• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Al2O3改性CuO/Fe2O3催化劑水煤氣變換反應(yīng)性能

    2015-01-04 12:52:30林性貽范言語(yǔ)陳崇啟福州大學(xué)化肥催化劑國(guó)家工程研究中心福州350002
    物理化學(xué)學(xué)報(bào) 2015年4期
    關(guān)鍵詞:水煤氣福州大學(xué)還原性

    林性貽 殷 玲 范言語(yǔ) 陳崇啟(福州大學(xué)化肥催化劑國(guó)家工程研究中心,福州350002)

    Al2O3改性CuO/Fe2O3催化劑水煤氣變換反應(yīng)性能

    林性貽*殷 玲 范言語(yǔ) 陳崇啟
    (福州大學(xué)化肥催化劑國(guó)家工程研究中心,福州350002)

    采用分步共沉淀法制備了不同Al2O3含量(0%-15%(w))的CuO/Fe2O3催化劑,并進(jìn)行水煤氣變換反應(yīng)(WGSR)評(píng)價(jià)測(cè)試.制得的催化劑中含有復(fù)合物CuFe2O4,其晶粒尺寸,氧化還原性質(zhì)和表面Cu分散通過(guò)相應(yīng)表征手段加以研究.X射線粉末衍射(XRD),拉曼(Raman)光譜,N2物理吸附,N2O分解和CO2程序升溫脫附(CO2-TPD)等表征技術(shù)說(shuō)明適量Al2O3的加入可以促進(jìn)尖晶石CuFe2O4發(fā)生由四方相向立方相的轉(zhuǎn)變,阻止催化劑中Cu燒結(jié),增大表面Cu分散,增加弱堿性位點(diǎn)的數(shù)量.此外,采用H2程序升溫還原(H2-TPR)技術(shù)探究改性的CuO/Fe2O3催化劑的還原性能.關(guān)聯(lián)結(jié)果發(fā)現(xiàn),Al2O3摻雜在增大銅物種的耗氫量,降低其還原溫度方面起著重要的作用.即Al2O3的添加促進(jìn)CuO/Fe2O3催化劑中銅鐵物種之間的協(xié)同作用.結(jié)合活性測(cè)試和表征結(jié)果,適量的Al2O3(10%(w))改性的催化劑具有較小的Cu顆粒尺寸、較大的Cu分散、較強(qiáng)的還原性能、較多數(shù)量的弱堿性位點(diǎn),因此具有更好的初始活性和熱穩(wěn)定性.

    CuFe2O4;水煤氣變換反應(yīng);Al2O3改性;Cu分散;弱堿性位點(diǎn);N2O分解

    ?Editorial office ofActa Physico-Chimica Sinica

    1 Introduction

    Hydrogen is a potential clean fuel for satisfying many of our energy demands in the future.1At present,most of the hydrogen is supplied by the reforming of traditional fossil energy,resulting in CO with a content of~10%(volume fraction)in the reforming gas.However,the slight content of CO degrades the performance of the Pt electrode in fuel cell systems.It is reported that watergas shift reaction(WGSR)and CO oxidation process are crucial steps to reduce the CO concentration and get clean hydrogen for fuel cell.2Herein,scientists pay their attentions to water-gas shift reaction again.It is well known that the water-gas shift reaction is usually carried out via two stages:a high-temperature stage at 350-450°C using Fe-Cr oxide catalyst and a low-temperature stage at 200-250°C using Cu-based catalysts,as well as supported precious metal catalysts,3-5such as Pt/TiO2,6Au/CeO2,7Pt/ CeO28and so on.Considering the high cost of the precious metal, great efforts have been done on non-precious metal catalysts. Budiman et al.9reported that highly dispersed Cu/ZnO/Al2O3catalysts were prepared by modifying a conventional co-precipitation method.The improved activity during WGSR was attributed to the high Cu active surface.Wang et al.10found that highly dispersed copper nanoparticles contributed to the high activity and selectivity over the Cu/SiO2catalysts.Lin et al.11prepared copper ferrite-based catalysts by co-precipitation method with KOH as the precipitants,and showed high catalytic performance for WGSR.Kameoka et al.12found that spinel CuFe2O4was an effective precursor for a high performance copper catalyst.Lin et al.13studied the Cu/Fe2O3catalyst with different Cu loadings, and found that CuFe2O4with spinel structure played an important role in improving catalytic activity.

    Many metal oxides have been used to promote catalytic activity of catalysts in WGRS.Du et al.14reported a highly effective ZrO2-promoted Cu-Mn spinel catalyst in WGSR.Ayastuy et al.15used Co as a promoter to modify Cu/CeO2catalyst,finding that Co-CuCe catalyst was highly selective and active for preferential oxidation of CO(CO-PROX)reaction,but low activity in WGSR and oxygen-enhanced water-gas shift reaction(OWGSR).Li et al.16reported that Cu/CeO2catalyst doped with aluminum prepared by co-precipitation method showed the high catalytic activity and thermal stability for WGSR.Whereas,aluminum promoted CuO/Fe2O3catalyst synthesized by co-precipitation method for WGSR has not been reported yet.

    In the present work,a series of Al2O3-modified CuO/Fe2O3catalysts were prepared by stepwise co-precipitation method.The catalytic activities of CuO/Fe2O3-Al2O3catalysts under WGSR condition were investigated in detail.The results show that the sample CCA-10(CuO/Fe2O3catalyst modified by 10%(w)Al2O3) exhibits higher initial activity and thermal stability.The correlation of catalyst structure and catalytic properties were measured by X-ray diffraction(XRD),Raman,N2physisorption,N2O decomposition,temperature-programmed reduction of H2(H2-TPR), and temperature-programmed desorption of CO2(CO2-TPD) techniques.

    2 Experimental

    2.1 Preparation of catalysts

    A series of aluminum doped CuO/Fe2O3catalysts with copper content fixed at 20%(w)(calculated as CuO)and a given aluminum content(e.g.,0%,3%,5%,10%,15%(w),calculated as Al2O3)were synthesized by stepwise co-precipitation method. Stoichiometric amounts of copper(II)nitrate[Cu(NO3)2·3H2O], iron(Ⅲ)nitrate[Fe(NO3)3·9H2O]were dissolved in deionized water to form the salt solution for 400 mL,and various contents of aluminum nitrate nonahydrate[Al(NO3)3·9H2O]were also dissolved for 25 mL.Then the salt solution was co-precipitated with an aqueous solution of potassium hydroxide(KOH)with vigorous stirring at T=80°C and pH=10±1.Materials Cu(NO3)2· 3H2O,Fe(NO3)3·9H2O,Al(NO3)3·9H2O,KOH are all analytical grades and were purchased from Shanghai Chemical Reagent Ltd. without further purification.After the copper and iron nitrate salt solution dripped off,the auxiliary Al2O3was dripped into the precipitate under the same condition.The final precipitate was aged with continuous stirring at T=80°C for 4 h.The obtained precipitate finally was centrifuged and washed by deionized water for 7 times,and then dried at 110°C for 12 h and calcined at 650°C for 4 h(heating rate was 5°C·min-1)subsequently.The x%(w) Al2O3modified catalysts were denoted as CCA-x(x=0,3,5,10, 15).

