• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ZnO/PPy異質(zhì)納米復(fù)合材料的制備、表征及其氣敏特性

    2015-01-04 12:52:40杜海英孫炎輝李曉干大連理工大學(xué)電子科學(xué)與技術(shù)學(xué)院遼寧大連603大連民族學(xué)院機(jī)電信息工程學(xué)院遼寧大連6600
    物理化學(xué)學(xué)報(bào) 2015年4期
    關(guān)鍵詞:遼寧大連大連理工大學(xué)氣敏

    杜海英 王 兢 喬 俏 孫炎輝 邵 強(qiáng) 李曉干(大連理工大學(xué)電子科學(xué)與技術(shù)學(xué)院,遼寧大連603;大連民族學(xué)院機(jī)電信息工程學(xué)院,遼寧大連6600)

    ZnO/PPy異質(zhì)納米復(fù)合材料的制備、表征及其氣敏特性

    杜海英1,2王 兢1,*喬 俏1孫炎輝1,2邵 強(qiáng)2李曉干1
    (1大連理工大學(xué)電子科學(xué)與技術(shù)學(xué)院,遼寧大連116023;2大連民族學(xué)院機(jī)電信息工程學(xué)院,遼寧大連116600)

    室溫下,采用原位聚合法,以吡咯(PY)為單體,氯化鐵(FeCl3·6H2O)為氧化劑,在塑料基片上聚合生長了聚吡咯(PPy)納米微球.然后在聚吡咯基片上生長ZnO種子,將表面種有ZnO種子的PPy元件置于六次甲基四胺與硝酸鋅的混合溶液中,90°C水浴中,在PPy微球上生長了ZnO納米棒,合成了PPy/ZnO異質(zhì)納米復(fù)合材料.分別通過X射線衍射儀(XRD)和場發(fā)射掃描電鏡(FESEM)對PPy/ZnO異質(zhì)納米復(fù)合材料的結(jié)構(gòu)和形貌進(jìn)行了表征.制備了塑料基的PPy/ZnO異質(zhì)納米復(fù)合材料氣體傳感器,在室溫下,對10×10-6-150×10-6(體積分?jǐn)?shù))濃度范圍的氨氣進(jìn)行了氣敏測試,PPy/ZnO氣敏元件對氨氣響應(yīng)的靈敏度基本呈線性關(guān)系,且對甲醇、丙酮、甲苯等有機(jī)氣體表現(xiàn)出很好的選擇性.最后,對PPy/ZnO異質(zhì)納米復(fù)合材料的形成機(jī)理進(jìn)行了簡要分析.

    原位聚合法;異質(zhì)納米復(fù)合物;氣體傳感器;氣敏特性;形成機(jī)理

    ?Editorial office ofActa Physico-Chimica Sinica

    1 Introduction

    The discovery of conductive polymers since the 70s last century1has initiated intense experimental and theoretical interest in various fields of industrial and agricultural production and became an irreplaceable foundation of polymer material for its special structure and excellent physical and chemical properties.Common conductive polymers include polyacetylene(PA),2polyaniline (PANI),3polythiophene(PT),4polypyrrole(PPy).5

    Among various conducting polymers,PPy is an outstanding member with particular importance in sensing applications for its chemical stability and ease of synthesis.6,7The use of PPy-based electronic noses(ENs)for environmental and industrial analysis has gained considerable momentum.Toxic and non-toxic substances,such as ammonia,nitrogen oxides,carbon monoxide, sulphur dioxide,hydrogen sulphide,methane,oxygen,hydrogen, alcohols,phenol,benzene,and water vapours,have been successfully determined by PPy-based ENs in materials ranging from water and beverages to waste waters and sewage effluents.8

    Polypyrrole has shown great potentials for application in various fields of industrial and agricultural production,such as biosensors,9gas sensors,10electrochemical sensors,11,12anti-corrosion coating materials,13electrode materials,14antistatic materials,15and so on.16As a p type organic semiconductor,polypyrrole alters its chemical behavior and consequently its electrical conductivity which makes it excellent gas sensing material.17,18

    Metal oxide semiconductors,such as SnO2,19In2O3,20TiO2,21ZnO,22and ZrO,23are the popular materials for gas sensors.Zinc oxide(ZnO)is an important II-VI semiconducting material with a wide band gap of 3.37 eV and a large exciton binding energy of 60 meV.ZnO is recognized as one of the key functional metaloxide semiconductors owing to its outstanding optical,gas, electrical,piezoelectrical properties,and the diversity of nanostructures.Single crystal ZnO nanorod arrays have no grain boundaries,less crystal defects,big surface area,which has promising applications in fields of functional materials and catalysis.24,25

    Inorganic nanoparticles and organic polymer nanocomposites show the excellent gas,humidity,and electrochemical performance.The sensors based on inorganic and organic nanocomposites show high response sensitivity,low operating temperature, and other advantageous properties.These nanocomposites with excellent properties have wide applications.26,27

    In this report,ZnO/PPy hetero-nanocomposites were synthesized by in-situ polymerization and hydrothermal synthesis twostep method and the gas sensor based on ZnO/PPy hetero-nanocomposites was fabricated,the ZnO/PPy sensor exhibits good sensitivity to ammonia at room temperature.Formation mechanism and adsorption mechanism of the ZnO/PPy hetero-nanocomposites were briefly analyzed.

    2 Experimental

    2.1 Preparation of the slide substrate

    In the typical experiment,the slide was cut into strip(1 cm×1.5 cm),then washed with deionized water and acetone for several times,respectively.And the strip was dried by blowing with a stream of nitrogen.One pair of platinum electrodes were coated at both side of the slide,and two platinum bond wires were leaded on the slide surface electrodes.Fig.1 gives the sketch of gas sensor structure based on slide film.

    Fig.1 Sketch of gas sensor structure based on slide film

    2.2 Synthesis of PPy

    Monomer pyrrole(Py)(≥99.5%purity),ferric(III)chloride (FeCl3·6H2O)(≥99.5%purity),acetone(CH3COCH3)(≥99.7% purity),and ethanol(EtOH)(≥99.0%purity)were obtained from Sinopharm Chemical Reagent Co.,Ltd.,China.Zinc acetate (Zn(CH3COO)2·2H2O)(≥99.5%purity)and zinc nitrate hexahydrate(Zn(NO3)2·6H2O)(≥99.5%purity)were obtained from Tianjin Kermel Chemical Company,China.The above chemical reagents were analytical grade and used without further purification.

