• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    介孔Fe/SBA-15非均相芬頓氧化水中難降解染料羅丹明B

    2015-01-04 12:52:32胡龍興許丹丹鄒聯(lián)沛上海大學環(huán)境與化學工程學院上海200444
    物理化學學報 2015年4期
    關(guān)鍵詞:龍興上海大學芬頓

    胡龍興 許丹丹 鄒聯(lián)沛 袁 航 胡 星(上海大學環(huán)境與化學工程學院,上海200444)

    介孔Fe/SBA-15非均相芬頓氧化水中難降解染料羅丹明B

    胡龍興*許丹丹 鄒聯(lián)沛 袁 航 胡 星
    (上海大學環(huán)境與化學工程學院,上海200444)

    以介孔二氧化硅SBA-15為載體,采用等體積浸漬法制備了Fe/SBA-15.通過X射線衍射(XRD)、N2吸附-脫附、掃描電鏡(SEM)、透射電鏡(TEM)和X射線光電子能譜(XPS)等技術(shù)對其進行了表征,并用于對水溶液中羅丹明B(RhB)的芬頓氧化.表征結(jié)果表明了Fe/SBA-15維持了長程有序的介孔結(jié)構(gòu),孔徑和比表面積都有所下降,并呈現(xiàn)棒狀體的聚集態(tài),平均直徑為0.6 μm.Fe以α-Fe2O3的形態(tài)同時存在于介孔孔道內(nèi)外.在Fe/ SBA-15和H2O2同時存在條件下RhB的去除是吸附和催化氧化降解的協(xié)同作用所致,并且與Fe/SBA-15投加量密切相關(guān),但與初始溶液pH幾乎無關(guān).當Fe/SBA-15投加量為0.15 g·L-1,RhB初始濃度為10.0 mg·L-1, H2O2/Fe3+摩爾比為2000:1,初始溶液pH為5.4和反應(yīng)溫度為21°C時,RhB去除率達到了93%.Fe/SBA-15的Langmiur單分子層飽和吸附量為99.11 mg·g-1.此外,采用H2O2浸泡方式對使用過的Fe/SBA-15可進行再生,連續(xù)6次循環(huán)使用后仍可維持80%的RhB去除率,且每次使用后Fe浸出濃度都在0.1 mg·L-1(或者0.6%(質(zhì)量分數(shù)))以下.基于淬滅實驗、UV-Vis光譜和氣相色譜-質(zhì)譜(GC-MS)聯(lián)用儀分析的結(jié)果,提出了RhB的去除機理.非均相芬頓催化劑Fe/SBA-15可用于去除像RhB這樣的生物難降解有機物.

    非均相芬頓氧化;吸附;Fe/SBA-15;羅丹明B;羥基自由基

    1 Introduction

    Textile dyes and other industrial dyestuffs make up one of the largest groups of non-biodegradable materials that impose serious environmental problems because of their existence in the effluents.A number of techniques have been applied to remove refractory organic pollutants from water,such as adsorption,1,2electrochemical oxidation,3,4ultrasonic degradation,5,6photocatalytic degradation,7,8ozonation,9,10etc.Adsorption is easy to operate with high removal efficiency,but it only transfers the pollutants from liquid phase to solid phase,leading to the secondary pollution.The other techniques require special devices and equipment,resulting in the high capital and operational costs. Fenton reaction(Fe2+/H2O2)has been widely applied in treating organic pollutants in water because it is rapid and inexpensive. However,it has several significant drawbacks such as the acidic pH requirement(pH 2-4),a high Fe dosage generating a large amount of iron sludge,and the limited TOC(total organic carbon) removal.11-13Heterogeneous Fenton oxidation using Fe-based solid materials as catalysts has emerged as a promising alternative to the conventional Fenton process due to the absence of the usual disadvantages and feasibility of the catalyst recycle.

    To date,iron-based solid catalysts as promising heterogeneous Fenton catalysts for degradation of organic pollutants have been reported,and can be classified as unsupported iron oxides including Fe2O3,Fe3O4,and zero-valence iron,14-16unsupported iron composites including some non-ferrous metals with variable valence,17-19and supported iron catalysts including iron-immobilized resin,20membrane,21clay,22,23carbon,24-26zeolite,27-29mesostructured silica materials,13,30-45and alumina.46,47

    Mesoporous silica SBA-15,one of the mesoporous molecular sieves,has highly ordered structure,large pore size,and high surface area,48,49which favors the loading and dispersion of the catalytic active components which possess the nano effect due to the nano-size domain.Accordingly,it is possible for Fe loaded mesoporous molecular sieves to exhibit high activity and stability in heterogeneous Fenton oxidation of organic pollutants.Melero et al.31investigated a nanocomposite of Fe2O3loaded SBA-15 which acted as an efficient and stable catalyst for wet peroxidation of phenolic aqueous solutions.They also used the SBA-15 loaded Fe2O3and CuO crystallites as the heterogeneous Fenton catalyst, preventing the leaching of Fe species and enhancing the TOC degradation.32Xiang et al.36synthesized a Fe/SBA-15 by different impregnation and co-condensation approaches,and ascertained the most active catalysts in the total phenol oxidation by H2O2in aqueous solution.Shukla et al.37prepared Fe/SBA-15 by impregnation and tested for adsorption and heterogeneous advanced oxidation of 2,4-dichlorophenol(DCP)in aqueous solution in the presence of H2O2.Botas et al.13synthesized various Fe/SBA-15 catalysts for the oxidation of phenol aqueous solution with H2O2. Mayani et al.38evaluated the Fe/SBA-15 for the oxidation of phenols in the presence and absence of H2O2with satisfactory results.

    In the previous investigations,phenolic contaminants were usually used as the target substrates,and Fe loaded mesoporous materials were usually regarded as catalysts.Few investigations were concerned with other refractory organic pollutants and the adsorption performance of the catalysts in heterogeneous Fenton oxidation.23,27,29,34,37,43The dye Rhodamine B(RhB)with four N-ethyl groups at either side of the xanthene ring and chromophore has the complex molecular structure and stable property,which make it resistant to biological degradation or photodegradation.This paper deals with the dual functions of the prepared Fe/ SBA-15 as both an adsorbent and a catalyst in the heterogeneous Fenton oxidation of RhB in aqueous solution.The effects of reaction parameters such as Fe/SBA-15 dosage,initial RhB concentration,molar ratio of H2O2/Fe3+,and initial solution pH on RhB removal,and the regeneration and recycling performance of the Fe/SBA-15 are examined,and the removal mechanism of RhB from aqueous solution is proposed on the basis of experimental results.

    2 Experimental

    2.1 Preparation of SBA-15 and Fe/SBA-15

    SBA-15 as a support was prepared according to the procedure described by Zhao et al.48Pluronic P123 triblock copolymer(EO20-PO70-EO20(EO:ethoxy;PO:propoxy),Aldrich)and tetra ethlyl orthosilicate(TEOS,Aldrich)acted as a template agent and a silica source,respectively.The Fe/SBA-15 with the Fe loading of 10%(mass ratio of Fe to SBA-15,simplified as Fe/SBA-15 in this investigation)was prepared by incipient wetness impregnation.A typical synthesis could be described as follows:the precursor Fe(NO3)3·9H2O(AR,SCRC)was dissolved in deionized water at a concentration dependent on the desired Fe loading,then a certain amount of the prepared SBA-15 was dispersed into the above solution forming a suspension,and the suspension was stirred to make Fe easy to impregnate,and the yielded mixture was dried in oven at 60°C overnight to evaporate the solvent,finally followed by the calcination at 750°C for 5 h in air with a heating rate of 10°C·min-1.

    2.2 Characterization of prepared SBA-15 and Fe/ SBA-15

    The crystalline form of the prepared samples were identified by X-ray diffraction(XRD,Model,Rigaku D/Max-2200X)using a diffraction meter with Cu Kαradiation source of wavelength 0.154056 nm at 40 kV and 40 mA.The small-angle data were collected from 0.5°to 5.0°(2θ)with a scan speed of 0.5(°)·min-1; the wide-angle data were collected from 10°to 80°(2θ)with a scan speed of 5(°)·min-1.N2adsorption-desorption isotherms of the samples were acquired using Micromeritics Tristar 3000 apparatus at 77 K.Pore volumes were determined from the data at a relative pressure(p/p0)of 0.99,the specific surface areas were calculated with BET(Brunner-Emmet-Teller)equation,and pore size distributions were determined by BJH(Barrett-Joyner-Halenda)method according to the adsorption branch of the isotherms.The external morphology of samples was collected on a JSM-6700F scanning electron microscope(SEM).The internal structure of samples was characterized by a JEM-2010F(JEOL) high resolution-transmission electron microscope(HRTEM) with field emission gun at 200 kV.X-ray photoelectron spectroscopy(XPS)measurements were recorded on a ESCALAB 250Xi device.

    2.3 Adsorption(adsorption mode)

    The adsorption tests were carried out respectively at~21°C in 100 and 1000 mLglass vessels with 50 and 500 mLof RhB(AR,>99%,SCRC)solutions which were magnetically stirred,respectively.The initial solution pH was not adjusted.Only a known amount of Fe/SBA-15 was added into the aqueous solution to start the contact.The vessel was covered to avoid volatilization.At the end of the contact or at fixed intervals,the suspension samples of 7 mL for each were taken with a syringe.The suspensions were separated by centrifugation at 3500 r·min-1for 10 min to obtain the supernatant for analysis.