    2.2 Characterizations of catalysts

    XRD patterns of the samples were recorded by a PANalytical X'pertPro diffractometer(Netherlands)equipped with Co Kα(λ= 0.1789 nm)radiation.The samples were operated at 40 kV and 40 mA for 2θ angles ranging from 10°to 80°.Step size was kept at 0.0167°and each catalyst was detected in 6 min.The diffraction pattern was identified by comparing with Joint Committee of Powder Diffraction Standards(JCPDS)cards.

    Raman spectrum was recorded using the Lab-Ram HR800 spectrometer(JobinYvon-Horiba)(British Renishawn Company) with a 514.2 nm AreKr 2018RM laser(Spectrum Physics)as the excitation source.

    Cu dispersion was measured by the N2O decomposition with 3.35%(volume fraction,φ)N2O/He gas.50 mg of the sample was pretreated with highly pure helium(flow rate=30 mL·min-1)at 250°C for 1 h.After cooled down to room temperature,the sample was reduced by 10%(φ)H2/Ar from room temperature to 350°C.Once the sample was cooled down to 50°C,N2O/He gas was introduced to flow about 0.5 h.After that,the sample was flowed with highly pure helium to remove the remaining gas. Then continue one more TPR measurement.The hydrogen consumption was monitored by thermal conductivity detector(TCD) in the AutoChem 2910 apparatus(American Micrometric Company).The difference in the hydrogen consumption between two TPR measurements was used to calculate the Cu dispersion.The size of Cu metal particles(d/nm)was calculated by the equation: d=1.1/dispersion.17

    The BET surface area and pore volumes were measured by American Micrometrics ASAP 2020 instrument using nitrogenadsorption-desorption at 77 K.

    H2-TPR was measured on anAutoChem 2910 apparatus equipped with a TCD.50 mg of the sample was pretreated in high purity argon gas at 250°C for 1 h.After being cooled to room temperature,the sample was reduced by 10%H2/Ar(flow rate=30 mL· min-1)from 50 to 800°C at a heating rate of 10°C·min-1.

    CO2-TPD was performed with AutoChem 2920 instrument (American Micrometric Company).50 mg of the sample was firstly pre-reduced at 250°C for 1 h by 10%H2/Ar(flow rate=50 mL·min-1).Then CO2was introduced for 1 h after the sample was cooled to 50°C.Subsequently,the sample was purged by high purity helium gas for 1 h to remove physically adsorbed CO2. After that,it was heated from room temperature to 450°C at a heating rate of 10°C·min-1,the amount of desorbed CO2was monitored by TCD.

    2.3 Evaluation of catalytic performance

    The catalytic activity and thermal stability of the catalysts for WGSR were tested in a fixed-bed reactor at atmospheric pressure. The catalytic activity of all the samples was measured from 200 to 400°C.In order to investigate the thermal stability of the catalysts,all the samples were kept at 400°C for 10 h and then decreased to 200°C before continuing the second evaluating cycle.Besides,the sample CCA-10 was maintained at 250°C for 120 h to further investigate the thermal stability of the catalyst.2 g of fresh catalysts(20-40 mesh)after calcination were placed between two layers of quartz granules inside a stainless tube(i.d.= 12 mm).The reaction temperature was controlled by a thermocouple located near the center of the catalyst bed.The experiment was performed with a feed gas(10%CO,60%H2,12%CO2,and balance N2)flowing at 78.2 mL·min-1.The volume ratio of vapor to feed gas was maintained at 0.6:1 and gas hourly space velocity (GHSV)was kept at 7500 h-1.The residual water of the outlet was removed by a condenser before entering a gas chromatograph which was equipped with a TCD.The activity was expressed by the conversion of CO,defined as:XCO(%)=(1-φ'CO/φCO)/(1+φ'CO)× 100%,where φCOand φ'COare the inlet and outlet volume fractions of CO(dry base),respectively.

    3 Results and discussion

    3.1 Structural and textural studies of the asprepared CuO/Fe2O3-Al2O3catalysts

    The XRD patterns of CuO/Fe2O3-Al2O3catalysts,as well as that of non-modified CuO/Fe2O3sample,are presented in Fig.1.Two sets of diffraction patterns are found for all the CuO/Fe2O3samples:those marked with“#”are indexed to α-Fe2O3(JCPDS file No.01-089-0596),while those labeled with“*”and“■”are ascribed to cubic(JCPDS No.01-077-0010)and tetragonal (JCPDS No.00-034-0425)CuFe2O4,respectively.As depicted in Fig.1,there are no obvious diffraction peaks of crystalline CuO or Al2O3for all the samples,suggesting that the CuO orAl2O3species might be highly dispersed or present in an amorphous state on the surface.Besides,the diffraction peaks of tetragonal CuFe2O4are presented from CCA-0 to CCA-5 at 21.3°,34.9°,42.1°,43.3°, 51.4°,63.6°,while for CCA-10 and CCA-15,the diffraction peaks at 21.3°,35.1°,43.4°,74.2°are indexed to cubic CuFe2O4.It is worth noting that the peaks of CuFe2O4shift slightly for CCA-10 and CCA-15,comparing with the others.It may indicate that the crystal structure of the CuFe2O4is changed by the appropriate introduction of Al2O3.The peak intensities of the CuFe2O4for CCA-10 and CCA-15 are weaker than those of the other samples, judging from the fact that the diffraction peak at 42.1°is too weak to see.It may illustrate that more copper may highly disperse on the surface and result in decreasing of CuFe2O4.Furthermore,the crystalline sizes of CuFe2O4and Fe2O3are calculated by Scherrer equation and the results are listed in Table 1.It is clear that the crystalline sizes of CuFe2O4for CCA-10 and CCA-15,which present cubic spinel structure,are smaller than the others.Cubic spine structure was reported to be in favor of refraining crystallite growth,18exactly explained the smaller crystalline sizes.It indicates that the crystalline sizes of catalysts are greatly affected by dopingAl2O3.

    Fig.1 XRD patterns of(A)the as-prepared aluminum doped CuO/Fe2O3catalysts and(B)the samples after reduction with the reactant gas at 250°C

    Furthermore,the structural studies of the as-prepared CuO/ Fe2O3-Al2O3catalysts are complemented by Raman spectra,as presented in Fig.2.All the spectra exhibit α-Fe2O3characteristic bands located at 220,410,and 608 cm-1which can be attributed to A1gand Egvibrational spectral modes.19The peak located at 1320 cm-1is assigned to a two-magnon scattering which arises from the interaction of two magnons created on antiparallel closespin sites.20295,496,and 663 cm-1are reported to be the characteristic peaks of CuFe2O4,representing two modes.One at 663 cm-1is related to T-site mode that reflects the local lattice effect in the tetrahedral sublattice.The other two at 295 and 496 cm-1are corresponding to O-site mode,which reflects the local lattice effect in the octahedral sublattice.21Reddy et al.22reported that octahedral cations in ferrospinel played an important role in affecting catalytic activity in WGSR.The peaks at 295 and 496 cm-1for CCA-10 are stronger than the others.For nanocrystal CuO, peak at 280 cm-1is assigned to theAgmode and peaks at 332,618 cm-1are corresponding to the Bgmodes,reported by Xu et al.23As seen in Fig.2,there are no obvious peaks of nanocrystal CuO or Al2O3for the samples.This is well consistent with XRD result, indicating that most of copper species might be highly dispersed or present in an amorphous state on the surface.