    230 mg of pyrrole monomer(≥99.7%purity)was dissolved in 50 mL deionized water and treated with ultrasonic for 20 min for uniformly dispersing in deionized water.Then the slide substrates were immersed into the aqueous solution and suspended in the container.The chemical polymerization was carried out in a beaker by mixing 1350 mg of FeCl3·6H2O powder into the above suspension under vigorous stirring at room temperature for 3 h. Thin films of PPy were in-situ deposited simply by keeping a precleaned slide substrate suspending in the suspension.After termination of polymerization,films were washed with deionized water and acetone for several times,respectively,and dried under vacuum for 24 h.Polymerization product in the solution was collected by centrifugal filtration.

    2.3 ZnO nanorod growth process

    219 mg of zinc acetate(Zn(CH3COO)2·2H2O)was dissolved in 20 mLethanol to form a solution with concentration of 0.05 mol· L-1.Then the solution was ultrasonically agitated for 0.5 h to obtain a uniform and transparent zinc acetate solution.The zinc acetate solution was heated at 200°C for 30 min,then the solution was coated onto cleaned PPy gas sensor by a spin coater at the rate of 2200 r·min-1for 30 s.In our experiment,substrates were spin coated for three times.The coated substrates were dried in room temperature and then annealed at 100°C for 90 min in air to form the ZnO seed layer on the PPy thin films.Finally,the ZnO nanorods grew directly by placing the PPy thin films covered with a layer of ZnO seed in 50 mL aqueous solution of 57 mmol·L-1Zn(NO3)2·6H2O and 57 mmol·L-1hexamethylenetetramine(C6H12N4)at 90°C for 12 h.The substrates covered with the ZnO nanorods were washed with deionized water and acetone,followed by dring in a nitrogen stream.Gas sensor with ZnO nanorods grown on the PPy seed layer was obtained.

    2.4 Characterization

    The structures of the ZnO/PPy hetero-nanocomposites were characterized by an X-ray diffraction instrument(XRD,D/Max 2400,Rigaku,Japan)in a 2θ region of 20°-80°with Cu Kα1radiation.The morphology images of ZnO/PPy hetero-nanocomposites were obtained by using field emission scanning electron microscope(FESEM,Hitachi S-4800,Japan)and transmission electron microscope(TEM,Tecnai 20,USA).

    2.5 Testing of sensors

    The gas sensing properties of ZnO/PPy hetero-nanocomposites sensor were measured using a static state gas sensing test system. Structure schematic diagram of the static state gas sensing test system is shown in Fig.2.In the gas response measurement,a given amount of target gas was injected into a test chamber(50 L in volume)by a syringe through a rubber plug.For a required concentration,the volume of the injected gas(V)can be calculated as follows:

    Fig.2 Structure schematic diagram of the static state gas sensing test system

    where C is the concentration of the target gas(volume fraction), and v is the volume fraction of bottled gas.Sensors were exposed to the atmospheric air by opening the chamber after the measurement.The export voltage on the sensor was measured by using a voltage division circuit on which the voltage is 10 V,and the sensor was connected in series with an external resistance(RL). The gas response value(S)was defined as a ratio of the resistance of the sensor in air(Ra)to that in target gas(Rg):S=Rg/Ra,and Ra= RL(10-Vair)/Vair,Rg=RL(10-Vgas)/Vgas,where Vairis the export voltage of RLin air,and Vgasis the voltage in target gas.All the tests were operated at room temperature about 35%relative humidity(RH).

    3 Results and discussion

    3.1 Materials characterization

    Fig.3 shows the XRD patterns of the ZnO,PPy,and ZnO/PPy hetero-nanocomposites.We can see from Fig.3(a)that major peaks of ZnO are shown at 31.8°,34.3°,36.1°,47.4°,and 62.8°,which are related to(100),(002),(101),(102),and(103)plane reflections of a hexagonal ZnO,respectively,with lattice constants a= 0.325 nm and c=0.521 nm as denoted by International Center for Diffraction Data(Joint Committee for Powder Diffraction Studies (JCPDS)card#36-1451)for ZnO.From Fig.3(b)we can see that the characteristic peak of PPy is observed at 2θ=25.0°.The average crystalline size of the PPy nanoparticles is calculated about 78.3 nm by Debye Scherror formula.From Fig.3(c)we can see that the characteristic peaks of PPy and hexagonal ZnO exist simultaneously in ZnO/PPy hetero-nanocomposites.

    Fig.3 XRD patterns of(a)ZnO,(b)PPy,and (c)ZnO/PPy hetero-nanocomposites

    Fig.4 gives the SEM image of PPy nanoparticles.We can see that there is a layer of PPy nanoparticle(uniform thickness of about 200 nm)aggregation grown in the slide substrate.The grain size of the PPy nanoparticles is~100 nm.

    Fig.4 SEM image of PPy

    Fig.5(a,b)give the SEM images of the ZnO nanorods grown on as-prepared PPy nanoparticle substrate after 9 h in different magnifications.Fig.5(c,d)give the SEM images of the ZnO nanorods grown on as-prepared substrate after 12 h.From Fig.5(a, b)we can see that the surface of the thin films of PPy has been coated with uniform-sized ZnO nanorods after 9 h.The length of ZnO nanorods is irregular and about 0-2.5μm,the diameter of ZnO nanorods is about 10-200 nm.As the time increasing,a large quantity of ZnO nanorods with uniform-sized are formed on the surface of PPy nanoparticles substrate after 12 h(Fig.5(c,d)).Wecan see that the length and diameter of ZnO nanorods are about 2.5μm and 200 nm,respectively.Many ZnO nanorods grown on the PPy nanoparticles,form flower-like ZnO nanorods.The magnified SEM image of flower-like ZnO nanorods grown on the PPy nanoparticles substrate is shown in Fig.6.

    Fig.5 SEM images of ZnO grown on the PPy after 9 h(a,b)and 12 h(c,d)

    Fig.6 SEM image of ZnO nanorods grown on PPy

    3.2 Formation mechanism of ZnO/PPy heteronanocomposites

    Pyrrole monomer is five-membered heterocyclic molecules containing carbon(C)and nitrogen(N)elements.The polymerization of the pyrrole monomer could occur under the electric field or the effect of the oxidant.The polymerization reaction equation is shown in Eq.(2).