    2.4 Catalytic oxidative degradation(catalytic degradation mode)

    The catalytic activity of Fe/SBA-15 was evaluated by the degradation of RhB instead of the adsorption.The catalytic oxidative degradation tests of RhB were carried out respectively at a given temperature in 1000 mL glass vessels with 500 mL of RhB solution for each which was magnetically stirred.The Fe/SBA-15 was first added into the RhB solutions and the suspensions were stirred overnight to achieve the adsorption-desorption equilibrium of RhB.The RhB concentrations at the equilibrium were taken as the initial concentrations(c0)for the RhB catalytic degradation. Then a given amount of H2O2solution(AR,30%(w,mass fraction),SCRC)was added into the vessel to initiate the reaction. The vessel was also covered to avoid volatilization.At fixed intervals,the suspension samples of 7 mL for each were taken with a syringe and quenched with excess methanol to stop the reaction. The following procedures were the same as above.

    2.5 Combined adsorption and catalytic oxidative degradation(combined mode)

    The tests with the combined mode were carried out respectively at~21°C in 100 and 1000 mL glass vessels with 50 and 500 mL of RhB solutions which were magnetically stirred for 14 h,respectively.The initial solution pH was adjusted by 1.0 mol·L-1NaOH and 1.0 mol·L-1H2SO4solutions using a pH meter(pHS-3C,Shanghai,China).Aknown amount of Fe/SBA-15 was added into the aqueous solution,immediately followed by the addition of a given amount of H2O2solution to start the reaction.The subsequent procedures were the same as above.

    2.6 Analytical methods

    The RhB concentrations were quantified with a UV-Vis spectrophotometer(UV-5300PC,Shanghai)at 552 nm.The Fe concentration in solution was measured by an inductively coupled plasma(ICP)emission spectrometer(Prodigy).The concentration of H2O2in aqueous solution was determined by the titanium complexing method described by Vassilakis et al.50The UV-Vis spectra were obtained using a UV-Vis spectrophotometer(UV-5300PC,Shanghai)at different reaction time,with the spectrum scanned from 350 to 650 nm.The principal degradation products of RhB were detected by GC-MS,with an Agilent 7890A gas chromatograph equipped with a DB-5 capillary column(30 mm× 0.25 mm×0.18 mm)combined with an Agilent 5975C mass spectroscopy equipment employed.

    Generally,the tests were conducted in duplicate and the errors of the experimental results were below 3%.

    3 Results and discussion

    3.1 Characterization of SBA-15 and Fe/SBA-15

    3.1.1 XRD

    Fig.1 Small(a)and wide(b)angle XRD patterns of SBA-15 and Fe/SBA-15

    The small and wide angle XRD patterns of different samples are shown in Fig.1(a,b),respectively.As seen from the smallangle XRD patterns(Fig.1(a)),SBA-15 and Fe/SBA-15 exhibit a strong diffraction peak and two obvious sub-peaks,corresponding to the diffraction planes(100),(110),and(200),respectively, indicating that the SBA-15 possesses the typical highly ordered hexagonally mesoporous structure and the Fe/SBA-15 maintains the structure of SBA-15.However,the obvious decrease in intensity of the diffraction peaks in Fe/SBA-15 compared with SBA-15 could be observed,which was attributed to the decrease in average electron density contrast and the formation of iron oxides inside the channels of SBA-15.51,52As seen from Fig.1(b),besides one major peak at 24°for SBA-15 and Fe/SBA-15,there also exist other peaks for Fe/SBA-15 which can be ascribed to the existence of α-Fe2O3.Fe2O3is very stable under ambient conditions and is usually the end product of the transformation of other iron oxides.53Fe2O3,Fe3O4,and FeO are the principal Fe species available, and the specific species loaded into the supports tend to be dependent on the preparation methods and conditions.54-56

    3.1.2 N2adsorption-desorption

    N2adsorption-desorption isotherms and pore size distribution at 77 K of SBA-15 and Fe/SBA-15 are shown in Fig.2.It is evident in Fig.2(a)that Fe/SBA-15 has similar isotherm to SBA-15, exhibiting type IV isotherms with a H1-type hysteresis loop, which was the characteristic of mesoporous materials having cylindrical type mesostructures.For the isotherm of the pure SBA-15,with increased relative pressure,a sharp jump resulting from capillary condensation of N2was observed at p/p0of 0.6-0.8, while the relative pressure with the emergence of the sharp step for Fe/SBA-15 decreased to 0.45-0.75,indicating the reduced pore size due to Fe species introduction into the channel of SBA-15.The lower sharp jump of Fe/SBA-15 than that of SBA-15 could also be explained by the reduced order degree of mesoporous structure due to Fe loading.The profiles of pore size distribution(Fig.2(b))show that the pore sizes of SBA-15 and Fe/SBA-15 are relatively uniform and center at 6-10 nm.The BET specific surface areas and pore parameters of prepared SBA-15 and Fe/SBA-15 are listed in Table 1.The results indicated that loading Fe into SBA-15 reduced the specific surface area,total pore volume,and pore diameter of the support,implying that a fraction of Fe loaded after calcination occupied part of the pore channel of SBA-15.

    Fig.2 N2adsorption-desorption isotherms(a)and pore size distributions(b)for SBA-15 and Fe/SBA-15

    3.1.3 SEM

    The external morphologies of the SBA-15 and Fe/SBA-15 characterized by SEM can be observed from Fig.3.It can be found from Fig.3(a)that the SBA-15 presents the aggregates with the diameter greater than 0.7 μm,consisting of rod-like crystallites with the diameter greater than 0.2 μm and axial length greater than 1.3 μm.It can also be found from Fig.3(b)that the Fe/SBA-15 also displays the aggregates with the diameter more than 0.6 μm, consisting of rod-like crystallites,demonstrating that the Fe loading on SBA-15 does not change the original morphology.There are many small particles attached to the surface of the Fe/SBA-15 (Fig.3(b)),which can be ascribed to the sintering of iron oxidesduring high-temperature calcination.56The sintering makes a fraction of Fe2O3supported on the surface forming Fe2O3aggregates with the diameter more than 0.4 μm.

    Table 1 Pore parameters of SBA-15 and Fe/SBA-15

    Fig.3 SEM images of SBA-15(a)and Fe/SBA-15(b)

    3.1.4 TEM

    The TEM images of the prepared SBA-15 and Fe/SBA-15 are presented in Fig.4.Fig.4(a,b)shows the bright-field images of SBA-15 and Fe/SBA-15,respectively.Fig.(c,d)shows the brightand dark-field images of Fe/SBA-15,respectively.The highly ordered hexagonal array of SBA-15 with the pore diameter of approximately 7 nm and uniform channel wall thickness of approximately 4 nm is observed from Fig.4(a).Fig.4(b,c,d)displays the representative internal morphology of Fe/SBA-15,the distribution of the supported iron oxides,and a better dispersion of Fe2O3crystallites over the SBA-15 framework.There exist many small black dots(Fig.4(b))and bright white dots(Fig.4(c, d))in the images,both dots representing the Fe2O3crystallites located in the SBA-15 channels.From TEM image inserted in Fig.4(b),the measured lattice spacings of 0.25 nm correspond to (110)interplanar distance of α-Fe2O3.The growth of the crystallites embedded into the SBA-15 channels was limited by the channel walls,thus leading to the rod-like shape of the crystallites. From Fig.4(c),it can be seen that the crystallites have the diameter of approximately 6 nm,consistent with the pore diameter of SBA-15,and the average length more than 25 nm,attributable to the uncontrolled growth of Fe2O3crystallites along the channels.The shaded parts circled in Fig.4(b,c,d)represent a fraction of the aggregates of Fe2O3crystallites loaded outside the channels of SBA-15.

    Fig.4 TEM images of SBA-15(a)and Fe/SBA-15(b,c,d)

    Fig.5 XPS analyses of Fe/SBA-15

    3.1.5 XPS

    In the XPS spectra of Fe/SBA-15 composites shown in Fig.5 (a),strong peaks of Fe 2p,Si 2p,and O 1s are observed.In Fig.5 (b),peaks at 711.58 and 724.58 eV are assigned to Fe 2p3/2and Fe2p1/2binding energies,which is the main characteristic of Fe3+state.57Additionally,O 1s spectrum of Fe/SBA-15 is shown in Fig.5(c).The main binding energy peak is observed at 532.38 eV, which corresponds to O2-in the iron oxide lattice57and Si 2p binding energy was estimated from Fig.5(d)to be about 103.68 eV.