    Table 1 Texture properties of CuO/Fe2O3catalysts doped with aluminium

    Fig.2 Raman spectra of the as-prepared CuO/Fe2O3-Al2O3catalysts

    As depicted in Table 1,the total pole volume and BET surface area increase with the increasing the content of doped Al2O3,and the average pore diameter is larger than the non-doped one.From Fig.3A,it is seen that the pore distribution for CCA-10 is relatively more concentrated.The adsorption-desorption curves of the samples are type IV gas adsorption isothermal classified by International Union of Pure and Applied Chemistry(IUPAC),24presented in Fig.3B,and all the samples are with conspicuous hysteresis loops.H1 hysteresis loops that exhibit parallel and nearly vertical branches are observed for CCA-3,CCA-5,and CCA-10.Type H1 loops are reported to be comprised of agglomerates or compacted of approximately spherical particles arranged in a fairly uniform way.The appearance of type H1 loop indicates its relatively high pore size uniformity and facile pore connectivity.25While CCA-0 and CCA-15 are typical H2 hysteresis loops,which has a triangular shape and steep desorption branch.H2 hysteresis loops are considered to be with relatively uniform channel-like pores for materials.25

    Fig.3 (A)Effect of dopingAl2O3on pore size distribution of CuO/Fe2O3catalysts and(B)adsorption-desorption isothermal curves of the samples

    Fig.1B shows the XRD patterns of the as-prepared CuO/Fe2O3-Al2O3catalysts after reduction with the reactant gas at 250°C.As shown in Fig.1B,the main phases are Cu and Fe3O4,meaning that CuO is reduced to Cu,α-Fe2O3reduced to Fe3O4,and CuFe2O4reduced to Cu and Fe3O4.The characteristic peak of Cu(JCPDS 00-004-0836)is observed at 50.5°of 2θ.The intensity of diffraction peak of characteristic Cu at 59.2°is too weak to be found. The weak intensity of peaks is because of the high dispersion and little particle size of Cu metal.

    Nitrous oxide is reported to be used for the estimation of thesurface area of metallic copper in catalysts,since the surface atoms of Cu-crystals can be oxidized selectively using N2O in a temperature interval from 20 to 120°C by the reaction:N2O+2Cu= Cu2O+N2.26By assuming the metallic copper entirely oxidized,the Cu dispersion can be calculated.As listed in Table 1,the addition of Al2O3does favor for the copper dispersion.The Cu dispersion values of the samples CCA-10 and CCA-15 are 67.6%and 68.8%, respectively,much higher than that of the CCA-0,which is only 43.7%.For the two doped catalysts,the Cu particle size is as small as 1.6 nm.That is why the peak of Cu is too weak to see.It is reported that the better the dispersion of Cu is,the higher catalytic performance of supported Cu catalyst will be.10,27-29Hence,little particle size and high dispersion of Cu may result in high catalytic activity and stability.

    3.2 Redox properties of the as-synthesized catalystsThe redox properties of the as-synthesized catalysts are investigated by H2-TPR profiles.H2-TPR profiles are presented in Fig.4.In our previous research,11the overlapping peak β below 200°C and one small peak γ at 236°C are assigned to the reduction of CuFe2O4to Cu and Fe3O4,and α-Fe2O3to Fe3O4,respectively.One small shoulder peak α is attributed to the reduction of highly dispersed CuO species,as seen in Fig.4.The temperature of the reduction of highly dispersed CuO for the sample doped with aluminium is lower than that of the non-doped one. The H2consumption of copper species for all the catalysts is listed inTable 2.The sum of H2consumption of copper species for CCA-10 and CCA-15 is larger than the others,meaning that more copper species can be reduced.Besides,the H2consumption of highly dispersed CuO increases while that of CuFe2O4decreases with increasing the content of Al2O3,illustrating that more copper are highly dispersed on the surface.This is well consistent with the results of XRD and N2O decomposition.Still,the temperature of the reduction of CuFe2O4for the sample doped with aluminium is lower than that of the CCA-0,indicating that the synergistic interaction between copper and iron oxides is enhanced by doping Al2O3,especially for CCA-10.Clearly,reducibility of the doped catalysts is improved by the introduction ofAl2O3.

    Fig.4 H2-TPR profiles of the as-synthesized catalysts

    Table 2 H2consumption of copper species for all the catalysts

    3.3 Surface basic properties of the as-synthesized catalysts

    Basic sites are reported to play an important role in affecting catalytic performance of WGSR.30Hence,CO2-TPD is used to investigate the basicity of catalysts.Fig.5 presents the CO2-TPD analysis results of the CuO/Fe2O3-Al2O3catalysts.Each CO2-TPD profile shows a main low-temperature desorption peak around 76°C and high-temperature desorption peak at 200-450°C,which was assigned to weak and strong basic sites,respectively.Clearly,The samples CCA-5 and CCA-10 show an obvious peak at 100-200°C, which can be attributed to medium basic sites,according to previous work by our group.11,31,32The low and medium temperature peaks were assigned to the CO2desorption of monodentate carbonate formed on weak and medium basic sites,while the hightemperature peak was assigned to the CO2desorption of bidentate carbonate formed on strong basic sites,which was much more difficult to desorb due to the bond between carbonate and oxide surface,reported by Li et al.32

    It is evident that the basic properties of CuO/Fe2O3catalysts are influenced by the introduction of Al2O3,as depicted in Fig.5.The sample CCA-10 shows large peak area in low temperature and small peak area in high temperature,illustrating that there are more weak basic sites,and less strong basic sites,which are in favor of the WGSR.Also,the medium basic sites do favor for the reaction.But the sample CCA-10 has less medium basic sites than CCA-5,meaning that the weak basic sites are the main factor in affecting catalytic activity.