    The formation mechanism of the flower-like ZnO nanorods by using the hydrothermal method could be described as follows: HMTA(C6H12N4)was extensively used in the fabrication of nanostructure ZnO,and it provided ammonia molecules and the hydroxide ions(OH-)to the solution(Eqs.(3)and(4)).Zn(NO3)2·6H2O was used to provide the zinc ions(Eq.(5)),apparently.In this experiment,the numbers of OH-were abundant in the mixed solution of Zn(NO3)2·6H2O and HMTA(C6H12N4).So,Zn(OH)2precipitation formed as Eq.(6),and then Zn(OH)2could be dissolved immediately by reacting with superfluous OH-ions,the transparent Zn(OH)42-solution was obtained as Eq.(7).In the hydrothermal process,the Zn(OH)42-grew units combined with each other and dehydrated into ZnO nuclei simultaneously.And then these ZnO nuclei self-assembled to form the rod-like nanostructures along a preferred axis orientation(Eq.(8)).

    3.3 Gas sensing properties

    At room temperature,the ammonia gas sensing properties of ZnO/PPy hetero-nanocomposite gas sensor were measured.Fig.7 shows the response and recovery transient properties of the ZnO/ PPy hetero-nanocomposite gas sensor to ammonia at room temperature.The concentration range of ammonia is 10×10-6-150×10-6,and the relative humidity(RH)was 35%.We can see from the figure that the eight response cycles are recorded successively,and the gas sensor based on ZnO/PPy hetero-nanocomposites shows good sensitivities to ammonia.The response of ZnO/PPy hetero-nanocomposite sensor to 150×10-6ammonia is 2.51.The lowest concentration of ammonia detected by the sensor of ZnO/PPy hetero-nanocomposites is 10×10-6with a response of 1.36.The response and recovery times of the sensors are about 200 and 1000 s,respectively,as shown in the enlarged curve(the inset curve in Fig.7),which are defined as the times reaching 90% of the final values.

    The response values of the sensors based on ZnO/PPy heteronanocomposites at room temperature vs ammonia concentration are illustrated in Fig.8.For comparison,the ammonia gas sensing properties of ZnO and PPy gas sensors were measured in concentration range of 10×10-6-150×10-6at room temperature.We can see that the response curves of ZnO,PPy,and ZnO/PPy sensors are nearly linearity in concentration range of 10×10-6-150×10-6at room temperature.However the response of ZnO sensor is the lowest in the three sensors at the room temperature.The response of ZnO/PPy sensor is much higher than that of ZnO or PPy sensor.The response curves of ZnO/PPy sensors show good linearity in ammonia gas concentration range of 20×10-6-80×10-6at room temperature.

    Fig.7 Transient response curves of gas sensor based on ZnO/PPy hetero-nanocomposites to ammonia

    Fig.8 Response values of the gas sensor based on ZnO/PPy hetero-nanocomposites vs ammonia concentration

    The cross-response curves of ZnO/PPy hetero-nanocomposite sensor to ammonia,formaldehyde,ethanol,and toluene at room temperature in the concentration range of 10×10-6-150×10-6are demonstrated in Fig.9,respectively.The selectivity property of the sensor indicates that ZnO/PPy hetero-nanocomposite sensors get higher response to ammonia than to ethanol,and hardly sensitive to toluene and formaldehyde.

    Fig.9 Cross-response curves of ZnO/PPy hetero-nanocomposite sensor to ammonia,formaldehyde,ethanol,and toluene

    To investigate the long time stability of ZnO/PPy heteronanocomposite sensor,the responses of ZnO/PPy sensor to 10×10-6, 50×10-6and 100×10-6ammonia were repeated after 1 day,1 month,and 3 months.Fig.10 gives the responses of ZnO/PPy hetero-nanocomposite,sensor to ammonia with different concentrations after 1 day,1 month,and 3 months at room temperature, respectively.It can be seen from the figure that ZnO/PPy sensor exhibited a nearly stable signal during the test,indicating a good stability of ZnO/PPy sensor.

    Fig.10 Stability of ZnO/PPy sensor to different concentrations of ammonia after 1 day,1 month,and 3 months at room temperature

    3.4 Gas sensing mechanism

    The experiments show that ZnO/PPy hetero-nanocomposite sensor is sensitive to ammonia at room temperature,which means that adsorption capability of ZnO/PPy hetero-nanocomposites to ammonia at room temperature is improved.The reasons are analyzed as follows.

    The stable oxygen ions were O2-below 100°C,O-between 100 and 300°C,and O2-above 300°C.28When the PPy is exposed to air at room temperature,oxygen molecules adsorb on the surface of PPy nanoparticles to form O2-species by capturing electrons from the conductance band.28

    It is well known that PPy is a p type semiconductor.Holes are the majority carrier,and recombination is limited by electron injection.When PPy nanoparticle is exposed to reductive gas ammonia at room temperature,the ammoniamolecules will react with the surface O2-species and release electrons,which will combine with the holes to result in the decreasing of carrier concentration.The resistance of PPy nanoparticles will increase.29,30But as for a typical n type sensor,electrons are the majority carrier.When ZnO is exposed to reductive gas ammonia at room temperature,the carrier concentration of the ZnO will increase and the resistance will decrease,correspondingly.They have opposite electrical behavior when the ZnO/PPy hetero-nanocomposite gas sensor is exposed to the reductive gas ammonia at room temperature.Two kinds of barriers(ZnO and PPy)exist in the treated ZnO/PPy hetero-nanocomposites,the barriers between homogeneous nanocrystallites of ZnO and/or PPy,respectively. The barrier between ZnO and PPy is a p-n type hetero-junction in ZnO/PPy composite material.Electron transport is expected to be strongly tuned by the hetero-junction barrier,which has been widely investigated for many hetero-junction devices such as lasers,photodiodes,and hetero-junction bipolar transistors.31,32The energy band structure of the ZnO/PPy hetero-junction can be schematically depicted in Fig.11,where φeffdenotes the effective barrier height,considering the contribution of other factors such as temperature to the barrier height.33,34Therefore,it requires that the transport of electrons should overcome the hetero-junction barriers.33,34At the high temperature region,the electron motility (μ)is expressed by33

    where μ0is a constant,q is the charge of an electron,kBis Boltzmann'sconstant,and T is absolute temperature.According to Eq.(9),the conductivity(G)of heterostructures under different gas atmospheres can be given by33

    Fig.11 Aschematic diagram of the energy band structure of the ZnO/PPy hetero-nanostructures

    In this equation,G0can be considered as a constant parameter. The conductivity of the hetero-junction is very high for ZnO/PPy. When the ZnO/PPy hetero-structures are exposed to ammonia,the reaction between the adsorbed oxygen species and the ammonia molecules leads to the release of the trapped electrons back simultaneously into the conduction bands of the PPy and ZnO, resulting in an increase in the width and height of the barrier potential at their interfaces,as shown in Fig.11(b).According the Eq.(10),the conductivity of the hetero-junction will consequently be greatly decreased,resulting in high sensitivity of the ZnO/PPy composite materials to ammonia.34

    Fig.12 Band model of p-n type semiconductor in balance state

    Fig.13 Space charge region schematic of p-n type semiconductor

    The band model of p-n type semiconductor in balance state is shown in Fig.12.At the same time,in p-n type semiconductor,the number of holes is larger than that of electrons in p type region and the number of electrons is larger than that of holes in n type region,which will cause the movement of the carriers.With the movement of the carriers,a space charge region will form between the p type region and n type region.When meeting the target gas,carriers will speed up in the space charge region,so the resistance of gas sensor decreases and the response of the sensor increases.35The space charge region schematic of p-n type semiconductor is shown in Fig.13.