    3.2 Adsorption of RhB on Fe/SBA-15

    To understand the adsorption characteristics of mesoporous material Fe/SBA-15,the adsorption tests were carried out in 100 mL glass vessels with 50 mL of RhB solution with an initial RhB concentration from 5.0 to 40.0 mg·L-1,Fe/SBA-15 dosage of 0.15 g·L-1,and unadjusted initial pH of 5.4.The contact time and temperature were 14 h and 21°C,respectively.The adsorption isotherm of RhB on Fe/SBA-15 is presented in Fig.6.As observed,RhB adsorption increases with increasing RhB equilibrium concentration.At the equilibrium concentration of 29.47 mg·L-1, the RhB adsorption on Fe/SBA-15 is 86.55 mg·g-1.Two isotherm models,Langmuir(Eq.(1))and Freundlich(Eq.(2))isotherms, were applied to fit the experimental data:

    where qeand Cerepresent the equilibrium adsorption capacity of the adsorbent(mg·g-1)and equilibrium concentration of RhB(mg· L-1),respectively,qmaxis monolayer adsorption capacity of the adsorbent(mg·g-1),KLis the Langmuir adsorption constant(L· mg-1),KF(L·mg-1)and n(dimensionless)are the Freundlich constants,related to the adsorption capacity and adsorption intensity,respectively.The parameters of the fitted curves of two isotherms are listed in Table 2.As seen,the fitted curve of Langmuir isotherm(R2=0.9976)is more reasonable than that of Freundlich one(R2=0.9217).qmaxof 99.11 mg·g-1from Langmuir isotherm represents a complete monolayer adsorption capacity of RhB on the Fe/SBA-15 surface.

    Fig.6 Adsorption curve of RhB on Fe/SBA-15

    Table 2 Parameters of Langmuir and Freundlich isotherms

    The substantial characteristic of Langmuir isotherm can be shown as the equilibrium parameter RL(dimensionless),which is defined as follows:1

    where C0is the initial adsorbate concentration(mg·L-1),RLis a characteristic value for the adsorption process.It is generally accepted that RL>1 represents an unfavorable adsorption process, with 0<RL<1 favorable,RL=1 linear,and RL=0 irreversible adsorption process.Given KL=0.21 L·mg-1,and initial RhB concentrations at 5.0,10.0,15.0,20.0,25.0,30.0,and 40.0 mg·L-1respectively,all the RLvalues calculated in this investigation ranged between 0 and 1,indicating that the RhB adsorption on SBA-15 is a favorable process and the Fe/SBA-15 may be used as an efficient adsorbent.

    As shown in Table 3,58-62the Fe/SBA-15 possesses higher adsorption capacity than fly ash,MIF-B,Fe-Ben,and BiFeO3,etc, but lower capacity than SBA-15.The maximum adsorption capacity of pure SBA-15 for Rhodamine B was determined to be 497.9 mg·g-1.62When Fe was supported on SBA-15,the adsorption capacity of Fe/SBA-15 was reduced since α-Fe2O3was introduced into the SBA-15 channel.The high adsorption capacity provides adequate adsorption sites,and also benefits the subsequent heterogeneous catalytic reaction.

    Table 3 Comparison of RhB adsorption on different adsorbents(Langmuir isotherms)

    3.3 Effect of various reaction parameters on RhB removal with combined mode

    3.3.1 Preliminary test

    As a preliminary test,the variation of RhB concentrations in aqueous solution with time under three different operation modes was investigated:adsorption,catalytic degradation,combined adsorption and catalytic degradation,and the results are shown in Fig.7.The corresponding operation conditions are Fe/SBA-15 dosage at 0.15 g·L-1,molar ratio of H2O2/Fe3+at 2000:1,initial RhB concentration at 10.0 mg·L-1,initial solution pH at 5.4 (unadjusted),and reaction temperature at 21°C.

    As seen from Fig.7,in the absence of H2O2,the Fe/SBA-15 exhibits the RhB adsorption removal up to 55%,and the ad-sorption is very fast within the initial 60 min resulting in approximately 50%RhB removal and attains a plateau in 120 min (curve a).The Fe/SBA-15 is an efficient catalyst for Fenton oxidation,and the catalytic oxidative degradation of RhB is able to take place at a significant but quite uniform rate,with 84%RhB removal achieved(curve c).In the presence of both Fe/SBA-15 and H2O2in the RhB solution,the change of RhB concentrations with time is different from the above-mentioned two variations, attaining the RhB removal of 93%,and is also not equal to the simple sum of the adsorption and catalytic degradation contributions(curve b),which demonstrates the existence of the synergic effect of adsorption and catalytic degradation for RhB removal.

    Fig.7 Removal of RhB in aqueous solution under three operational modes

    3.3.2 Effect of Fe/SBA-15 dosage

    The effect of Fe/SBA-15 dosage on RhB removal in the presence of H2O2is presented in Fig.8.As observed,in the presence of H2O2without Fe/SBA-15,the RhB removal is only 17%,illustrating that H2O2alone fails to oxidize RhB effectively.The increase in Fe/SBA-15 dosage from 0 to 0.15 g·L-1leads to a significant increase of RhB removal to 94%,but the further increase in Fe/SBA-15 dosage from 0.15 to 0.30 g·L-1results in only a slight increase of RhB removal,approaching the upper removal limit.The increased Fe/SBA-15 dosage would increase adsorption sites for reactants and also provide more catalytic active sites for activation of H2O2to generate more hydroxyl radicals,thus leading to a remarkable enhancement of the RhB removal efficiency and removal rate.

    Fig.8 Effect of Fe/SBA-15 dosage on RhB removal

    3.3.3 Effect of initial RhB concentration

    Fig.9 displays the RhB removal at various initial RhB concentrations.As shown,the lower initial RhB concentrations in aqueous solution with the fixed dosages of Fe/SBA-15 and H2O2favor the RhB removal.The RhB removal in 14 h declines from 92%to 37%as the initial RhB concentration increases from 5.0 to 50.0 mg·L-1.This can be ascribed to the following reasons:(1) The fixed dosage of Fe/SBA-15 and H2O2generates the fixed HO· amount,and with higher RhB initial concentration,the amount of RhB molecules per unit volume is larger,causing the decrease in the percentage of RhB molecule involved into the reaction and the decrease of the removal.(2)The active sites blockage arising from more carbonaceous deposit on the Fe/SBA-15 for higher RhB concentration may lead to the decline in catalytic activity of Fe/ SBA-15.A few investigations have presented the similar conclusion that the higher the dye concentration,the more the removal of the dye is suppressed.15,22

    Fig.9 Effect of initial RhB concentration in aqueous solution on RhB removal

    3.3.4 Effect of initial solution pH

    The effect of initial solution pH on RhB removal in the presence of Fe/SBA-15 and H2O2was investigated to demonstrate the different pH effect between the present heterogeneous Fenton oxidation and conventional homogeneous Fenton reaction.Fig.10 displays the RhB removal at various initial pH ranging from 3 to 9 including the unadjusted initial solution pH of 5.4.As observed, the RhB removal efficiency and rate changes little with initial solution pH.The RhB removal ranged approximately from 82% to 93%at the pH from 3.0 to 9.0,with the maximum removal of 93%at pH 5.4.Accordingly,this heterogeneous Fenton oxidation has the significant advantages over conventional homogeneous Fenton oxidation processes,removing the pH adjustment requirement and promoting the practical applications.The removal of RhB under the combined adsorption and catalytic degradation mode is closely related to the surface properties of Fe/SBA-15 and the distribution of the RhB species,etc.in aqueous solution,all ofwhich are dependent on the solution pH.The combined dependence of the several factors on the pH results in the above effect of initial solution pH.

    Fig.10 Effect of initial solution pH on RhB removal

    3.3.5 Effect of molar ratio of H2O2/Fe3+

    Fig.11 presents the effect of initial H2O2concentrations(in terms of molar ratio of H2O2/Fe3+)on RhB removal in the presence of Fe/SBA-15.As observed,RhB removal reaches 55%in the presence of Fe/SBA-15 without any oxidant H2O2,which can be attributed to the RhB adsorption on Fe/SBA-15.The higher the molar ratio of H2O2/Fe3+in the range of 0:1 to 2000:1 at the Fe/ SBA-15 dosage of 0.15 g·L-1,initial RhB concentration of 10.0 mg·L-1,initial solution pH of 3.0,and 21°C,the higher the removal efficiency and rate of the RhB.However,the further improvement of RhB removal was not significant at the H2O2/Fe3+molar ratio ranging from 2000:1 to 2500:1.It is known that for the heterogeneous Fenton reaction more hydroxyl radicals,hence higher RhB removal,are available at higher initial H2O2concentrations.Nevertheless,H2O2can also act as a hydroxyl radical scavenger as described in Eqs.(4)and(5),and can also take place the self-decomposition as described in Eq.(6),so the further increase of the H2O2concentration cannot result in the significant increase of hydroxyl radicals and the enhancement of the RhB removal.

    Fig.11 Effect of molar ratio of H2O2/Fe3+on RhB removal

    3.4 Reusability of the Fe/SBA-15

    In the case of removing organic pollutants in heterogeneous Fenton oxidation system,the reusability of Fenton catalyst tends to be one of the technical advantages.The reusability of catalyst is reflected by the catalytic activity and stability of the catalyst. The catalytic activity of the Fe/SBA-15 can be evaluated by the removal of RhB in aqueous solution in the presence of H2O2and used Fe/SBA-15,while the stability of the Fe/SBA-15 can be estimated by the leaching of Fe.The results are presented in Figs.12 and 13.The H2O2soaking technique was employed to treat the used Fe/SBA-15 for the next run as follows:the used solid Fe/ SBA-15 was collected by suction filtration with 0.22 μm membrane,then soaked in 5 mol·L-1H2O2solution for one night,and finally dried in oven at 80°C for 5 h.The H2O2soaking technique is not only simple in operation,but also inexpensive,and is better than the calcination technique employed by other researchers.32,33The performance difference between the untreated Fe/SBA-15 and the treated one is displayed in the inset of Fig.12,showing asignificant drop in the performance,adsorptive and catalytic,for the used Fe/SBA-15 without any treatment.In the reuse tests of the Fe/SBA-15,several parallel tests were carried out in every run until the last one to ensure that the Fe/SBA-15 amount was sufficient for the next run.As shown in Fig.12,the performance of the used Fe/SBA-15 suffers slight decline in RhB removal during 6 recycled runs,with RhB removal of approximately 90%for the 1st run and approximately 80%for the 6th run.