    Fig.5 CO2-TPD profiles of the CuO/Fe2O3-Al2O3catalysts

    Fig.6 WGSR activity of CuO/Fe2O3-Al2O3catalysts

    Fig.7 Catalytic activity of sample CCA-10 maintained at 250°C as a function of time-on-stream for the WGSR

    3.4 Catalytic performances of the as-synthesized catalysts in WGSR

    The catalytic performances of the CuO/Fe2O3-Al2O3catalysts vs temperature are presented in Fig.6.It is evident that the performances of CuO/Fe2O3catalyst are improved by adding Al2O3.For all the samples,CO conversion increases with the increasing reaction temperature from 200 to 250°C.The samples CCA-10 andCCA-15 are with high initial activity of 52%and 59%,while the CCA-0 is 39%at 200°C,as seen in Fig.6A.The CO conversions of catalysts CCA-3,CCA-5,CCA-10,and CCA-15 reach the maximum values of 92.2%,91.4%,92.5%,and 90.0%at 250°C, respectively.Meanwhile,the conversion of sample CCA-0 is 88.0%at 250°C and reaches its maximum(90.6%)at 300°C. These point out that the introduction of Al2O3not only improves the catalytic performance but also shifts the optimal reaction temperature to lower point.It is well known that Fe-based catalysts in WGSR are used in high temperature(300-450°C),while Cu-based catalysts are used in low temperature(200-250°C).33-35It is also reported that the metal Cu is the active site of the WGSR.16,34Based on the XRD results,there are only Cu and Fe3O4left after the catalysts reduced by the reactant gas at 250°C.We can draw a conclusion that metallic Cu can be responsible for the high catalytic activity of catalysts.In combination with the result of N2O chemisorption,little particle size and high Cu dispersion of the sample CCA-10 and CCA-15 are able to provide more active Cu metal,well explaining the high initial performance.

    After the first cycle,the catalysts were exposed to the reactant gas at the given temperature procedure(kept at 400°C for 10 h and then cooled down to 200°C),then started the second evaluation cycle to investigate the thermal stability.It is observed from Fig.6B that all the catalysts deactivate at some extent.But the introduction of Al2O3enhances the thermal stability of CuO/Fe2O3catalysts.The CO conversions for CCA-0,CCA-10,CCA-15 are 16.2%,26.6%,23.2%at 200°Cand71.1%,89.4%,86.7%at 250°C, respectively.Combined with CO2-TPD results,the weak basic sites of the sample CCA-10 are larger than the others.In order to further investigate the thermal stability of CCA-10,the catalyst was tested at 250°C for 120 h.As shown in Fig.7,the CO conversion almost remains unchanged.It illustrates that the catalyst is with well thermal stability and has a long lifetime.Above all, the sample CCA-10 shows high activity and well thermal stability in WGSR.

    4 Conclusions

    A series of CuO/Fe2O3catalysts doped with Al2O3prepared by stepwise co-precipitation method were evaluated for WGSR.The catalytic activity and thermal stability were improved by introducing Al2O3.Considered the initial activity and thermal stability, the catalysts follow the sequence:CCA-10>CCA-15>CCA-5>CCA-3>CCA-0.The characterization results indicate that the sample CCA-10 is with relatively smaller crystallite,higher BET surface area,and larger pore volume.Its high initial activity and well thermal stability are contributed to its smaller particle size, higher copper dispersion,greater reducibility,and more weak basic sites.

    (1) Jacobson,M.Z.;Colella,W.G.;Golden,D.M.Science 2005, 308,1901.doi:10.1126/science.1109157

    (2) Spivey,J.J.Catal.Today 2005,100,171.doi:10.1016/j. cattod.2004.12.011

    (3) Maro?o,M.;Sánchez,J.M.;Ruiz,E.Int.J.Hydrog.Energy 2010,35,37.doi:10.1016/j.ijhydene.2009.10.078

    (4) Tanaka,Y.;Utaka,T.;Kikuchi,R.;Sasaki,K.;Eguchi,K.Appl. Catal.A:Gen.2003,242,287.doi:10.1016/S0926-860X(02) 00529-X

    (5) Panagiotopoulou,P.;Kondarides,D.I.Catal.Today 2006,112, 49.doi:10.1016/j.cattod.2005.11.026

    (6) Panagiotopoulou,P.;Christodoulakis,A.;Kondarides,D.I.; Boghosian,S.J.Catal.2006,240,114.doi:10.1016/j.jcat.2006.03.012

    (7) Andreevaa,D.;Idakiev,V.;Tabakova,T.;Ilieva,L.;Falaras,P.; Bourlinos,A.;Travlos,A.Catal.Today 2002,72,51.doi: 10.1016/S0920-5861(01)00477-1

    (8) Jacobs,G.;Williams,L.;Graham,U.;Thomas,G.A.;Sparks, D.E.;Davis,B.H.Appl.Catal.A:Gen.2003,252,107.doi: 10.1016/S0926-860X(03)00410-1

    (9) Budiman,A.;Ridwan,M.;Kim,S.M.;Choi,J.W.;Yoon,C. W.;Ha,J.M.;Suh,D.J.;Suh,Y.W.Appl.Catal.A:Gen.2013, 462-463,220.

    (10) Wang,S.R.;Li,X.B.;Yin,Q.Q.;Zhu,L.J.;Luo,Z.Y.Catal. Commun.2011,12,1246.doi:10.1016/j.catcom.2011.04.019

    (11) Lin,X.Y.;Zhang,Y.;Yin,L.;Chen,C.Q.;Zhan,Y.Y.;Li,D.L. Int.J.Hydrog.Energy 2014,39,6424.doi:10.1016/j. ijhydene.2014.02.018

    (12) Kameoka,S.;Tanabe,T.;Tsai,A.P.Catal.Lett.2005,100,89. doi:10.1007/s10562-004-3091-z

    (13) Lin,X.Y.;Ma,J.T.;Chen,C.Q.;Zhan,Y.Y.;Zheng,Q.Acta Phys.-Chim.Sin.2014,30,157.[林性貽,馬俊濤,陳崇啟,詹瑛瑛,鄭 起.物理化學(xué)學(xué)報(bào),2014,30,157.]doi:10.3866/ PKU.WHXB201311271

    (14) Du,X.;Yuan,Z.S.;Cao,L.;Zhang,C.X.;Wang,S.D.Fuel Process Technol.2008,89,131.doi:10.1016/j. fuproc.2007.07.002

    (15) Ayastuy,J.L.;Fernández-Puertas,E.;González-Marcos,M.P.; Gutiérrez-Ortiz,M.A.Int.J.Hydrog.Energy 2012,37,7385. doi:10.1016/j.ijhydene.2012.02.007

    (16) Li,L.;Zhan,Y.Y.;Zheng,Q.;Zheng,Y.H.;Lin,X.Y.;Li,D. L.;Zhu,J.J.Catal.Lett.2007,118,91.doi:10.1007/s10562-007-9155-0

    (17) Dandekar,A.;Vannice,M.A.J.Catal.1998,178,621.doi: 10.1006/jcat.1998.2190

    (18) Faungnawakij,K.;Shimoda,N.;Fukunaga,T.;Kikuchi,R.; Eguchi,K.Appl.Catal.B:Environ.2009,92,341.doi:10.1016/ j.apcatb.2009.08.013

    (19) de Faria,D.L.A.;Venancio S.S.;de Oliveira,M.T.J.Raman Spectrosc.1997,28,873.