    4 Conclusions

    In summary,ZnO/PPy hetero-nanocomposites are synthesized on the surface of the pre-treated slide substrate by in-situ polymerization and hydrothermal method.And then a large quantity of ZnO nanorods with uniform-size is formed in the surface of PPy by hydrothermal method.The ZnO/PPy nanocomposites are synthesized by the two-step method.The structure and morphology of the films are confirmed by XRD and SEM techniques,respectively.These films get good selectivity to ammonia,formaldehyde,methanol,and acetone.And the response increases as the ammonia concentration increases at room temperature.For ammonia vapor at concentration levels of 100×10-6and 150×10-6, the responses are about 1.36 and 2.51,respectively.These studies suggest that ZnO/PPy nanocomposites can be used for fabrication of ammonia sensors operated at room temperature.Our results demonstrate that ZnO/PPy nanocomposites are very promising for fabricating sensors as well as other complex devices.

    (1) Ito,T.;Shirakawa,H.;Ikeda,S.J.Polym.Sci.Part A:Polym. Chem.1996,34,2533.

    (2) Shirakawa,H.;Ikeda,S.;Aizawa,M.;Yoshitake,J.;Suzuki,S. Synth.Met.1981,4,43.doi:10.1016/0379-6779(81)90056-4

    (3) Ayad,M.M.;Salahuddin,N.A.;Alghaysh,M.O.;Issa,R.M. Curr.Appl.Phys.2010,10,235.doi:10.1016/j.cap.2009.05.030

    (4) Ram,M.K.;Yavuz,O.;Aldissi,M.Synth.Met.2005,151,77. doi:10.1016/j.synthmet.2005.03.021

    (5) Suri,K.;Annapoorni,S.;Sarkar,A.K.;Tandon,R.P.Sens. Actuators B 2002,81,277.doi:10.1016/S0925-4005(01)00966-2

    (6) Jun,H.K.;Hoh,Y.S.;Lee,B.S.;Lee,S.T.;Lim,J.O.;Lee,D. D.;Huh,J.S.Sens.Actuators B 2003,96,576.doi:10.1016/j. snb.2003.06.002

    (7) Malhotra,B.D.;Arora,K.;Chaubey,A.;Singhal,R.;Singh,R. P.;Pandey,M.K.;Samanta,S.B.;Chand,S.Biosens. Bioelectron 2006,21,1777.doi:10.1016/j.bios.2005.09.002

    (8) Ameer,Q.;Adeloju,S.B.Sens.Actuators B 2005,106,541. doi:10.1016/j.snb.2004.07.033

    (9) Palod,P.A.;Pandey,S.S.;Hayase,S.;Singh,V.Appl.Biochem. Biotechnol.2014,174,1059.doi:10.1007/s12010-014-0988-x

    (10) Patois,T.;Sanchez,J.B.;Berger,F.;Rauch,J.Y.;Fievet,P.; Lakard,B.Sens.Actuators B 2012,171-172,431.

    (11) Ayta?,S.;Kuralay,F.;Boyac?,?.H.;Unaleroglu,C.Sens. Actuators B 2011,160,405.doi:10.1016/j.snb.2011.07.069

    (12) Tebizi-Tighilt,F.Z.;Zane,F.;Belhaneche-Bensemra,N.; Belhousse,S.;Sam,S.;Gabouze,N.E.Appl.Surf.Sci.2013, 269,180.doi:10.1016/j.apsusc.2012.10.080

    (13) Su,W.C.;Iroh,J.O.Electrochim.Acta 1999,44,4655.doi: 10.1016/S0013-4686(99)00219-4

    (14) Zhang,J.;Kong,L.B.;Li,H.;Luo,Y.C.;Kang,L.J.Mater. Sci.2010,45,1947.doi:10.1007/s10853-009-4186-0

    (15) Omastova,M.;Simon,F.J.Mater.Sci.2000,35,1743.doi: 10.1023/A:1004728502591

    (16) Egami,Y.;Yamamoto,T.;Suzuki,K.;Yasuhara,T.;Higuchi,E.; Inoue,H.J.Mater.Sci.2012,47,382.doi:10.1007/s10853-011-5809-9

    (17) Rawal,I.;Kaur,A.Sen.Actuators A 2013,203,92.doi:10.1016/ j.sna.2013.08.023

    (18) Zhang,L.;Meng,F.;Chen,Y.;Liu,J.;Sun,Y.;Luo,T.;Li,M.; Liu,J.Sens.Actuators B 2009,142,204.doi:10.1016/j. snb.2009.07.042

    (19) Wang,J.;Zhang,P.;Qi,J.Q.;Yao,P.J.Sens.Actuators B 2009, 136,399.doi:10.1016/j.snb.2008.12.056

    (20) Xu,L.;Dong,B.;Wang,Y.;Bai,X.;Liu,Q.;Song,H.W.Sens. Actuators B 2010,147,531.doi:10.1016/j.snb.2010.04.003

    (21) Yu,Q.Z.;Wang,M.;Chen,H.Z.Mater.Lett.2010,64, 428.doi:10.1016/j.matlet.2009.11.039

    (22) Hsueh,T.J.;Hsu,C.L.;Chang,S.J.;Chen,I.C.Sens. Actuators B.2007,126,473.doi:10.1016/j.snb.2007.03.034

    (23) Su,M.Y.;Wang,J.;Du,H.Y.;Yao,P.J.;Zheng,Y.G.;Li,X.G. Sens.Actuators B.2012,161,1038.doi:10.1016/j. snb.2011.12.005

    (24) Jing,Z.H.;Zhan,J.H.Adv.Mater.2008,20,4547.doi:10.1002/ adma.v20:23

    (25) Huang,J.R.;Wu,Y.J.;Gu,C.P.;Zhai,M.H.;Yu,K.;Yang, M.;Liu,J.H.Sens.Actuators B 2010,146,206.doi:10.1016/j. snb.2010.02.052

