲| 90打野战视频偷拍视频| 久久久精品国产亚洲av高清涩受| 中文字幕高清在线视频| 国产亚洲精品第一综合不卡| 99国产综合亚洲精品| 久久精品国产99精品国产亚洲性色| 国产亚洲精品综合一区在线观看 | 麻豆成人午夜福利视频| 午夜精品一区二区三区免费看| 12—13女人毛片做爰片一| 亚洲精品粉嫩美女一区| 久久久精品国产亚洲av高清涩受| 亚洲国产欧美网| 天天躁狠狠躁夜夜躁狠狠躁| 18禁美女被吸乳视频| 91麻豆av在线| 国产视频一区二区在线看| 88av欧美| tocl精华| 免费一级毛片在线播放高清视频| 久久婷婷成人综合色麻豆| 日韩三级视频一区二区三区| 国内精品久久久久久久电影| 女人爽到高潮嗷嗷叫在线视频| 国产成人系列免费观看| 久久久久九九精品影院| 国产精品亚洲av一区麻豆| 淫妇啪啪啪对白视频| 久久久久久人人人人人| 天天添夜夜摸| 欧美3d第一页| 欧美激情久久久久久爽电影| 丰满的人妻完整版| а√天堂www在线а√下载| 在线观看午夜福利视频| 最近视频中文字幕2019在线8| 999精品在线视频| 国产单亲对白刺激| 精品少妇一区二区三区视频日本电影| 久久精品国产综合久久久| 日本黄色视频三级网站网址| 亚洲av成人av| x7x7x7水蜜桃| 天天一区二区日本电影三级| 亚洲av五月六月丁香网| 97人妻精品一区二区三区麻豆| 亚洲国产欧美一区二区综合| 两个人看的免费小视频| 我的老师免费观看完整版| 最近视频中文字幕2019在线8| 成人三级做爰电影| 精品不卡国产一区二区三区| 免费高清视频大片| 国内精品久久久久久久电影| 无限看片的www在线观看| av在线播放免费不卡| 高清毛片免费观看视频网站| 黄色毛片三级朝国网站| 天天躁狠狠躁夜夜躁狠狠躁| 18美女黄网站色大片免费观看| 午夜精品一区二区三区免费看| 波多野结衣高清无吗| 欧美黑人巨大hd| 免费在线观看日本一区| 日韩欧美国产一区二区入口| 国产高清有码在线观看视频 | 日韩精品中文字幕看吧| 丰满人妻一区二区三区视频av | 婷婷精品国产亚洲av| av有码第一页| 成人亚洲精品av一区二区| 久久婷婷成人综合色麻豆| 少妇裸体淫交视频免费看高清 | 国产精品久久久久久久电影 | 白带黄色成豆腐渣| 99精品欧美一区二区三区四区| 亚洲成a人片在线一区二区| 国产视频一区二区在线看| 91成年电影在线观看| 亚洲国产中文字幕在线视频| 精品国产超薄肉色丝袜足j| 露出奶头的视频| www.精华液| 亚洲精品中文字幕在线视频| 久久久精品欧美日韩精品| 久久午夜综合久久蜜桃| ponron亚洲| 老鸭窝网址在线观看| 日日摸夜夜添夜夜添小说| 2021天堂中文幕一二区在线观| 国产精品 国内视频| 国产激情偷乱视频一区二区| 欧美在线黄色| 两性夫妻黄色片| 亚洲最大成人中文| www.999成人在线观看| 亚洲一区高清亚洲精品| 精品一区二区三区视频在线观看免费| 亚洲性夜色夜夜综合| 成人18禁在线播放| 18禁观看日本| 免费人成视频x8x8入口观看| 啦啦啦韩国在线观看视频| 国产成人系列免费观看| 好男人在线观看高清免费视频| 欧美乱码精品一区二区三区| 久久精品国产清高在天天线| 免费在线观看成人毛片| 在线观看66精品国产| 99国产综合亚洲精品| 久久国产精品人妻蜜桃| 