    (20) Martin,T.P.;Merlin,R.;Huffman,D.R.;Cardona,M.Solid State Commun.1977,565.

    (21) Liu,Y.;Zhang,Y.;Feng,J.D.;Li,C.F.;Shi,J.;Xiong,R. J.Exp.Nanosci.2009,4,159.doi:10.1080/ 17458080902929895

    (22) Reddy,G.K.;Gunasekera,K.;Boolchand,P.;Dong,J.H.; Smirniotis,P.G.J.Phys.Chem.C 2011,115,7586.doi: 10.1021/jp2003084

    (23) Xu,J.F.;Ji,W.;Shen,Z.X.;Tang,S.H.J.Solid State Chem. 1999,147,516.doi:10.1006/jssc.1999.8409

    (24)Sing,K.S.W.;Everett,D.H.;Haul,R.A.W.;Moscou,L.; Pierotti,R.A.;Rouquerol,J.;Siemieniewska,T.Pure Appl. Chem.1985,57,603.

    (25) Kruk,M.;Jaroniec,M.Chem.Mater.2001,13,3169.doi: 10.1021/cm0101069

    (26) Jensen,J.R.;Johannessen,T.;Livbjerg,H.Appl.Catal.A:Gen. 2004,266,117.doi:10.1016/j.apcata.2004.02.009

    (27) Wang,S.R.;Guo,W.W.;Wang,H.X.;Zhu,L.J.;Yin,S.;Qiu, K.Z.New J.Chem.2014,38,2792.doi:10.1039/c4nj00134f

    (28) Chen,C.Q.;Ruan,C.X.;Zhan,Y.Y.;Lin,X.Y.;Zheng,Q.; Wei,K.M.Int.J.Hydrog.Energy 2014,39,317.doi:10.1016/j. ijhydene.2013.10.074

    (29) Zhu,Y.Y.;Wang,S.R.;Zhu,L.J.;Ge,X.L.;Li,X.B.;Luo,Z. Y.Catal.Lett.2010,135,275.doi:10.1007/s10562-010-0298-z

    (30) Zhu,X.L.;Shen,M.;Lobban,L.L.;Mallinson,R.G.J.Catal. 2011,278,123.doi:10.1016/j.jcat.2010.11.023

    (31) Lin,X.Y.;Chen,C.Q.;Ma,J.T.;Fang,X.;Zhan,Y.Y.;Zheng, Q.Int.J.Hydrog.Energy 2013,38,11847.doi:10.1016/j. ijhydene.2013.07.001

    (32) Li,L.;Song,L.;Wang,H.D.;Chen,C.Q.;She,Y.S.;Zhan,Y. Y.;Lin,X.Y.;Zheng,Q.Int.J.Hydrog.Energy 2011,36, 8839.doi:10.1016/j.ijhydene.2011.04.137

    (33) Khan,A.;Smirniotis,P.G.J.Mol.Catal.A:Chem.2008,280, 43.doi:10.1016/j.molcata.2007.10.022

    (34) Estrella,M.;Barrio,L.;Zhou,G.;Wang,X.Q.;Wang,Q.;Wen, W.;Hanson,J.C.;Frenkel,A.I.;Rodriguez,J.A.J.Phys. Chem.C 2009,113,14411.

    (35) Tabakova,T.;Idakiev,V.;Avgouropoulos,G.;Papavasiliou,J.; Manzoli,M.;Boccuzzi,F.;Ioannides,T.Appl.Catal.A:Gen. 2013,451,184.doi:10.1016/j.apcata.2012.11.025

    Performance of Al2O3-Modified CuO/Fe2O3Catalysts in the Water-Gas Shift Reaction

    LIN Xing-Yi*YIN Ling FAN Yan-Yu CHEN Chong-Qi
    (National Engineering Research Center of Chemical Fertilizer Catalysts,Fuzhou University,Fuzhou 350002,P.R.China)

    The water-gas shift reaction(WGSR)has been carried out over CuO/Fe2O3catalysts modified by different loadings of Al2O3(0%-15%(w)),prepared by a stepwise co-precipitation method.Composite mixture CuFe2O4was produced,and the crystalline size,redox property,and surface metallic Cu dispersion were manipulated.The appropriate introduction of Al2O3can promote the phase transition of spinel CuFe2O4from tetragonal to cubic,inhibit aggregation of Cu-crystallite,improve Cu dispersion,and increase the amount of weak basic sites,as confirmed using powder X-ray diffraction(XRD),Raman spectroscopy,N2physisorption,N2O decomposition,and temperature-programmed desorption of carbon dioxide(CO2-TPD)techniques.In addition, a temperature-programmed reduction of hydrogen(H2-TPR)technique was used to investigate the reducibility of the modified CuO/Fe2O3catalysts.It was found that the Al2O3-doping plays an important role in increasing the hydrogen consumption of the copper species,and decreasing reduction temperature.This means that the Al2O3can promote a synergistic interaction between the copper and iron species in the CuO/Fe2O3catalysts. Overall,the Al2O3-modified catalyst(10%(w))has a smaller Cu particle size,better Cu dispersion,greater reducibility,and larger amount of weak basic sites,resulting in a much higher initial catalytic activity and better thermal stability.

    CuFe2O4;Water-gas shift reaction;Al2O3-modification;Cu dispersion;Weak basic site; N2O decomposition

    The project was supported by the National Natural Science Foundation of China(21346007).

    國(guó)家自然科學(xué)基金(21346007)資助項(xiàng)目

    O643.3

    10.3866/PKU.WHXB201501091www.whxb.pku.edu.cn

    Received:November 13,2014;Revised:January 5,2015;Published on Web:January 9,2015.?