    Fig.12 Variation of removal of RhB with time during six recycled runs of Fe/SBA-15

    Fig.13 Fe leaching during six recycled runs of Fe/SBA-15

    Additionally,the Fe leaching from the heterogeneous catalyst may be also responsible for the decrease in the number of active sites,hence the catalytic activity22.The Fe leaching was investigated and the results are presented in Fig.13.For any one of the six runs,the Fe leaching concentration and leaching percent are less than 0.1 mg·L-1and 0.6%,respectively(Fig.13).Such a low Fe leaching does not pose the contaminated water.The total Fe leaching percent after the six runs was calculated to be approximately 3.2%,which is a lower Fe leaching and sustains the stable catalytic activity of Fe/SBA-15.It was reported that some heterogeneous Fe catalysts were reused in the successive Fenton-like oxidation runs with significant Fe lost and most poorly-bounded iron species lost during the first run32.

    3.5 RhB removal mechanism in the presence of Fe/SBA-15 and H2O2

    3.5.1 Comparison of homogeneous and heterogeneous Fenton reaction for RhB removal

    Fig.14 presents the comparison of RhB removal in the presence of H2O2and heterogeneous Fe/SBA-15 or homogeneous Fe(III). As observed,RhB removal(degradation)in the homogeneous Fe (III)-H2O2system shows similar behavior,with the degradation efficiency increasing with increasing Fe3+concentration and degradation rate keeping relatively slow in the process.The degradation of RhB in 14 h enhanced from 18%to 28%as Fe3+concentration increased from 0.1 to 1.0 mg·L-1,indicating that 1.0 mg·L-1of Fe3+concentration was not high enough to attain the significant decomposition of RhB.RhB removal in the heterogeneous Fe/SBA-15-H2O2-RhB system was much faster than that in the homogeneous Fe(III)-H2O2system with up to 1.0 mg·L-1of Fe3+concentration.For the heterogeneous system,almost complete RhB removal could be achieved in 14 h with Fe leaching less than 0.1 mg·L-1.Based on the comparison,it is believed that the heterogeneous Fe/SBA-15 instead of the Fe3+leached in the solution is responsible for the RhB removal,i.e.,the homogeneous reaction initiated by the leached Fe3+has little effect on the RhB removal.

    Fig.14 Comparison of homogeneous and heterogeneous Fenton reactions for RhB removal

    3.5.2 Quenching tests

    In order to confirm whether the RhB degradation in the presence of Fe/SBA-15 and H2O2involves the hydroxyl radicals(HO·), free radicals quenching tests were conducted with tert-butanol,an efficient hydroxyl radical scavenger with the reaction rate of 3.8× 108-7.6×108mol-1·L·s-1,61and the result is shown in Fig.15.As observed,the removal efficiency of RhB in the absence of tertbutanol in the Fe/SBA-15-H2O2-RhB system is 93%,but the presence of tert-butanol in the system remarkably suppresses the RhB removal efficiency and rate,indicating that a large number of hydroxyl radicals(HO·)are scavenged by tert-butanol.Therefore,the primary approach of the RhB degradation with the couple of Fe/SBA-15 and H2O2is for hydroxyl radicals from the H2O2to attack the targeted RhB.In conclusion,the primary identified reactive radical in the heterogeneous Fenton system is hydroxyl radical,HO·.

    Fig.15 Effect of hydroxyl radical scavenger on removal of RhB

    3.5.3 UV-Vis spectra of RhB degradation

    Fig.16 shows the temporal absorption spectrum changes of RhB degradation in the presence of Fe/SBA-15 and H2O2.It is generally accepted that there exist two competitive processes for RhB degradation:one is N-de-ethylation,and the other is the destruction of the conjugated structure.63,64Based on Fig.15,the following explanations can be made.First,the phenomenon that characteristic absorption peak at 552 nm rapidly decreased and almost disappeared over time manifested the destruction of conjugated xanthene structure,and meanwhile no new band occurrence obviously eliminated the possibility of any complex formation originated from Fe/SBA-15,H2O2,and RhB.This is coincident with the results reported in other literature.4,15,65Second,the maximum absorption band of the solution appeared blue shift resulted from the formation of series of N-de-ethylated interme-diates,indicating that the energy required for electron transition may be elevated and RhB molecular structure has changed in degradation process.Nevertheless,the blue shift of the absorption band observed was insignificant,with its shift numbers asΔλ=13 nm(553-540 nm).Consequently,it can be deduced from the spectral changes that the ring-opening happened simultaneously with N-de-ethylation during the degradation process,and compared with N-de-ethylation process,the destruction of conjugated xanthene structure played a dominant role in our system.

    Fig.16 UV-Vis absorption spectra of RhB removal in the presence of Fe/SBA-15 and H2O2

    3.5.4 GC-MS analysis of RhB degradation products

    The GC-MS analysis of the supernatant phase is very useful for acquiring the information about the degradation products.Before GC-MS analysis,sample derivatization of the resultant solution coupled with the extraction with organic solvent methylene chloride was carried out.The GC-MS analysis results for the samples generated from the Fe/SBA-15-H2O2-RhB system are presented in Table 4.The degradation products can be divided into two groups:the aromatic compounds with different substituent groups,and the organics with relatively lower molecular weights, most of which are organic acid and alcohol.Among the degradation products,the content of glycerol is the highest,which is evidence that RhB suffered the destruction of the conjugated structure and decomposed into simple organics which can be easily converted to CO2and H2O.

    Table 4 Principal by-products of RhB removal detected by GC-MS

    3.5.5 Pathway of removing RhB from aqueous solution

    In this investigation,XRD characterization showed that the Fe species occurred in the support in the form of α-Fe2O3crystallites, and other experimental results demonstrated that heterogeneous Fe/SBA-15 instead of the Fe3+leached in the solution was responsible for the Fenton oxidation of RhB.It has been reported that heterogeneous Fenton oxidation occurs mainly on the surface of solid catalyst via Fe oxide active sites,which promote the formation of peroxide radicals.37Under acidic and neutral pH conditions for our heterogeneous system,the radical reaction pathway,which is initiated by the formation of a complex between the SiO2-FeIIIand H2O2on the interface,may be proposed as follows:

    where the H2O2bulkand RhBbulkare H2O2and RhB in bulk solution, respectively,the H2O2BLand RhBBLare H2O2and RhB in boundary layer,respectively,Sinterfaceis the species on the solid-liquid interface,SiO2-FeIIIand SiO2-FeIIare the FeIIIand FeIIspecies anchored to the surface of SBA-15,respectively,and SiO2-FeIII-H2O2and SiO2-FeII-HO2·are the intermediates of the reaction,respectively.

    4 Conclusions

    The dual-function mesoporous material Fe/SBA-15 can be synthesized by incipient wetness impregnation and applied to remove refractory dye RhB in aqueous solutions in the presence of H2O2.The characterization by XRD,N2adsorption-desorption, SEM,and TEM showed that Fe species occurs both inside and outside the support pores in the form of α-Fe2O3crystallites,theloading of Fe in SBA-15 results in the reduced specific area,pore volume,and pore diameter,and Fe/SBA-15 presents the aggregate of rod-like crystallites with a mean diameter of 0.6 μm.The optimum operation conditions at 21°C for 14 h in Fe/SBA-15-H2O2-RhB system are Fe/SBA-15 dosage at 0.15 g·L-1,molar ratio of H2O2/Fe3+at 2000:1,initial RhB concentration at 10.0 mg·L-1,and initial solution pH at 5.4(unadjusted),with approximately 93% RhB removal achieved under the conditions.The adsorption quantity of Fe/SBA-15 acquired from Langmiur isotherm indicates its strong adsorption capacity,which plays an important role in RhB removal from aqueous solutions.Furthermore,the Fe/ SBA-15 recovered by H2O2soaking technique is capable of maintaining the catalytic performance during six recycled runs, with RhB removal of approximately 80%and Fe leaching less than 0.1 mg·L-1(leaching mass fraction less than 0.6%)for each run.The removal pathway and degradation products of RhB could be determined by UV-Vis absorption spectra and GC-MS analyses.The removal mechanism can be proposed as surface adsorption and Fenton oxidation.