    (26) Dong,S.Y.;Peng,L.;Liu,D.;Yang,Q.X.;Huang,T.L. Bioelectrochemistry 2014,98,87.doi:10.1016/j. bioelechem.2014.04.001

    (27) Su,P.G.;Peng,Y.T.Sens.Actuators B 2014,193,637.doi: 10.1016/j.snb.2013.12.027

    (28) Yao,T.J.;Li,X.;Quan,L.;Jie,W.;Ren,Z.Y.;Wang,C.X.; Zhang,J.H.;Yu,K.;Yang,B.Polymer 2009,50,3938.doi: 10.1016/j.polymer.2009.06.054

    (29) Navale,S.T.;Mane,A.T.;Chougule,M.A.;Sakhare,R.D.; Nalage,S.R.;Patil,V.B.Synth.Met.2014,189,94.doi: 10.1016/j.synthmet.2014.01.002

    (30) Chougule,M.A.;Dalavi,D.S.;Mali,S.;Patil,P.S.;Moholkar, A.V.;Agawane,G.L.;Kim,J.H.;Sen,S.;Patil,V.B. Measurement 2012,45,1989.doi:10.1016/j. measurement.2012.04.023

    (31) Dai,Z.R.;Pan,Z.W.;Wang,Z.L.Adv.Funct.Mater.2003,13, 9.doi:10.1002/adfm.200390013

    (32) Gr?tzel,M.Nature 2001,414,338.doi:10.1038/35104607

    (33) Weis,T.;Lipperheide,R.;Wille,U.;Brehme,S.J.Appl.Phys. 2002,92,1411.doi:10.1063/1.1488246

    (34) Chen,Y.J.;Zhu,C.L.;Shi,X.L.;Cao,M.S.;Jin,H.B. Nanotechnology 2008,19,1.

    (35) Chougulea,M.A.;Sen,S.;Patil,V.B.Synth.Met.2012,162, 1598.doi:10.1016/j.synthmet.2012.07.002

    Synthesis and Characterization of ZnO/PPy Hetero-Nanocomposites and Their Gas Sensing Properties

    DU Hai-Ying1,2WANG Jing1,*QIAO Qiao1SUN Yan-Hui1,2SHAO Qiang2LI Xiao-Gan1
    (1School of Electronic Science and Technology,Dalian University of Technology,Dalian 116023,Liaoning Province, P.R.China;2College of Electromechanical&Information Engineering,Dalian Nationalities University, Dalian 116600,Liaoning Province,P.R.China)

    Pyrrole(Py)was oxidized by ferric(III)chloride solution in water for the synthesis of polypyrrole(PPy) nanoparticles on the substrate slide by in-situ polymerization at room temperature.Zinc oxide nanorods grew on the PPy nanoparticles when in a water bath at 90°C.ZnO/PPy hetero-nanocomposites were obtained by a hydrothermal method and characterized using X-ray diffraction(XRD)and field emission scanning electron microscopy(FESEM).Gas sensors were fabricated based on the ZnO/PPy hetero-nanocomposites to detect ammonia at room temperature.The gas sensing properties of these hetero-nanocomposites were measured in the concentration range of 10×10-6-150×10-6(volume fraction).The relationship of the sensitivity of the sensors to the ammonia concentration showed linearity.The gas sensor based on ZnO/PPy heteronanocomposites showed good selectivity to ammonia when in the presence of interfering gases such as methanol,acetone,and toluene.The formation mechanism of the ZnO/PPy hetero-nanocomposites was briefly analyzed.

    In-situ polymerization;Hetero-nanocomposite;Gas sensor;Gas sensing property; Formation mechanism

    O649

    10.3866/PKU.WHXB201501283www.whxb.pku.edu.cn

    Received:December 12,2014;Revised:Janaury 27,2015;Published on Web:January 28,2015.

    ?Corresponding author.Email:wangjing@dlut.edu.cn;Tel:+86-411-84708382;Fax:+86-411-84706706.

    The project was supported by the National Natural Science Foundation of China(61176068,61131004,61474012).