    猜你喜歡
    水煤氣福州大學(xué)還原性
    物質(zhì)氧化性與還原性的影響因素分析
    水煤氣壓縮機(jī)系統(tǒng)節(jié)能降耗優(yōu)化改進(jìn)小結(jié)
    中氮肥(2021年2期)2021-12-25 10:01:52
    半水煤氣中溫變換系統(tǒng)第一換熱器優(yōu)化技改小結(jié)
    中氮肥(2021年5期)2021-12-23 08:15:14
    福州大學(xué)馬克思主義學(xué)院
    福州大學(xué)繼續(xù)教育學(xué)院
    福州大學(xué)喜迎建校60周年
    巧用化學(xué)中的“經(jīng)驗(yàn)規(guī)律”化繁為簡(jiǎn)
    半水煤氣余熱回收綜合利用
    安徽化工(2016年4期)2016-11-29 03:40:02
    半水煤氣全組份氣相色譜分析試驗(yàn)研究
    氧在離子液體中電化學(xué)還原性能研究
    首页视频小说图片口味搜索| 色综合欧美亚洲国产小说| 好男人在线观看高清免费视频| 男女之事视频高清在线观看| 日日干狠狠操夜夜爽| 亚洲中文av在线| 国产免费男女视频| 国产又黄又爽又无遮挡在线| 岛国在线免费视频观看| 手机成人av网站| 亚洲一区二区三区色噜噜| www日本黄色视频网| 视频区欧美日本亚洲| 亚洲一码二码三码区别大吗| 亚洲成av人片免费观看| 18禁黄网站禁片午夜丰满| 国产欧美日韩一区二区精品| 美女大奶头视频| 国产精品免费视频内射| 我的老师免费观看完整版| 日本熟妇午夜| 国产人伦9x9x在线观看| 岛国在线免费视频观看| 久9热在线精品视频| 亚洲人成伊人成综合网2020| 国产成人啪精品午夜网站| 午夜精品一区二区三区免费看| 99精品在免费线老司机午夜| 色老头精品视频在线观看| 天天躁夜夜躁狠狠躁躁| 色噜噜av男人的天堂激情| АⅤ资源中文在线天堂| 欧美性猛交╳xxx乱大交人| 久久精品91无色码中文字幕| 欧美色视频一区免费| 亚洲成人久久爱视频| 国产精品 国内视频| 19禁男女啪啪无遮挡网站| 国产欧美日韩精品亚洲av| 亚洲中文av在线| 色综合站精品国产| 亚洲熟妇熟女久久| 一个人免费在线观看的高清视频| 欧美成人性av电影在线观看| 亚洲七黄色美女视频| 欧美成人一区二区免费高清观看 | 19禁男女啪啪无遮挡网站| 听说在线观看完整版免费高清| 亚洲欧美日韩高清专用| 精品一区二区三区av网在线观看| 亚洲专区中文字幕在线| 欧美黑人欧美精品刺激| av视频在线观看入口| 午夜精品久久久久久毛片777| 久久性视频一级片| 又大又爽又粗| 少妇人妻一区二区三区视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成人国产一区在线观看| 18禁国产床啪视频网站| 变态另类丝袜制服| 我要搜黄色片| 一边摸一边抽搐一进一小说| 最近视频中文字幕2019在线8| 搡老熟女国产l中国老女人| 精品久久久久久久人妻蜜臀av| 真人做人爱边吃奶动态| 黄色毛片三级朝国网站| 亚洲自偷自拍图片 自拍| 欧美+亚洲+日韩+国产| 国产蜜桃级精品一区二区三区| 黄频高清免费视频| 国产精品永久免费网站| 国产午夜福利久久久久久| 亚洲男人天堂网一区| 男插女下体视频免费在线播放| 两个人看的免费小视频| 伊人久久大香线蕉亚洲五| 欧美性猛交黑人性爽| x7x7x7水蜜桃| 欧美 亚洲 国产 日韩一| 中文字幕人成人乱码亚洲影| 十八禁人妻一区二区| 最新美女视频免费是黄的| 一区二区三区激情视频| 国产av不卡久久| 可以在线观看的亚洲视频| 国产精品野战在线观看| 欧美又色又爽又黄视频| 岛国在线免费视频观看| 日韩欧美国产在线观看| 亚洲 国产 在线| 欧美性猛交黑人性爽| 国产区一区二久久| 欧美精品啪啪一区二区三区| 1024香蕉在线观看| 久久香蕉激情| 亚洲专区字幕在线| 亚洲美女视频黄频| 高清毛片免费观看视频网站| 真人做人爱边吃奶动态| 中文字幕人成人乱码亚洲影| 一本一本综合久久| 久久精品国产综合久久久| 无遮挡黄片免费观看| 亚洲av第一区精品v没综合| 一卡2卡三卡四卡精品乱码亚洲| 亚洲色图av天堂| 久久精品国产清高在天天线| av福利片在线| www日本在线高清视频| 中文字幕人成人乱码亚洲影| 欧美成人一区二区免费高清观看 | 欧美乱色亚洲激情| 国产av一区二区精品久久| 又大又爽又粗| 日韩欧美在线乱码| 欧美色欧美亚洲另类二区| 不卡av一区二区三区| 欧美黑人精品巨大| 欧美日韩一级在线毛片| 欧美 亚洲 国产 日韩一| 久久这里只有精品中国| 嫁个100分男人电影在线观看| 人妻丰满熟妇av一区二区三区| 欧美一区二区精品小视频在线| 国产精品爽爽va在线观看网站| 首页视频小说图片口味搜索| 欧美三级亚洲精品| 俄罗斯特黄特色一大片| 精品久久久久久久久久久久久| 白带黄色成豆腐渣| 999久久久国产精品视频| 麻豆国产97在线/欧美 | 88av欧美| 久久精品综合一区二区三区| 啪啪无遮挡十八禁网站| 99精品久久久久人妻精品| 欧美中文日本在线观看视频| 精品第一国产精品| 欧美性长视频在线观看| 老熟妇仑乱视频hdxx| 巨乳人妻的诱惑在线观看| 19禁男女啪啪无遮挡网站| 久久久久国内视频| 日本撒尿小便嘘嘘汇集6| 最新美女视频免费是黄的| av福利片在线观看| 在线观看一区二区三区| 亚洲成av人片免费观看| 757午夜福利合集在线观看| 国产精品久久久人人做人人爽| 两性夫妻黄色片| 99国产精品99久久久久| 两个人免费观看高清视频| 久久九九热精品免费| 亚洲av中文字字幕乱码综合| 成人三级黄色视频| 欧美乱妇无乱码| 在线国产一区二区在线| 草草在线视频免费看| 欧美成狂野欧美在线观看| 色综合婷婷激情| 搡老岳熟女国产| a在线观看视频网站| 国产精品电影一区二区三区| 一a级毛片在线观看| 在线观看免费日韩欧美大片| 特级一级黄色大片| 九色成人免费人妻av| 欧美黄色淫秽网站| 亚洲 欧美 日韩 在线 免费| 久久久久久久午夜电影| 亚洲国产精品久久男人天堂| 亚洲av成人不卡在线观看播放网| 丝袜人妻中文字幕| 国产熟女xx| 丰满的人妻完整版| 久久久久性生活片| 国产一区二区三区视频了| 岛国在线免费视频观看| 