久久久久亚洲av毛片大全| a在线观看视频网站| 在线观看舔阴道视频| 欧美午夜高清在线| 99久久国产精品久久久| 777久久人妻少妇嫩草av网站| 麻豆国产97在线/欧美 | 亚洲精品一卡2卡三卡4卡5卡| 午夜福利免费观看在线| xxx96com| 少妇人妻一区二区三区视频| 久久午夜亚洲精品久久| 两性午夜刺激爽爽歪歪视频在线观看 | а√天堂www在线а√下载| 99精品在免费线老司机午夜| avwww免费| bbb黄色大片| 中文亚洲av片在线观看爽| av有码第一页| 国产片内射在线| 日韩欧美精品v在线| 国产亚洲av嫩草精品影院| 国产精品一区二区三区四区免费观看 | 在线免费观看的www视频| 老司机午夜福利在线观看视频| 国产爱豆传媒在线观看 | 亚洲一区中文字幕在线| 亚洲熟妇熟女久久| 国产激情久久老熟女| 人人妻,人人澡人人爽秒播| 男插女下体视频免费在线播放| 亚洲一区二区三区不卡视频| 亚洲精品美女久久久久99蜜臀| 人妻久久中文字幕网| 成人国产一区最新在线观看| 国产成人影院久久av| 国产精品乱码一区二三区的特点| 日本精品一区二区三区蜜桃| 精品日产1卡2卡| 国产精品野战在线观看| 国产激情偷乱视频一区二区| 国产av一区二区精品久久| 亚洲一区高清亚洲精品| 一区二区三区高清视频在线| 在线观看午夜福利视频| www.av在线官网国产| 校园人妻丝袜中文字幕| 亚洲丝袜综合中文字幕| 爱豆传媒免费全集在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美又色又爽又黄视频| 国产精品久久久久久精品电影小说 | 蜜桃久久精品国产亚洲av| av天堂在线播放| 久久久久网色| 亚洲成人av在线免费| 美女xxoo啪啪120秒动态图| 日韩一区二区视频免费看| 少妇的逼好多水| 级片在线观看| 少妇被粗大猛烈的视频| 国产中年淑女户外野战色| 色哟哟哟哟哟哟| 日韩高清综合在线| 久久鲁丝午夜福利片| 成人漫画全彩无遮挡| 天堂av国产一区二区熟女人妻| 爱豆传媒免费全集在线观看| 91精品国产九色| 欧美+亚洲+日韩+国产| 国产亚洲精品久久久com| 欧美激情久久久久久爽电影| 国产精品精品国产色婷婷| 亚洲丝袜综合中文字幕| 91麻豆精品激情在线观看国产| 亚洲精品456在线播放app| 1000部很黄的大片| 午夜福利在线观看吧| 日韩,欧美,国产一区二区三区 | 日韩强制内射视频| 国产高清三级在线| 亚洲欧洲国产日韩| 亚洲一区高清亚洲精品| 成人毛片60女人毛片免费| 亚洲婷婷狠狠爱综合网| 亚洲在久久综合| 成人特级av手机在线观看| 午夜精品一区二区三区免费看| 国产蜜桃级精品一区二区三区| 成熟少妇高潮喷水视频| 亚洲av中文av极速乱| 亚洲国产精品成人久久小说 | 一本久久中文字幕| 老熟妇乱子伦视频在线观看| 国产精品女同一区二区软件| 99精品在免费线老司机午夜| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆| www日本黄色视频网| 日本黄色片子视频| 男女啪啪激烈高潮av片| 男人和女人高潮做爰伦理| 熟女电影av网| 男女视频在线观看网站免费| 日韩国内少妇激情av| 青青草视频在线视频观看| 在线播放无遮挡| 