    國家自然科學(xué)基金(61176068,61131004,61474012)資助項(xiàng)目

    猜你喜歡
    遼寧大連大連理工大學(xué)氣敏
    鈷摻雜二氧化鈦納米片的制備及其氣敏特性研究
    云南化工(2021年8期)2021-12-21 06:37:16
    遼寧大連:10年資助4207名農(nóng)民工上大學(xué)
    水熱法合成WO3納米片及其甲苯氣敏性能研究
    Research on the Globalization of English in the Internet era
    大東方(2019年1期)2019-09-10 20:30:40
    氣敏傳感器的研究進(jìn)展
    建材與裝飾(2018年5期)2018-02-13 23:12:02
    孫子垚
    偽隨機(jī)碼掩蔽的擴(kuò)頻信息隱藏
    “白草莓”亮相遼寧大連
    不同形貌納米CoWO4的水熱法制備及氣敏性能
    中泰化學(xué)與大連理工大學(xué)簽署戰(zhàn)略合作框架協(xié)議
    中國氯堿(2014年11期)2014-02-28 01:05:06
    精品国产国语对白av| 亚洲久久久国产精品| 久久中文字幕一级| 成人手机av| 欧美黄色淫秽网站| 亚洲精品av麻豆狂野| 欧美激情久久久久久爽电影 | 亚洲午夜精品一区,二区,三区| 男人舔女人的私密视频| 精品人妻熟女毛片av久久网站| 男女免费视频国产| 久9热在线精品视频| 大片电影免费在线观看免费| 亚洲欧美清纯卡通| 国产亚洲精品第一综合不卡| 老汉色av国产亚洲站长工具| 青草久久国产| 人人澡人人妻人| 777久久人妻少妇嫩草av网站| 伊人久久大香线蕉亚洲五| 1024香蕉在线观看| 亚洲国产精品一区二区三区在线| 最黄视频免费看| 国产片内射在线| 亚洲va日本ⅴa欧美va伊人久久 | 欧美日韩视频精品一区| av天堂久久9| 成年人午夜在线观看视频| 国产亚洲av片在线观看秒播厂| 亚洲国产精品999| 91av网站免费观看| 亚洲熟女精品中文字幕| 精品国产乱子伦一区二区三区 | 99香蕉大伊视频| 国产日韩一区二区三区精品不卡| 下体分泌物呈黄色| av在线老鸭窝| 午夜福利在线免费观看网站| 亚洲伊人久久精品综合| 一本综合久久免费| 亚洲国产毛片av蜜桃av| videosex国产| 少妇人妻久久综合中文| 一本久久精品| 老熟女久久久| 国产有黄有色有爽视频| 国产男人的电影天堂91| 久久久久网色| 欧美97在线视频| 日韩,欧美,国产一区二区三区| 中文欧美无线码| 欧美精品av麻豆av| 另类精品久久| 欧美激情 高清一区二区三区| 精品国产乱码久久久久久男人| e午夜精品久久久久久久| 日日摸夜夜添夜夜添小说| 欧美亚洲日本最大视频资源| 欧美激情极品国产一区二区三区| 日韩一卡2卡3卡4卡2021年| 精品国内亚洲2022精品成人 | 久久国产精品人妻蜜桃| 12—13女人毛片做爰片一| 国产精品二区激情视频| 99精品久久久久人妻精品| 黄色a级毛片大全视频| 建设人人有责人人尽责人人享有的| 在线永久观看黄色视频| 免费看十八禁软件| 精品一区二区三区av网在线观看 | 无遮挡黄片免费观看| 香蕉丝袜av| 99热国产这里只有精品6| 亚洲精品久久午夜乱码| 每晚都被弄得嗷嗷叫到高潮| 亚洲中文av在线| 免费在线观看黄色视频的| 窝窝影院91人妻| 久久久久久人人人人人| 国产精品自产拍在线观看55亚洲 | 亚洲天堂av无毛| 国产精品一区二区免费欧美 | 十分钟在线观看高清视频www| 啦啦啦在线免费观看视频4| 国产精品亚洲av一区麻豆| 欧美久久黑人一区二区| 欧美日韩黄片免| 日韩,欧美,国产一区二区三区| 精品国产乱码久久久久久小说| 国精品久久久久久国模美| 伊人久久大香线蕉亚洲五| 成人亚洲精品一区在线观看| av福利片在线| 国产一区二区 视频在线| 久久久精品区二区三区| 国产欧美亚洲国产| 99热网站在线观看| 97人妻天天添夜夜摸| 两个人免费观看高清视频| 一级片免费观看大全| 伦理电影免费视频| 一边摸一边抽搐一进一出视频| 日韩电影二区| 中文欧美无线码| 国产日韩一区二区三区精品不卡| 亚洲专区中文字幕在线| 捣出白浆h1v1| 两人在一起打扑克的视频| 搡老熟女国产l中国老女人| 99久久人妻综合| 19禁男女啪啪无遮挡网站| 午夜福利在线观看吧| 欧美一级毛片孕妇| 建设人人有责人人尽责人人享有的| 欧美黑人欧美精品刺激| 中文字幕人妻熟女乱码| 热99国产精品久久久久久7| 国产在线观看jvid| 青草久久国产| 中文字幕精品免费在线观看视频| 欧美午夜高清在线| 国产极品粉嫩免费观看在线| 欧美久久黑人一区二区| 成年av动漫网址| 99国产综合亚洲精品| 爱豆传媒免费全集在线观看| 一本综合久久免费| 另类亚洲欧美激情| 在线观看免费午夜福利视频| 在线十欧美十亚洲十日本专区| 一区福利在线观看| 成人黄色视频免费在线看| 中文字幕av电影在线播放| 亚洲精品一区蜜桃| 中亚洲国语对白在线视频| 国产精品一区二区在线不卡| 亚洲 国产 在线| 日韩视频一区二区在线观看| 免费av中文字幕在线| 黑人巨大精品欧美一区二区mp4| 91麻豆精品激情在线观看国产 | 久热爱精品视频在线9| 无遮挡黄片免费观看| cao死你这个sao货| 国产高清videossex| 我要看黄色一级片免费的| 国产一区有黄有色的免费视频| 高清黄色对白视频在线免费看| 国产高清videossex| 老汉色∧v一级毛片| 国产精品二区激情视频| 色婷婷av一区二区三区视频| 一边摸一边做爽爽视频免费| 国产一区二区三区在线臀色熟女 | 午夜免费观看性视频| 亚洲黑人精品在线| 啦啦啦中文免费视频观看日本| 亚洲精品国产区一区二| 国产av精品麻豆| 色综合欧美亚洲国产小说| 国产精品1区2区在线观看. | 少妇 在线观看| 18禁国产床啪视频网站| 国产极品粉嫩免费观看在线| 美国免费a级毛片| 天天影视国产精品| 这个男人来自地球电影免费观看| 啦啦啦在线免费观看视频4| 新久久久久国产一级毛片| 黄频高清免费视频| 中国国产av一级| 欧美亚洲日本最大视频资源| 久久国产精品影院| 日韩 欧美 亚洲 中文字幕| 汤姆久久久久久久影院中文字幕| 精品少妇久久久久久888优播| 欧美+亚洲+日韩+国产| 