成人一区二区视频在线观看| av欧美777| 成人手机av| 黑人操中国人逼视频| 99久久精品热视频| 国产精品亚洲av一区麻豆| 在线a可以看的网站| 九色成人免费人妻av| 成年女人毛片免费观看观看9| 婷婷精品国产亚洲av| 日韩 欧美 亚洲 中文字幕| 亚洲精品中文字幕在线视频| 国产片内射在线| 窝窝影院91人妻| 亚洲国产高清在线一区二区三| 国产精品久久久av美女十八| 久久久久久久久久黄片| 久久精品国产亚洲av高清一级| 午夜老司机福利片| 人妻丰满熟妇av一区二区三区| 亚洲中文字幕日韩| 99久久精品热视频| 欧美黑人巨大hd| 精品久久久久久成人av| 免费无遮挡裸体视频| 国产精品综合久久久久久久免费| 亚洲熟妇中文字幕五十中出| 亚洲色图 男人天堂 中文字幕| 欧美日本视频| 午夜a级毛片| 母亲3免费完整高清在线观看| 美女扒开内裤让男人捅视频| 神马国产精品三级电影在线观看 | 不卡av一区二区三区| 国产高清视频在线观看网站| 日本在线视频免费播放| av天堂在线播放| 国产精品 国内视频| 中文字幕高清在线视频| 久久久久久久久久黄片| √禁漫天堂资源中文www| 欧美+亚洲+日韩+国产| 啪啪无遮挡十八禁网站| 欧美大码av| 妹子高潮喷水视频| 天天一区二区日本电影三级| 国产成+人综合+亚洲专区| 亚洲国产高清在线一区二区三| 国产精品一及| 免费在线观看黄色视频的| 亚洲av片天天在线观看| 在线视频色国产色| 亚洲精品中文字幕一二三四区| 精品欧美一区二区三区在线| 日韩精品中文字幕看吧| 国产又色又爽无遮挡免费看| 日本 欧美在线| 精品久久久久久久久久免费视频| 日本黄大片高清| 国产精品九九99| 久久久精品国产亚洲av高清涩受| 91在线观看av| 国产又色又爽无遮挡免费看| 丝袜人妻中文字幕| 国产激情欧美一区二区| 亚洲精品一区av在线观看| 99久久无色码亚洲精品果冻| 伦理电影免费视频| 亚洲一区中文字幕在线| 亚洲国产精品sss在线观看| 天堂影院成人在线观看| 国产精品一区二区精品视频观看| 婷婷六月久久综合丁香| 一边摸一边抽搐一进一小说| 国产成人av激情在线播放| 18禁观看日本| 成在线人永久免费视频| 特大巨黑吊av在线直播| 亚洲欧美精品综合一区二区三区| 国产成年人精品一区二区| 欧美人与性动交α欧美精品济南到| 黄色毛片三级朝国网站| 成人国产一区最新在线观看| 久久久国产精品麻豆| 久久久久性生活片| 久久久久久九九精品二区国产 | 欧美 亚洲 国产 日韩一| www.999成人在线观看| 搡老岳熟女国产| 国产精品爽爽va在线观看网站| 蜜桃久久精品国产亚洲av| 天天躁夜夜躁狠狠躁躁| 成人午夜高清在线视频| 91大片在线观看| 午夜影院日韩av| 一边摸一边抽搐一进一小说| 色综合婷婷激情| 宅男免费午夜| 在线看三级毛片| 亚洲中文字幕日韩| 一个人免费在线观看的高清视频| 熟女少妇亚洲综合色aaa.| 亚洲电影在线观看av| or卡值多少钱| 91大片在线观看| 又粗又爽又猛毛片免费看| 少妇裸体淫交视频免费看高清 | 国产伦在线观看视频一区| 国产精品久久久av美女十八| 1024视频免费在线观看| 淫妇啪啪啪对白视频| 又粗又爽又猛毛片免费看| 亚洲七黄色美女视频| 黑人欧美特级aaaaaa片| 国产男靠女视频免费网站| 欧美人与性动交α欧美精品济南到| 黑人巨大精品欧美一区二区mp4| 亚洲av第一区精品v没综合| 亚洲国产欧美网| www.999成人在线观看| 正在播放国产对白刺激| 久久这里只有精品中国| 99热这里只有精品一区 | 久久这里只有精品中国| 国产精品久久电影中文字幕| 欧美在线黄色| 91麻豆av在线| 亚洲成人中文字幕在线播放| 精品午夜福利视频在线观看一区| 精品久久久久久,| x7x7x7水蜜桃| 精品人妻1区二区| 精品熟女少妇八av免费久了| ponron亚洲| 在线观看免费日韩欧美大片| 亚洲 欧美 日韩 在线 免费| 丝袜人妻中文字幕| 亚洲中文字幕日韩| 久久九九热精品免费| 黑人巨大精品欧美一区二区mp4| 亚洲aⅴ乱码一区二区在线播放 | 1024手机看黄色片| 我的老师免费观看完整版| 俺也久久电影网| 国产精品1区2区在线观看.| 18禁美女被吸乳视频| 欧美高清成人免费视频www| 久久香蕉国产精品| 99国产精品99久久久久| 91成年电影在线观看| 丁香六月欧美| 久久精品综合一区二区三区| 国产成人精品久久二区二区免费| 欧美一区二区国产精品久久精品 | 午夜免费观看网址| 成人18禁高潮啪啪吃奶动态图| 久久99热这里只有精品18| 精品日产1卡2卡| 亚洲国产精品999在线| 国产97色在线日韩免费| 村上凉子中文字幕在线| 成年女人毛片免费观看观看9| 最好的美女福利视频网| 久久久国产成人精品二区| 国产精品久久久久久亚洲av鲁大| 国产日本99.免费观看| 日韩欧美国产一区二区入口| av片东京热男人的天堂| 国产av在哪里看| 国内精品久久久久久久电影| 日本五十路高清| 欧美日韩一级在线毛片| 悠悠久久av| 最近在线观看免费完整版| 成人特级黄色片久久久久久久| 日韩高清综合在线| 国产精品久久久久久久电影 | 欧美zozozo另类| 亚洲va日本ⅴa欧美va伊人久久| 国产精品av久久久久免费| 91九色精品人成在线观看| 亚洲性夜色夜夜综合| 欧美日本视频| 一夜夜www| 香蕉久久夜色| 男女之事视频高清在线观看| 激情在线观看视频在线高清| 色精品久久人妻99蜜桃| 亚洲国产高清在线一区二区三| a在线观看视频网站| 中文亚洲av片在线观看爽| 中国美女看黄片| 在线观看免费视频日本深夜| 毛片女人毛片| 国内少妇人妻偷人精品xxx网站 | 韩国av一区二区三区四区| 国产精品自产拍在线观看55亚洲| 无限看片的www在线观看| or卡值多少钱| 久久久久久久久免费视频了| 美女大奶头视频| 成人av在线播放网站| 国产免费男女视频| 波多野结衣高清作品| 熟女少妇亚洲综合色aaa.