国产一区二区激情短视频| 午夜精品一区二区三区免费看| 色综合亚洲欧美另类图片| 亚洲美女搞黄在线观看| 人人妻人人澡欧美一区二区| 亚洲成人久久爱视频| 一区二区三区高清视频在线| 美女cb高潮喷水在线观看| 在线天堂最新版资源| 午夜老司机福利剧场| 波野结衣二区三区在线| 91久久精品国产一区二区成人| 日韩国内少妇激情av| 日韩成人av中文字幕在线观看| 看片在线看免费视频| 国产精品一区二区三区四区久久| 99热这里只有是精品50| 99热网站在线观看| 精品日产1卡2卡| 亚洲精品成人久久久久久| 成人二区视频| 久久99精品国语久久久| 午夜激情福利司机影院| 一进一出抽搐gif免费好疼| 日本欧美国产在线视频| 在线观看免费视频日本深夜| 天天躁日日操中文字幕| 久久久久国产网址| 综合色丁香网| 成人永久免费在线观看视频| 舔av片在线| 国产伦在线观看视频一区| 一级毛片久久久久久久久女| 在线国产一区二区在线| 久久久久久久午夜电影| 18+在线观看网站| 九色成人免费人妻av| 成人综合一区亚洲| av又黄又爽大尺度在线免费看 | 高清毛片免费观看视频网站| 白带黄色成豆腐渣| 亚洲欧美日韩卡通动漫| 亚洲在久久综合| 一个人免费在线观看电影| 国产午夜精品论理片| 我要看日韩黄色一级片| 人人妻人人看人人澡| 激情 狠狠 欧美| 18+在线观看网站| 国产精品精品国产色婷婷| 中国美白少妇内射xxxbb| 少妇裸体淫交视频免费看高清| 国产探花极品一区二区| 一夜夜www| 九草在线视频观看| 国产精品久久久久久av不卡| 少妇熟女aⅴ在线视频| 国产黄色小视频在线观看| 成人永久免费在线观看视频| 日本爱情动作片www.在线观看| 国产av麻豆久久久久久久| 国国产精品蜜臀av免费| 黄色欧美视频在线观看| 欧美精品国产亚洲| 免费观看精品视频网站| 国国产精品蜜臀av免费| 亚洲精华国产精华液的使用体验 | 国产欧美日韩精品一区二区| 97在线视频观看| 日韩欧美在线乱码| 嫩草影院精品99| 国产精品乱码一区二三区的特点| 69av精品久久久久久| 网址你懂的国产日韩在线| 成人无遮挡网站| 国产精品久久久久久久电影| 麻豆国产av国片精品| 国内少妇人妻偷人精品xxx网站| 午夜激情福利司机影院| 国产亚洲5aaaaa淫片| 99热全是精品| 2022亚洲国产成人精品| 成人二区视频| 国产真实伦视频高清在线观看| 晚上一个人看的免费电影| 黄片wwwwww| 亚洲天堂国产精品一区在线| 亚洲av成人av| 波多野结衣巨乳人妻| 少妇裸体淫交视频免费看高清| 婷婷亚洲欧美| 亚洲精品国产av成人精品| 日韩欧美 国产精品| 中文字幕精品亚洲无线码一区| 2021天堂中文幕一二区在线观| 校园春色视频在线观看| 美女国产视频在线观看| 精品国内亚洲2022精品成人| 中国国产av一级| 亚洲av二区三区四区| 亚洲最大成人手机在线| 夫妻性生交免费视频一级片| 亚洲av第一区精品v没综合| 免费av不卡在线播放| 亚洲四区av| 男女啪啪激烈高潮av片| 久久99热6这里只有精品| 欧美bdsm另类| 男女那种视频在线观看| 有码 亚洲区| 亚洲,欧美,日韩| 嫩草影院入口| 成人毛片60女人毛片免费| 秋霞在线观看毛片| 免费观看a级毛片全部| 国产高清三级在线|