    (1) Li,J.J.;Feng J.T.;Yan,W.J.Appl.Polym.Sci.2013,128, 3231.doi:10.1002/app.v128.5

    (2) Luo,L.R.;Shen,K.;Xu,Q.Y.;Qin,Z.;Wei,W.;Gondal,M.A. J.Alloy.Compd.2013,558,73.doi:10.1016/j.jallcom. 2013.01.026

    (3) Du,L.;Wu,J.;Hu,C.W.Electrochim.Acta 2012,68,69.doi: 10.1016/j.electacta.2012.02.030

    (4) Zhao,X.;Zhu,Y.F.Environ.Sci.Technol.2006,40,3367.doi: 10.1021/es052029e

    (5) Behnajady,M.A.;Modirshahla,N.;Tabrizi,S.B.;Molanee,S. J.Hazard.Mater.2008,152,381.doi:10.1016/j.jhazmat. 2007.07.019

    (6) Zhu,L.;Meng,Z.D.;Park,C.Y.;Ghosh,T.;Oh,W.C. Ultrason.Sonochem.2013,20,478.doi:10.1016/j. ultsonch.2012.08.005

    (7) Li,W.J.;Li,D.Z.;Meng,S.G.;Chen,W.;Fu,X.Z.;Shao,Y. Environ.Sci.Technol.2011,45,2987.doi:10.1021/es103041f

    (8) Bae,S.T.;Shin,H.;Lee,S.;Kim,D.W.;Jung,H.S.;Hong,K. S.Reac.Kinet.Mech.Cat.2012,106,67.doi:10.1007/s11144-011-0404-2

    (9) Bai,C.P.;Xiong,X.F.;Gong,W.Q.;Feng,D.X.;Xian,M.; Ge,Z.X.;Xu,N.Desalination 2011,278,84.doi:10.1016/j. desal.2011.05.009

    (10) Machado,E.L.;Dambros,V.S.;Kist,L.T.;Lobo,E.A.A.; Tedesco,S.B.;Moro,C.C.Water Air Soil Pollut.2012,223, 1753.doi:10.1007/s11270-011-0980-9

    (11) Anipsitakis,G.P.;Dionysiou,D.D.Environ.Sci.Technol.2003, 37,4790.doi:10.1021/es0263792

    (12) Cheng,M.M.;Ma,W.H.;Li,J.;Huang,Y.P.;Zhao,J.C.;Wen, Y.X.;Xu,Y.M.Environ.Sci.Technol.2004,38,1569.doi: 10.1021/es034442x

    (13) Botas,J.A.;Melero,J.A.;Martínez,F.;Pariente,M.I.Catal. Today 2010,149,334.doi:10.1016/j.cattod.2009.06.014

    (14) Zhang,S.X.;Zhao,X.L.;Niu,H.Y.;Shi,Y.L.;Cai,Y.Q.; Jiang,G.B.J.Hazard.Mater.2009,167,560.doi:10.1016/j. jhazmat.2009.01.024

    (15) Hou,M.F.;Liao,L.;Zhang,W.D.;Tang,X.Y.;Wan,H.F.; Yin,G.C.Chemosphere 2011,83,1279.doi:10.1016/j. chemosphere.2011.03.005

    (16) Ai,Z.H.;Gao,Z.T.;Zhang,L.Z.;He,W.W.;Yin,J.Y. Environ.Sci.Technol.2013,47,5344.doi:10.1021/es4005202

    (17) Xu,L.J.;Wang,J.L.Environ.Sci.Technol.2012,46,10145.

    (18) Zhang,Y.Y.;Xiong,Y.;Tang,Y.K.;Wang,Y.H.J.Hazard. Mater.2013,244-245,758.

    (19) Liang,X.L.;He,Z.S.;Zhong,Y.H.;Tan,W.;He,H.P.;Yuan, P.;Zhu,J.X.;Zhang,J.Colloids Surf.A 2013,435,28.doi: 10.1016/j.colsurfa.2012.12.038

    (20) Liou,R.M.;Chen,S.H.;Hung,M.Y.;Hsu,C.S.;Lai,J.Y. Chemosphere 2005,59,117.doi:10.1016/j. chemosphere.2004.09.080

    (21) Parra,S.;Nadtotechenko,V.;Albers,P.;Kiwi,J.J.Phys.Chem. B 2004,108,4439.doi:10.1021/jp031127o

    (22) Hassan,H.;Hameed,B.H.Chem.Eng.J.2011,171,912.doi: 10.1016/j.cej.2011.04.040

    (23) De Leon,M.A.;Sergio,M.;Bussi,J.Reac.Kinet.Mech.Cat. 2013,110,101.doi:10.1007/s11144-013-0593-y

    (24) Martínez,F.;Pariente,M.I.;Botas,J.A.;Melero,J.A.; Rubalcaba,A.J.Chem.Technol.Biotechnol.2012,87,880.doi: 10.1002/jctb.v87.7

    (25) Duarte,F.M.;Maldonado-Hódar,F.J.;Madeira,L.M.Appl. Catal.A 2013,458,39.doi:10.1016/j.apcata.2013.03.030

    (26) Yao,Y.Y.;Wang,L.;Sun,L.J.;Zhu,S.;Huang,Z.F.;Mao,Y. J.;Lu,W.Y.;Chen,W.X.Chem.Eng.Sci.2013,101,424.doi: 10.1016/j.ces.2013.06.009

    (27) Yaman,Y.C.;Gündüz,G.;Dükkanci,M.Color.Technol.2013, 129,69.doi:10.1111/cote.2013.129.issue-1

    (28) Sashkina,K.A.;Labko,V.S.;Rudina,N.A.;Parmon,V.N.; Parkhomchuk,E.V.J.Catal.2013,299,44.doi:10.1016/j. jcat.2012.11.028

    (29) Kiran,I.;Bekta?,N.;Yatmaz,H.C.;Tekba?,M.Desalin.Water. Treat.2013,51,5768.doi:10.1080/19443994.2012.759517

    (30) Calleja,G.;Melero,J.A.;Martínez,F.;Molina,R.Water Res. 2005,39,1741.doi:10.1016/j.watres.2005.02.013

    (31) Melero,J.A.;Calleja,G.;Martínez,F.;Molina,R.;Pariente,M. I.Chem.Eng.J.2007,131,245.doi:10.1016/j.cej.2006.12.007

    (32) Melero,J.A.;Calleja,G.;Martínez,F.;Molina,R.Catal. Commun.2006,7,478.doi:10.1016/j.catcom.2006.01.008

    (33) Lim,H.;Lee,J.;Jin,S.;Kim,J.;Yoon,J.;Hyeon,T.Chem. Commun.2006,463.

    (34) Gokulakrishnan,N.;Pandurangan,A.;Sinha,P.K.J.Chem. Technol.Biot.2007,82,25.

    (35) Pham,A.L.T.;Lee,C.;Doyle,F.M.;Sedlak,D.L.Environ. Sci.Technol.2009,43,8930.doi:10.1021/es902296k

    (36) Xiang,L.;Royer,S.;Zhang,H.;Tatibou?t,J.M.;Barrault,J.; Valange,S.J.Hazard.Mater.2009,172,1175.doi:10.1016/j. jhazmat.2009.07.121

    (37) Shukla,P.;Wang,S.B.;Sun,H.Q.;Ang,H.M.;Tadé,M. Chem.Eng.J.2010,164,255.doi:10.1016/j.cej.2010.08.061

    (38) Mayani,S.V.;Mayani,S.J.;Kim,S.W.Bull.Korean Chem. Soc.2012,33,3009.doi:10.5012/bkcs.2012.33.9.3009

    (39) Satishkumar,G.;Landau,M.V.;Buzaglo,T.;Frimet,L.; Ferentz,M.;Vidruk,R.;Wagner,F.;Gal,Y.;Herskowitz,M. Appl.Catal.B 2013,138-139,276.

    (40) Aliyan,H.;Fazaeli,R.;Jalilian,R.Appl.Surf.Sci.2013,276, 147.doi:10.1016/j.apsusc.2013.03.049

    (41) Huang,H.Y.;Ji,Y.S.;Qiao,Z.F.;Zhao,C.D.;He,J.G.; Zhang,H.X.J.Autom.Methods Manage.Chem.2010,7.

    (42) Wang,H.L.;Tian,H.;Hao,Z.P.J.Environ.Sci.2012,24, 536.doi:10.1016/S1001-0742(11)60800-0

    (43) Zhong,X.;Royer,S.;Zhang,H.;Huang,Q.Q.;Xiang,L.J.; Valange,S.;Barrault,J.Sep.Purif.Technol.2011,80,163.doi: 10.1016/j.seppur.2011.04.024

    (44) Martínez,F.;Calleja,G.;Melero,J.A.;Molina,R.Appl.Catal. B 2005,60,181.doi:10.1016/j.apcatb.2005.03.004

    (45) Lazar.K.;Calleja,G.;Melero,J.A.Stud.Surf.Sci.Catal.2004, 154,805.doi:10.1016/S0167-2991(04)80888-7

    (46) Munoz,M.;de Pedro,Z.M.;Casas,J.A.;Rodriguez,J.J.Water Res.2013,47,3070.doi:10.1016/j.watres.2013.03.024

    (47) Liu,T.;You,H.Reac.Kinet.Mech.Cat.2013,109,233.doi: 10.1007/s11144-012-0534-1

    (48) Zhao,D.Y.;Huo,Q.S.;Feng,J.L.Chmelka,B.F.;Stucky,G. D.J.Am.Chem.Soc.1998,120,6024.doi:10.1021/ja974025i

    (49) Jun,S.;Joo,S.H.;Ryoo,R.;Kruk,M.;Jaroniec,M.;Liu,Z.; Ohsuna,T.;Terasaki,O.J.Am.Chem.Soc.2000,122, 10712.doi:10.1021/ja002261e