| 精品少妇一区二区三区视频日本电影| 久久久久久久久久黄片| 中出人妻视频一区二区| 悠悠久久av| 中亚洲国语对白在线视频| 亚洲成av人片在线播放无| 国产精品一区二区三区四区久久| 成人三级做爰电影| 久久久久久九九精品二区国产 | 亚洲欧美精品综合一区二区三区| 中文字幕熟女人妻在线| 淫妇啪啪啪对白视频| 亚洲精品久久成人aⅴ小说| 亚洲人与动物交配视频| 亚洲人成网站在线播放欧美日韩| 亚洲九九香蕉| 成人欧美大片| 少妇被粗大的猛进出69影院| 国产区一区二久久| ponron亚洲| 午夜精品久久久久久毛片777| 999久久久国产精品视频| 久久这里只有精品19| 午夜影院日韩av| 亚洲欧美精品综合久久99| 色噜噜av男人的天堂激情| 午夜成年电影在线免费观看| 午夜免费观看网址| 国产精品电影一区二区三区| 欧美性猛交╳xxx乱大交人| 久久久精品国产亚洲av高清涩受| 亚洲真实伦在线观看| 国产97色在线日韩免费| 国产不卡一卡二| 蜜桃久久精品国产亚洲av| 久久99热这里只有精品18| 制服人妻中文乱码| 免费在线观看完整版高清| 99热这里只有是精品50| 久久久久久久午夜电影| 久久精品亚洲精品国产色婷小说| 日韩av在线大香蕉| 麻豆成人av在线观看| 91国产中文字幕| 每晚都被弄得嗷嗷叫到高潮| 欧美色欧美亚洲另类二区| 美女免费视频网站| 午夜久久久久精精品| 国产精品一区二区三区四区久久| 日韩欧美在线乱码| 国产成人精品无人区| av免费在线观看网站| 俺也久久电影网| 午夜视频精品福利| 首页视频小说图片口味搜索| 久久婷婷人人爽人人干人人爱| 91大片在线观看| 国内揄拍国产精品人妻在线| 色av中文字幕| 12—13女人毛片做爰片一| 我的老师免费观看完整版| 欧美一区二区国产精品久久精品 | 精品久久久久久久久久免费视频| 高清毛片免费观看视频网站| 国产乱人伦免费视频| 99riav亚洲国产免费| 99久久久亚洲精品蜜臀av| 免费在线观看成人毛片| 国内揄拍国产精品人妻在线| 午夜精品一区二区三区免费看| 国产精品免费一区二区三区在线| 亚洲国产精品久久男人天堂| 久久中文看片网| 免费一级毛片在线播放高清视频| 女生性感内裤真人,穿戴方法视频| 成人18禁高潮啪啪吃奶动态图| 岛国视频午夜一区免费看| 精品国内亚洲2022精品成人| 日韩欧美免费精品| 一级黄色大片毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 天天躁狠狠躁夜夜躁狠狠躁| 91大片在线观看| 国产精品日韩av在线免费观看| 欧美 亚洲 国产 日韩一| 亚洲精品久久国产高清桃花| 欧美+亚洲+日韩+国产| 99久久综合精品五月天人人| 黄片小视频在线播放| 男男h啪啪无遮挡| 黄频高清免费视频| 久久香蕉精品热| bbb黄色大片| 巨乳人妻的诱惑在线观看| 国产又黄又爽又无遮挡在线| 国产一区二区三区在线臀色熟女| 亚洲色图av天堂| 真人一进一出gif抽搐免费| 男女午夜视频在线观看| 成人18禁在线播放| 视频区欧美日本亚洲| 欧美日韩瑟瑟在线播放| 禁无遮挡网站| 国产野战对白在线观看| 久久午夜综合久久蜜桃| 成在线人永久免费视频| 精品少妇一区二区三区视频日本电影| 狂野欧美白嫩少妇大欣赏| 97人妻精品一区二区三区麻豆| 日本三级黄在线观看| 长腿黑丝高跟| 成人高潮视频无遮挡免费网站| 禁无遮挡网站| 村上凉子中文字幕在线| 久久人妻av系列| 天天添夜夜摸| 久久香蕉精品热| 很黄的视频免费| 日本 av在线| 国产激情欧美一区二区| av视频在线观看入口| 欧美日韩黄片免| 首页视频小说图片口味搜索| 丰满人妻一区二区三区视频av | 老司机午夜十八禁免费视频| 久久婷婷人人爽人人干人人爱| 丁香六月欧美| 男女视频在线观看网站免费 | 色综合欧美亚洲国产小说| 日本精品一区二区三区蜜桃| 又黄又粗又硬又大视频| 日本一二三区视频观看| 免费看a级黄色片| 一本精品99久久精品77| 嫩草影院精品99| 变态另类成人亚洲欧美熟女| 国产成人av教育| 国产精品av视频在线免费观看| 日韩大尺度精品在线看网址| 国产黄色小视频在线观看| 熟女电影av网| av片东京热男人的天堂| 亚洲,欧美精品.| 亚洲一区二区三区不卡视频| 国产亚洲av嫩草精品影院| 精品人妻1区二区| 在线播放国产精品三级| 嫩草影院精品99| 一边摸一边做爽爽视频免费| 成年免费大片在线观看| 88av欧美| 成人高潮视频无遮挡免费网站| 好男人在线观看高清免费视频| 18禁黄网站禁片免费观看直播| 精品久久久久久久久久久久久| 嫩草影院精品99| 亚洲熟女毛片儿| 国产69精品久久久久777片 | 精品欧美国产一区二区三| 国产精品久久久av美女十八| 看免费av毛片| 久久久久久久精品吃奶| 日韩免费av在线播放| 久久伊人香网站| 亚洲人成77777在线视频| 小说图片视频综合网站| 国产区一区二久久| 男女床上黄色一级片免费看| 精品久久久久久久人妻蜜臀av| 舔av片在线| 久久人妻av系列| 欧美成人午夜精品| 久久性视频一级片| 在线观看www视频免费| 1024手机看黄色片| 亚洲真实伦在线观看| 亚洲国产欧美一区二区综合| 人妻夜夜爽99麻豆av| 国产69精品久久久久777片 | 在线观看一区二区三区| 91老司机精品| 最近视频中文字幕2019在线8| 国产精品电影一区二区三区| 俄罗斯特黄特色一大片| 国产精品一区二区三区四区免费观看 | 亚洲av熟女| 欧美成人午夜精品| 在线观看日韩欧美| 国产亚洲精品第一综合不卡| 亚洲avbb在线观看| 国产精品免费一区二区三区在线| 啦啦啦韩国在线观看视频| 国产精品精品国产色婷婷| 欧美不卡视频在线免费观看 | 亚洲一区二区三区色噜噜| 久久这里只有精品19| 国产一区在线观看成人免费| 制服人妻中文乱码| 国产精品日韩av在线免费观看| 又黄又粗又硬又大视频| 国产精品久久视频播放| 亚洲成人久久性| 欧美丝袜亚洲另类 | 欧美又色又爽又黄视频| 精品午夜福利视频在线观看一区| 精品国产美女av久久久久小说| 久久久精品大字幕| 成在线人永久免费视频| 国产精品1区2区在线观看.| 一级作爱视频免费观看| 午夜福利18| 蜜桃久久精品国产亚洲av| 亚洲精品色激情综合| 日日爽夜夜爽网站| 少妇裸体淫交视频免费看高清 | 99精品欧美一区二区三区四区| 中文字幕av在线有码专区| 欧美日韩乱码在线| 精品少妇一区二区三区视频日本电影| 久久香蕉激情| 成人三级黄色视频| 一夜夜www| 久久国产精品影院| 免费在线观看黄色视频的| 国产精品久久久av美女十八| 级片在线观看| 久久久久久大精品| 国产精品乱码一区二三区的特点| 18美女黄网站色大片免费观看|