肉色欧美久久久久久久蜜桃| 精品一区在线观看国产| 啦啦啦啦在线视频资源| 精品久久久久久久毛片微露脸 | 成年av动漫网址| 少妇裸体淫交视频免费看高清 | 精品人妻1区二区| 满18在线观看网站| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲精品第一综合不卡| 黄片大片在线免费观看| 一本久久精品| 人人妻人人爽人人添夜夜欢视频| 后天国语完整版免费观看| 日日摸夜夜添夜夜添小说| 国产成人系列免费观看| 91国产中文字幕| 在线观看免费高清a一片| 国产野战对白在线观看| 一区二区三区精品91| 日日摸夜夜添夜夜添小说| 波多野结衣av一区二区av| 久久天躁狠狠躁夜夜2o2o| 久久热在线av| 国产亚洲精品第一综合不卡| 国产黄频视频在线观看| 欧美 亚洲 国产 日韩一| 人妻 亚洲 视频| 欧美精品一区二区免费开放| 99久久综合免费| 久久国产精品男人的天堂亚洲| 免费人妻精品一区二区三区视频| 王馨瑶露胸无遮挡在线观看| 日韩欧美一区二区三区在线观看 | 成年人免费黄色播放视频| 国产97色在线日韩免费| 蜜桃国产av成人99| 亚洲黑人精品在线| 久久国产亚洲av麻豆专区| 国产日韩欧美在线精品| 欧美成狂野欧美在线观看| 国产成人a∨麻豆精品| 精品亚洲成国产av| 中文字幕人妻熟女乱码| 一级a爱视频在线免费观看| 欧美黑人欧美精品刺激| 国产一区二区在线观看av| 亚洲av片天天在线观看| 欧美黑人精品巨大| 最新在线观看一区二区三区| 999久久久精品免费观看国产| 国产男女超爽视频在线观看| 男女国产视频网站| 日本91视频免费播放| 中国美女看黄片| 免费一级毛片在线播放高清视频 | 天堂中文最新版在线下载| 一级毛片电影观看| 国产精品影院久久| 国产欧美日韩一区二区精品| 97人妻天天添夜夜摸| 国产亚洲欧美在线一区二区| 午夜成年电影在线免费观看| 精品人妻1区二区| 亚洲一区二区三区欧美精品| 国产成+人综合+亚洲专区| 精品乱码久久久久久99久播| 熟女少妇亚洲综合色aaa.| 狠狠精品人妻久久久久久综合| 高清黄色对白视频在线免费看| av在线播放精品| 精品一品国产午夜福利视频| 色婷婷av一区二区三区视频| 午夜视频精品福利| 亚洲一区二区三区欧美精品| 五月天丁香电影| 国产在线视频一区二区| 国产高清国产精品国产三级| 国产精品香港三级国产av潘金莲| 日韩一卡2卡3卡4卡2021年| 国产亚洲av高清不卡| 国产av精品麻豆| 91老司机精品| 久热这里只有精品99| 国产成人av教育| 日韩中文字幕欧美一区二区| 母亲3免费完整高清在线观看| 久久 成人 亚洲| 国产精品久久久人人做人人爽| 一区在线观看完整版| a级毛片黄视频| 亚洲精品国产精品久久久不卡| svipshipincom国产片| 韩国精品一区二区三区| 69精品国产乱码久久久| 国产视频一区二区在线看| 叶爱在线成人免费视频播放| 99国产精品99久久久久| 考比视频在线观看| 亚洲国产欧美在线一区| 精品亚洲乱码少妇综合久久| 青草久久国产| 亚洲精品成人av观看孕妇| 99精国产麻豆久久婷婷| 99国产精品99久久久久| 免费在线观看完整版高清| 日本撒尿小便嘘嘘汇集6| 亚洲三区欧美一区| 久久久久久久久久久久大奶| 少妇猛男粗大的猛烈进出视频| 欧美黑人精品巨大| 国产精品秋霞免费鲁丝片| 国产视频一区二区在线看| 香蕉丝袜av| 久久久久久久精品精品| 亚洲,欧美精品.| 精品欧美一区二区三区在线| 极品少妇高潮喷水抽搐| 久久久精品国产亚洲av高清涩受| 少妇粗大呻吟视频| 一级片免费观看大全| 一本久久精品| 成人亚洲精品一区在线观看| xxxhd国产人妻xxx| 欧美午夜高清在线| 免费av中文字幕在线| 国产日韩欧美亚洲二区| 国产精品秋霞免费鲁丝片| 久久久久国产精品人妻一区二区| 高清黄色对白视频在线免费看| 少妇猛男粗大的猛烈进出视频| 久久久欧美国产精品| 黄色片一级片一级黄色片| 少妇 在线观看| 国内毛片毛片毛片毛片毛片| 久久国产亚洲av麻豆专区| 久久天堂一区二区三区四区| 美女扒开内裤让男人捅视频| 国产成人系列免费观看| 成人国语在线视频| 精品人妻1区二区| 美女主播在线视频| 飞空精品影院首页| 久久久国产成人免费| 亚洲精品一卡2卡三卡4卡5卡 | 免费一级毛片在线播放高清视频 | 国产成人啪精品午夜网站| 女人高潮潮喷娇喘18禁视频| 性少妇av在线| 伊人久久大香线蕉亚洲五| 亚洲色图 男人天堂 中文字幕| 水蜜桃什么品种好| 69av精品久久久久久 | 天天影视国产精品| 中文字幕色久视频| 欧美精品高潮呻吟av久久| 亚洲国产av影院在线观看| 国产精品久久久久久精品古装| 色精品久久人妻99蜜桃| a 毛片基地| 大型av网站在线播放| 欧美乱码精品一区二区三区| 精品国产一区二区三区久久久樱花| 久久青草综合色| 中文字幕人妻丝袜一区二区| 天堂8中文在线网| 久久精品国产亚洲av香蕉五月 | 制服诱惑二区| 动漫黄色视频在线观看| 国产色视频综合| 一级a爱视频在线免费观看| 狠狠婷婷综合久久久久久88av| 亚洲 欧美一区二区三区| 亚洲av美国av| 黄色a级毛片大全视频| 欧美老熟妇乱子伦牲交| 中国国产av一级| 80岁老熟妇乱子伦牲交| 法律面前人人平等表现在哪些方面 | 久热这里只有精品99| 亚洲国产欧美在线一区| 精品一区二区三卡| 欧美另类亚洲清纯唯美| 在线观看免费视频网站a站| 狂野欧美激情性xxxx| av天堂在线播放| 操出白浆在线播放| 自线自在国产av| 精品国产乱码久久久久久小说| 蜜桃国产av成人99| 久久香蕉激情| 亚洲全国av大片| 别揉我奶头~嗯~啊~动态视频 | 国产成人免费观看mmmm| 亚洲少妇的诱惑av| 久久久久久亚洲精品国产蜜桃av| 国产野战对白在线观看| 久久久久视频综合| 亚洲国产看品久久| 亚洲国产中文字幕在线视频| h视频一区二区三区| 国产亚洲欧美精品永久| 久久狼人影院| www.