    (50) Vassilakis,C.;Pantidou,A.;Psillakis,E.;Kalogerakis,N.; Mantzavinos,D.Water Res.2004,38,3110.doi:10.1016/j. watres.2004.04.014

    (51) Marler,B.;Oberhagemann,U.;Vortmann,S.;Gies,H. Microporous Mat.1996,6,375.doi:10.1016/0927-6513(96) 00016-8

    (52) Kim,D.J.;Pal,M.;Seo,W.S.Microporous Mesoporous Mat. 2013,180,32.doi:10.1016/j.micromeso.2013.06.006

    (53) Teja,A.S.;Koh,P.Y.Prog.Cryst.Growth Charact.Mater. 2009,55,22.doi:10.1016/j.pcrysgrow.2008.08.003

    (54) Wang,X.Q.;Ge,H.L.;Jin,H.X.;Cui,Y.J.Microporous Mesoporous Mat.2005,86,335.doi:10.1016/j. micromeso.2005.07.038

    (55) Cornu,C.;Bonardet,J.L.;Casale,S.;Davidson,A.;Abramson, S.;André,G.;Porcher,F.;Gr?i?,I.;Tomasic,V.;Vujevic,D.; Koprivanac,N.J.Phys.Chem.C 2012,116,3437.doi:10.1021/ jp2038625

    (56) Tang,H.D.;Lan,G.J.;Zhong,J.;Liu,H.Z.;Li,Y.J.Nat.Gas Chem.2012,21,275.doi:10.1016/S1003-9953(11)60365-4

    (57) Navale,S.T.;Khuspe,G.D.;Chougule,M.A.;Patil,V.B.; Polypyrrole.Org.Electron.2014,15,2159.doi:10.1016/j. orgel.2014.06.019

    (58) Xu,X.Z.;Chen,S.X.;Wu,Q.H.J.Colloid Interface Sci.2012, 385,193.doi:10.1016/j.jcis.2012.07.013

    (59) Chang,S.H.;Wang,K.S.;Li,H.C.;Wey,M.Y.;Chou,J.D. J.Hazard.Mater.2009,172,1131.doi:10.1016/j. jhazmat.2009.07.106

    (60) Hou,M.F.;Ma,C.X.;Zhang,W.D.;Tang,X.Y.;Fan,Y.N.; Wan,H.F.J.Hazard.Mater.2011,186,1118.doi:10.1016/j. jhazmat.2010.11.110

    (61) Zhang,J.;Gondal,M.A.;Wei,W.;Zhang,T.;Xu,Q.Y.;Shen, K.J.Alloy.Compd.2012,530,107.doi:10.1016/j. jallcom.2012.03.104

    (62) Ma,J.F.;Li,L.Y.;Zou,J.;Kong,Y.;Komarneni,S. Microporous Mesoporous Mat.2014,193,154.

    (63) Wu,T.X.;Liu,G.M.;Zhao,J.C.;Hidaka,H.;Serpone,N. J.Phys.Chem.B 1998,102,5845.doi:10.1021/jp980922c

    (64) He,Z.;Yang,S.G.;Ju,Y.M.;Sun,C.J.Environ.Sci.2009,21, 268.doi:10.1016/S1001-0742(08)62262-7

    (65) Ai,Z.H.;Lu,L.R.;Li,J.P.;Zhang,L.Z.;Qiu,J.R.;Wu,M.H. J.Phys.Chem.C 2007,111,4087.doi:10.1021/jp065559l

    Heterogeneous Fenton Oxidation of Refractory Dye Rhodamine B in Aqueous Solution with Mesoporous Fe/SBA-15

    HU Long-Xing*XU Dan-Dan ZOU Lian-Pei YUAN Hang HU Xing
    (School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,P.R.China)

    An Fe-loaded mesoporous silica SBA-15,Fe/SBA-15,was prepared by incipient wetness impregnation,characterized by X-ray diffraction(XRD),N2adsorption-desorption,scanning electron microscopy (SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS)techniques and used for heterogeneous Fenton oxidation of dye Rhodamine B(RhB)in aqueous solution.The characterization showed that the Fe/SBA-15 retained a mesoporous structure with a long-range ordered arrangement,reduced pore diameter and surface area,and existed as agglomerates of rod-like crystallites with a mean diameter of 0.6 μm.The Fe species occurred both inside and outside the support pores in the form of α-Fe2O3crystallites. The removal of RhB in the presence of Fe/SBA-15 and H2O2was shown to be caused by the synergistic effects of adsorption and catalytic oxidative degradation,and was closely related to Fe/SBA-15 dosage.Removal was almost independent of initial solution pH,with approximately 93%achieved at an Fe/SBA-15 dosage of 0.15 g·L-1,initial RhB concentration of 10.0 mg·L-1,H2O2/Fe3+molar ratio of 2000:1;initial solution pH of 5.4 and 21°C. The Langmuir monolayer adsorption capacity of the Fe/SBA-15 was 99.11 mg·g-1.In addition,Fe/SBA-15 can be easily regenerated by soaking in H2O2then reused for up to six runs,with RhB removal greater than 80% and Fe leaching below 0.1 mg·L-1(or 0.6%(mass fraction))for each run.Aremoval mechanism for RhB by Fe/SBA-15 and H2O2was proposed based on the quenching tests,UV-Vis spectra,and gas chromatography-mass spectrometry(GC-MS)analysis.The heterogeneous Fenton catalyst Fe/SBA-15 can be applied to remove nonbiodegradable organics such as dye RhB.?Editorial office ofActa Physico-Chimica Sinica

    Heterogeneous Fenton oxidation;Adsorption;Fe/SBA-15;Rhodamine B; Hydroxyl radical

    O643

    10.3866/PKU.WHXB201503023www.whxb.pku.edu.cn

    Received:November 13,2014;Revised:March 2,2015;Published on Web:March 2,2015.

    ?Corresponding author.Email:hulxhhhb@shu.edu.cn;Tel:+86-21-66137771.

    The project was supported by the Program for Innovative Research Team in Shanghai University,China(IRT 13078).

    上海大學創(chuàng)新研究團隊計劃項目(IRT 13078)資助

    猜你喜歡
    龍興上海大學芬頓
    PERIODIC AND ALMOST PERIODIC SOLUTIONS FOR A NON-AUTONOMOUS RESPIRATORY DISEASE MODEL WITH A LAG EFFECT*
    《上海大學學報(自然科學版)》征稿簡則
    上海大學學報(自然科學版)征稿簡則
    《上海大學學報(自然科學版)》征稿簡則
    問道長白山之龍興之地
    類芬頓試劑應(yīng)用于地下水石油烴污染修復的實踐
    芬頓氧化處理苯并咪唑類合成廢水實驗研究
    Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis?
    芬頓強氧化技術(shù)在硝基氯苯廢水處理工程中的應(yīng)用
    芬頓氧化法處理廢水研究
    精品久久久久久久人妻蜜臀av| 一个人免费在线观看的高清视频| 久热爱精品视频在线9| 国内久久婷婷六月综合欲色啪| 亚洲成人久久爱视频| 真人一进一出gif抽搐免费| 最近最新免费中文字幕在线| 麻豆国产97在线/欧美 | 精品国产乱码久久久久久男人| 91av网站免费观看| 免费看十八禁软件| 99riav亚洲国产免费| 毛片女人毛片| 欧美人与性动交α欧美精品济南到| 一级作爱视频免费观看| 午夜老司机福利片| 国产97色在线日韩免费| 国产69精品久久久久777片 | 亚洲成a人片在线一区二区| 国内精品久久久久久久电影| 亚洲人成伊人成综合网2020| 97超级碰碰碰精品色视频在线观看| 夜夜夜夜夜久久久久| 久久精品国产99精品国产亚洲性色| 精品欧美一区二区三区在线| 特大巨黑吊av在线直播| 日韩欧美在线二视频| 最新美女视频免费是黄的| 黄色毛片三级朝国网站| 午夜激情av网站| 午夜视频精品福利| 国产av在哪里看| 男女午夜视频在线观看| 巨乳人妻的诱惑在线观看| 亚洲精品久久成人aⅴ小说| 亚洲av美国av| 国产精品,欧美在线| 午夜福利欧美成人| 美女午夜性视频免费| 亚洲国产精品999在线| 999精品在线视频| 国产精品亚洲一级av第二区| 欧美不卡视频在线免费观看 | 一二三四社区在线视频社区8| 国产av不卡久久| 亚洲18禁久久av| 五月玫瑰六月丁香| 19禁男女啪啪无遮挡网站| 舔av片在线| 日日干狠狠操夜夜爽| 午夜免费激情av| 99久久国产精品久久久| 老司机福利观看| 黄色a级毛片大全视频| 日韩欧美在线乱码| 一二三四在线观看免费中文在| 悠悠久久av| 国产又色又爽无遮挡免费看| 午夜免费观看网址| 九九热线精品视视频播放| 久久亚洲真实| 欧美人与性动交α欧美精品济南到| 性欧美人与动物交配| 级片在线观看| 精品高清国产在线一区| 免费在线观看视频国产中文字幕亚洲| av免费在线观看网站| 久久久久久九九精品二区国产 | 欧美丝袜亚洲另类 | 中亚洲国语对白在线视频| 最近在线观看免费完整版| 久久久久久亚洲精品国产蜜桃av| 日韩欧美国产在线观看| 一区二区三区国产精品乱码| 国产精品国产高清国产av| 久久婷婷成人综合色麻豆| 欧美av亚洲av综合av国产av| 国产欧美日韩一区二区三| videosex国产| 亚洲aⅴ乱码一区二区在线播放 | 国产一级毛片七仙女欲春2| 亚洲真实伦在线观看| 久久精品国产清高在天天线| 亚洲无线在线观看| 亚洲黑人精品在线| 别揉我奶头~嗯~啊~动态视频| 久久久久国产一级毛片高清牌| 欧美久久黑人一区二区| 特级一级黄色大片| 亚洲成人免费电影在线观看| 亚洲专区中文字幕在线| 国产一区二区在线观看日韩 | 国产片内射在线| 一级毛片女人18水好多| 激情在线观看视频在线高清| 国产午夜福利久久久久久| 村上凉子中文字幕在线| 99国产精品99久久久久| 韩国av一区二区三区四区| 女同久久另类99精品国产91| 亚洲av成人不卡在线观看播放网| 两个人免费观看高清视频| 九九热线精品视视频播放| 1024视频免费在线观看| 三级毛片av免费| 高清在线国产一区| 国产激情偷乱视频一区二区| 婷婷精品国产亚洲av| 亚洲av成人不卡在线观看播放网| 日本 av在线| 欧美一区二区国产精品久久精品 | 欧美大码av| 99久久99久久久精品蜜桃| 夜夜看夜夜爽夜夜摸| 午夜福利18| 亚洲精品美女久久久久99蜜臀| 日本a在线网址| 久久久国产成人免费| 99热这里只有精品一区 | 中文在线观看免费www的网站 | 琪琪午夜伦伦电影理论片6080| 男女视频在线观看网站免费 | 91字幕亚洲| 国产精品久久久久久精品电影| 国产精品自产拍在线观看55亚洲| 99riav亚洲国产免费| 狂野欧美激情性xxxx| 脱女人内裤的视频| 亚洲av五月六月丁香网| 亚洲av成人不卡在线观看播放网| 日韩精品免费视频一区二区三区| 欧美一区二区国产精品久久精品 | 亚洲第一欧美日韩一区二区三区| 国产又黄又爽又无遮挡在线| 搞女人的毛片| 老司机靠b影院| 色噜噜av男人的天堂激情| 变态另类丝袜制服| 国产午夜精品久久久久久| 1024视频免费在线观看| 国产单亲对白刺激| 国产激情欧美一区二区| 中文字幕av在线有码专区| 一区二区三区激情视频| 五月伊人婷婷丁香| av有码第一页| 国产精品久久视频播放| xxxwww97欧美| 成人一区二区视频在线观看| 在线观看66精品国产| 亚洲自拍偷在线| www.999成人在线观看| 亚洲五月天丁香| 成人国语在线视频| 国产精品野战在线观看| 一级黄色大片毛片| 日韩 欧美 亚洲 中文字幕| 亚洲av日韩精品久久久久久密| 九色成人免费人妻av| 一个人免费在线观看电影 | 久久亚洲真实| 69av精品久久久久久| 欧美成狂野欧美在线观看| 国产成人影院久久av| 亚洲免费av在线视频| 怎么达到女性高潮| 国产精品免费视频内射| 国产av在哪里看| 国产一区二区在线av高清观看| 最近最新免费中文字幕在线| 亚洲第一欧美日韩一区二区三区| 一区二区三区国产精品乱码| 国产视频一区二区在线看| 美女大奶头视频| 亚洲av日韩精品久久久久久密| 国产亚洲av嫩草精品影院| 欧美国产日韩亚洲一区| 不卡av一区二区三区| 亚洲专区中文字幕在线| 亚洲男人天堂网一区| 国产精品久久久久久人妻精品电影| 久久这里只有精品19| 亚洲 欧美一区二区三区| 亚洲成人免费电影在线观看| 久久99热这里只有精品18| 亚洲av熟女| 在线看三级毛片| 窝窝影院91人妻| 欧美成人午夜精品| 色在线成人网| 黄色视频,在线免费观看| 麻豆成人午夜福利视频| 亚洲天堂国产精品一区在线| 欧美日韩瑟瑟在线播放| 亚洲真实伦在线观看| 亚洲精品国产精品久久久不卡| 男插女下体视频免费在线播放| 欧美中文日本在线观看视频| 免费一级毛片在线播放高清视频| 黑人巨大精品欧美一区二区mp4| 一a级毛片在线观看| 亚洲狠狠婷婷综合久久图片| 午夜精品久久久久久毛片777| 久久人妻av系列| 麻豆成人av在线观看| 国产主播在线观看一区二区| 精品免费久久久久久久清纯| 成年女人毛片免费观看观看9| 韩国av一区二区三区四区| ponron亚洲| 18禁观看日本| 一区福利在线观看| 亚洲精品中文字幕一二三四区| e午夜精品久久久久久久| 国产亚洲精品综合一区在线观看 | 国产精品美女特级片免费视频播放器 | 欧美黄色片欧美黄色片| 91国产中文字幕| 黑人操中国人逼视频| 91麻豆精品激情在线观看国产| 很黄的视频免费| 久久国产精品影院| 90打野战视频偷拍视频| 精品国产乱子伦一区二区三区| 亚洲欧美日韩无卡精品| 国产麻豆成人av免费视频| 欧美不卡视频在线免费观看 | 又黄又爽又免费观看的视频| a级毛片a级免费在线| 黄色丝袜av网址大全| 又粗又爽又猛毛片免费看| 国产精品久久视频播放| 亚洲欧美日韩东京热| 亚洲av成人av| 精品久久久久久久久久久久久| 国产精品影院久久| 国产av又大| 亚洲一区中文字幕在线| 俄罗斯特黄特色一大片| 免费一级毛片在线播放高清视频| 精品乱码久久久久久99久播| 精品欧美一区二区三区在线| 一区二区三区高清视频在线| 久久性视频一级片| 国语自产精品视频在线第100页| 国产精品爽爽va在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 国产精品影院久久| 亚洲人成电影免费在线| 夜夜看夜夜爽夜夜摸| 少妇裸体淫交视频免费看高清 | avwww免费| 黄色片一级片一级黄色片| 在线a可以看的网站| av在线天堂中文字幕| 久久久精品大字幕| 宅男免费午夜| 熟女少妇亚洲综合色aaa.