精华液| 午夜福利乱码中文字幕| av一本久久久久| av视频免费观看在线观看| 中文精品一卡2卡3卡4更新| 一个人免费看片子| 老司机午夜福利在线观看视频 | 人人妻人人爽人人添夜夜欢视频| 精品国产乱子伦一区二区三区 | 一本综合久久免费| 欧美xxⅹ黑人| www日本在线高清视频| 狠狠婷婷综合久久久久久88av| 女人爽到高潮嗷嗷叫在线视频| 亚洲性夜色夜夜综合| 亚洲中文日韩欧美视频| 精品久久久久久久毛片微露脸 | 久久久水蜜桃国产精品网| 天堂8中文在线网| 欧美黑人欧美精品刺激| 精品少妇久久久久久888优播| 十八禁网站网址无遮挡| 一区二区三区四区激情视频| 美女高潮到喷水免费观看| 亚洲色图综合在线观看| 日本黄色日本黄色录像| 亚洲 欧美一区二区三区| 99国产精品免费福利视频| 天堂8中文在线网| 久久av网站| 日本一区二区免费在线视频| 亚洲av成人不卡在线观看播放网 | 日韩视频在线欧美| 日本猛色少妇xxxxx猛交久久| 国产主播在线观看一区二区| 欧美国产精品一级二级三级| 久久久精品免费免费高清| 大片电影免费在线观看免费| 亚洲精品久久成人aⅴ小说| 亚洲国产中文字幕在线视频| 少妇被粗大的猛进出69影院| 丰满人妻熟妇乱又伦精品不卡| 午夜免费观看性视频| 久久久精品94久久精品| 考比视频在线观看| 精品第一国产精品| 久久久久精品人妻al黑| 窝窝影院91人妻| 亚洲精品粉嫩美女一区| 午夜日韩欧美国产| 最近中文字幕2019免费版| 午夜日韩欧美国产| 中文字幕另类日韩欧美亚洲嫩草| 老司机亚洲免费影院| 性色av乱码一区二区三区2| 又黄又粗又硬又大视频| 高清黄色对白视频在线免费看| 美女国产高潮福利片在线看| 电影成人av| 久久国产精品影院| 亚洲七黄色美女视频| 日本av手机在线免费观看| 99re6热这里在线精品视频| 久久99热这里只频精品6学生| 五月开心婷婷网| 91精品国产国语对白视频| 午夜福利免费观看在线| 国产成+人综合+亚洲专区| 免费女性裸体啪啪无遮挡网站| 国产1区2区3区精品| 十八禁网站免费在线| 啦啦啦中文免费视频观看日本| 日本黄色日本黄色录像| 日日爽夜夜爽网站| 国产av精品麻豆| www日本在线高清视频| 中亚洲国语对白在线视频| 欧美成人午夜精品| 日本av免费视频播放| 亚洲国产成人一精品久久久| 最黄视频免费看| 亚洲av成人不卡在线观看播放网 | 天天躁狠狠躁夜夜躁狠狠躁| 熟女少妇亚洲综合色aaa.| 国产av一区二区精品久久| av一本久久久久| 人妻一区二区av| 亚洲欧美日韩高清在线视频 | 国产成人影院久久av| 亚洲熟女毛片儿| 男人操女人黄网站| 国产精品影院久久| 777米奇影视久久| 久热这里只有精品99| 一级毛片电影观看| 91精品三级在线观看| 啦啦啦视频在线资源免费观看| 女性生殖器流出的白浆| 亚洲专区字幕在线| 久久久久久久久久久久大奶| 日韩一区二区三区影片| 最黄视频免费看| 亚洲少妇的诱惑av| 多毛熟女@视频| 久久久欧美国产精品| 青青草视频在线视频观看| 亚洲人成77777在线视频| 亚洲成人免费av在线播放| 2018国产大陆天天弄谢| 欧美黑人欧美精品刺激| 一本久久精品| 超色免费av| 乱人伦中国视频| 国产成人啪精品午夜网站| 亚洲精品美女久久久久99蜜臀| 精品久久久精品久久久| 日韩大码丰满熟妇| 精品亚洲乱码少妇综合久久| 精品一区在线观看国产| 久久女婷五月综合色啪小说| 国产精品1区2区在线观看. | 一个人免费在线观看的高清视频 | 成人免费观看视频高清| 老司机影院成人| 国产精品偷伦视频观看了| 日本五十路高清| 一级片'在线观看视频| 国产伦理片在线播放av一区| 久久精品国产综合久久久| 老鸭窝网址在线观看| 丝袜在线中文字幕| 色婷婷av一区二区三区视频| 欧美午夜高清在线| 精品国产国语对白av| 一级,二级,三级黄色视频| 欧美 日韩 精品 国产| 欧美一级毛片孕妇| 久久久久精品人妻al黑| 老司机影院成人| 男人操女人黄网站| 欧美97在线视频| 一级毛片女人18水好多| 在线看a的网站| 国产一级毛片在线| 首页视频小说图片口味搜索| 美女高潮喷水抽搐中文字幕| 欧美人与性动交α欧美软件| 国产一区二区三区av在线| 少妇精品久久久久久久| 丰满迷人的少妇在线观看| 亚洲九九香蕉| 国产日韩欧美视频二区| 最新在线观看一区二区三区| 亚洲av美国av| 超碰成人久久| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产看品久久| 国产熟女午夜一区二区三区| 免费少妇av软件| 看免费av毛片| 欧美精品一区二区大全| 中文字幕制服av| av网站在线播放免费| 亚洲,欧美精品.| 国产成+人综合+亚洲专区| 国产色视频综合| 在线观看一区二区三区激情| 夫妻午夜视频| 女人久久www免费人成看片| 亚洲国产精品一区三区| 一二三四社区在线视频社区8| 啦啦啦视频在线资源免费观看| 高清视频免费观看一区二区| 人妻久久中文字幕网| 蜜桃在线观看..| 美国免费a级毛片| 欧美成狂野欧美在线观看| 久久久久久久国产电影| www.熟女人妻精品国产| 又黄又粗又硬又大视频| 天堂中文最新版在线下载| 丝袜在线中文字幕| 日韩一卡2卡3卡4卡2021年| 宅男免费午夜| 制服诱惑二区| 国产精品香港三级国产av潘金莲| 在线观看免费日韩欧美大片| 亚洲少妇的诱惑av| 亚洲欧美成人综合另类久久久| 热99久久久久精品小说推荐| 久久久久久久久免费视频了| 最近最新中文字幕大全免费视频| 一区二区三区乱码不卡18| 国产色视频综合| 婷婷成人精品国产| av片东京热男人的天堂| www.999成人在线观看| 久久ye,这里只有精品| 久久久国产精品麻豆| 一级毛片精品| 国产黄色免费在线视频| 999久久久精品免费观看国产| 一级片'在线观看视频| 久久精品人人爽人人爽视色| 午夜日韩欧美国产| 性色av乱码一区二区三区2| 日日爽夜夜爽网站| 日韩熟女老妇一区二区性免费视频| 啦啦啦在线免费观看视频4| 黄片小视频在线播放| 欧美日韩国产mv在线观看视频| 久久中文字幕一级| 12—13女人毛片做爰片一| 国产av又大| 青春草视频在线免费观看| 国产精品一区二区免费欧美 | 这个男人来自地球电影免费观看| 91字幕亚洲| 91国产中文字幕| 国产精品香港三级国产av潘金莲| 亚洲成国产人片在线观看| 欧美激情 高清一区二区三区| av在线播放精品| a级毛片在线看网站| 久久久久国产精品人妻一区二区| 夜夜夜夜夜久久久久| 日韩,欧美,国产一区二区三区| 国产在视频线精品| 国产熟女午夜一区二区三区| 97在线人人人人妻| 91老司机精品| 午夜福利免费观看在线| 日韩中文字幕欧美一区二区| 久久久国产一区二区| 国产一区有黄有色的免费视频|