| 18禁观看日本| 真人一进一出gif抽搐免费| 757午夜福利合集在线观看| 欧美一区二区国产精品久久精品 | 五月伊人婷婷丁香| 久久久久性生活片| 欧美一区二区精品小视频在线| 老鸭窝网址在线观看| 亚洲午夜理论影院| 久久香蕉国产精品| 中文字幕最新亚洲高清| 亚洲美女黄片视频| 日本撒尿小便嘘嘘汇集6| 亚洲国产高清在线一区二区三| 日本a在线网址| 男男h啪啪无遮挡| 在线免费观看的www视频| 中出人妻视频一区二区| 村上凉子中文字幕在线| 日本撒尿小便嘘嘘汇集6| 三级国产精品欧美在线观看 | 久久伊人香网站| 免费看a级黄色片| 亚洲欧美日韩高清专用| 久久久久久免费高清国产稀缺| 69av精品久久久久久| 亚洲成av人片在线播放无| 亚洲国产欧洲综合997久久,| 久久伊人香网站| 亚洲国产精品999在线| 日本一区二区免费在线视频| 99久久久亚洲精品蜜臀av| 亚洲精华国产精华精| 欧美 亚洲 国产 日韩一| a级毛片a级免费在线| 精品国产乱子伦一区二区三区| 久久99热这里只有精品18| 欧美中文日本在线观看视频| 色在线成人网| 欧美丝袜亚洲另类 | 天堂动漫精品| 久久午夜综合久久蜜桃| 日韩精品免费视频一区二区三区| 久久久国产成人免费| 亚洲国产精品合色在线| 精品免费久久久久久久清纯| 免费在线观看视频国产中文字幕亚洲| 少妇裸体淫交视频免费看高清 | 一二三四社区在线视频社区8| 亚洲第一电影网av| 久久这里只有精品中国| 日韩欧美在线二视频| 97人妻精品一区二区三区麻豆| 老司机午夜十八禁免费视频| 人人妻,人人澡人人爽秒播| 真人一进一出gif抽搐免费| 国产精品亚洲一级av第二区| 亚洲精品久久国产高清桃花| 老熟妇乱子伦视频在线观看| 欧美zozozo另类| 韩国av一区二区三区四区| 久久精品综合一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲av成人av| 成人一区二区视频在线观看| 99精品欧美一区二区三区四区| 欧美国产日韩亚洲一区| 国产又色又爽无遮挡免费看| 特大巨黑吊av在线直播| 男人舔女人下体高潮全视频| 久久草成人影院| 2021天堂中文幕一二区在线观| 免费在线观看黄色视频的| 在线观看www视频免费| 久久精品成人免费网站| 又紧又爽又黄一区二区| 中亚洲国语对白在线视频| 国产精品一区二区三区四区免费观看 | 99国产极品粉嫩在线观看| 久久香蕉激情| 好男人电影高清在线观看| 久久久国产成人免费| 国产99白浆流出| 国产精华一区二区三区| 精品国产亚洲在线| 亚洲欧美日韩高清专用| ponron亚洲| 别揉我奶头~嗯~啊~动态视频| 亚洲精品中文字幕在线视频| 99精品久久久久人妻精品| 日本黄大片高清| 午夜免费激情av| 一边摸一边做爽爽视频免费| 午夜福利视频1000在线观看| 国产一级毛片七仙女欲春2| 成人手机av| 一区二区三区激情视频| 欧美色视频一区免费| 亚洲精品在线美女| 欧美色视频一区免费| 老汉色∧v一级毛片| 毛片女人毛片| 日韩欧美 国产精品| 精品欧美国产一区二区三| 精品一区二区三区视频在线观看免费| 1024手机看黄色片| 久久久久久人人人人人| 精品一区二区三区四区五区乱码| 亚洲乱码一区二区免费版| 欧美黄色淫秽网站| 日韩 欧美 亚洲 中文字幕| 精品午夜福利视频在线观看一区| 久久精品aⅴ一区二区三区四区| 国产精品久久电影中文字幕| 一进一出好大好爽视频| 淫妇啪啪啪对白视频| 亚洲中文日韩欧美视频| 久久香蕉国产精品| 亚洲成av人片在线播放无| 琪琪午夜伦伦电影理论片6080| 看片在线看免费视频| 久久久久久国产a免费观看| 精品久久久久久久人妻蜜臀av| 欧美一区二区国产精品久久精品 | 五月玫瑰六月丁香| 中文字幕久久专区| 90打野战视频偷拍视频| 搞女人的毛片| 老鸭窝网址在线观看| 在线观看66精品国产| 十八禁人妻一区二区| 精品国产亚洲在线| 亚洲成人久久爱视频| 此物有八面人人有两片| 国产69精品久久久久777片 | 一个人观看的视频www高清免费观看 | 一本大道久久a久久精品| 亚洲九九香蕉| 亚洲一区中文字幕在线| 18禁裸乳无遮挡免费网站照片| 久久精品91蜜桃| 国产欧美日韩一区二区精品| 亚洲 国产 在线| 国产日本99.免费观看| 国产三级在线视频| 亚洲avbb在线观看| 国产精品,欧美在线| 伦理电影免费视频| 长腿黑丝高跟| 人人妻人人看人人澡| 久久久精品欧美日韩精品| 成人永久免费在线观看视频| 啪啪无遮挡十八禁网站| 亚洲熟女毛片儿| 毛片女人毛片| www.自偷自拍.com| 精品久久蜜臀av无| 草草在线视频免费看| 国产人伦9x9x在线观看| 国产高清视频在线观看网站| 成人精品一区二区免费| 日韩欧美免费精品| 亚洲精品一卡2卡三卡4卡5卡| 嫁个100分男人电影在线观看| 999精品在线视频| 18禁黄网站禁片午夜丰满| 久久久久久人人人人人| x7x7x7水蜜桃| 国产又色又爽无遮挡免费看| 久久人妻av系列| 国产黄a三级三级三级人| 中文字幕高清在线视频| 一夜夜www| 岛国在线观看网站| www.www免费av| 999久久久精品免费观看国产| 99在线视频只有这里精品首页| 波多野结衣高清无吗| 久久久国产成人精品二区| 99re在线观看精品视频| 日本在线视频免费播放| 国产av不卡久久| netflix在线观看网站| 日日干狠狠操夜夜爽| 在线a可以看的网站| 好男人在线观看高清免费视频| 好男人电影高清在线观看| 成人国语在线视频| 久久精品综合一区二区三区| 亚洲中文日韩欧美视频| 两个人视频免费观看高清| 日本成人三级电影网站| 成人av在线播放网站| 国产三级在线视频| 丰满人妻熟妇乱又伦精品不卡| 中文字幕人妻丝袜一区二区| 在线国产一区二区在线| 亚洲aⅴ乱码一区二区在线播放 | av福利片在线| 成人三级黄色视频| 最新美女视频免费是黄的| 亚洲国产欧美人成| 熟妇人妻久久中文字幕3abv| 日韩高清综合在线| 国产99白浆流出| 又大又爽又粗| 久久国产精品影院| 亚洲成人久久爱视频| av中文乱码字幕在线| 免费在线观看黄色视频的| 三级国产精品欧美在线观看 | 亚洲专区字幕在线| 最近最新免费中文字幕在线| 亚洲成人久久性| 99久久精品国产亚洲精品| 男女下面进入的视频免费午夜| 欧美久久黑人一区二区| 舔av片在线| 777久久人妻少妇嫩草av网站| 亚洲色图 男人天堂 中文字幕| 欧美又色又爽又黄视频| 亚洲国产中文字幕在线视频| 国产高清视频在线观看网站| 成人永久免费在线观看视频| 一本久久中文字幕| 亚洲真实伦在线观看| 午夜成年电影在线免费观看| 19禁男女啪啪无遮挡网站| 国产免费男女视频| 日韩大码丰满熟妇| 午夜福利在线在线| 国产精品永久免费网站| 国产午夜精品久久久久久| 超碰成人久久| 男人的好看免费观看在线视频 | 欧美国产日韩亚洲一区| av有码第一页| 白带黄色成豆腐渣| 操出白浆在线播放| 国产一区在线观看成人免费| 50天的宝宝边吃奶边哭怎么回事| 免费观看人在逋| 亚洲人成网站在线播放欧美日韩| 久久这里只有精品19| 欧美黑人精品巨大| 日日夜夜操网爽| 午夜亚洲福利在线播放| 精品一区二区三区视频在线观看免费| 国产区一区二久久| 亚洲激情在线av| 在线国产一区二区在线| 麻豆av在线久日| 999久久久国产精品视频| 欧美成人免费av一区二区三区| 日本精品一区二区三区蜜桃| 国产亚洲精品一区二区www| 丝袜人妻中文字幕| 波多野结衣高清无吗| 国产精品永久免费网站| 淫秽高清视频在线观看| av福利片在线观看| 国产麻豆成人av免费视频| 日韩精品免费视频一区二区三区| 国产激情欧美一区二区| 日韩av在线大香蕉| 国产精品综合久久久久久久免费| 亚洲精品国产一区二区精华液| 久久久水蜜桃国产精品网| 757午夜福利合集在线观看| 真人一进一出gif抽搐免费| 97人妻精品一区二区三区麻豆| 精品一区二区三区av网在线观看| 欧美日韩乱码在线| 999精品在线视频| 欧美一级毛片孕妇| 日韩三级视频一区二区三区| 成人高潮视频无遮挡免费网站| 欧美色视频一区免费| 一级a爱片免费观看的视频| 欧美一级a爱片免费观看看 | 黄色 视频免费看| e午夜精品久久久久久久| 久久中文看片网| 91九色精品人成在线观看| 久久久久九九精品影院| 日韩成人在线观看一区二区三区| 两个人看的免费小视频| 51午夜福利影视在线观看| 老司机靠b影院| 一卡2卡三卡四卡精品乱码亚洲| 19禁男女啪啪无遮挡网站| 老司机在亚洲福利影院| 美女 人体艺术 gogo| 一进一出好大好爽视频| 女人爽到高潮嗷嗷叫在线视频| www.www免费av| 亚洲乱码一区二区免费版| 精品一区二区三区av网在线观看| 两个人视频免费观看高清| 国产爱豆传媒在线观看 | av有码第一页| 久热爱精品视频在线9| 国产视频内射| 精品乱码久久久久久99久播| 两性午夜刺激爽爽歪歪视频在线观看 | 激情在线观看视频在线高清| 国产麻豆成人av免费视频| 免费av毛片视频| 一本综合久久免费| 亚洲色图 男人天堂 中文字幕| 国产野战对白在线观看| 淫妇啪啪啪对白视频| 国产成人精品无人区| ponron亚洲| www.熟女人妻精品国产| 国产精品自产拍在线观看55亚洲| 精品国产超薄肉色丝袜足j| 欧美成人免费av一区二区三区| 亚洲中文av在线| 国产精品98久久久久久宅男小说| 欧美色欧美亚洲另类二区| 国产成年人精品一区二区| 又黄又爽又免费观看的视频| 午夜老司机福利片| 1024香蕉在线观看| 不卡av一区二区三区| 日本一区二区免费在线视频| 亚洲激情在线av| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品1区2区在线观看.| 久久这里只有精品19| 亚洲av美国av| 激情在线观看视频在线高清| 老司机午夜十八禁免费视频| 日本精品一区二区三区蜜桃| 免费无遮挡裸体视频| 亚洲欧美激情综合另类| 中文字幕人妻丝袜一区二区| 免费无遮挡裸体视频| 97超级碰碰碰精品色视频在线观看| 在线免费观看的www视频| 色老头精品视频在线观看| 99热6这里只有精品| 中文字幕人妻丝袜一区二区| 国产乱人伦免费视频| 在线看三级毛片| 亚洲av成人av| 在线观看66精品国产| 国产97色在线日韩免费| 国产黄a三级三级三级人| 在线观看免费视频日本深夜| 国产成人欧美在线观看| 久久精品综合一区二区三区| 日本黄色视频三级网站网址| 99热这里只有精品一区 | 日韩大码丰满熟妇| 亚洲国产精品sss在线观看|