• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    合成ZnO納米陣列及刺突狀CuO/ZnO異質(zhì)結(jié)

    2015-01-04 12:52:35李湘奇范慶飛李廣立黃瑤翰照范希梅張朝良周祚萬西南交通大學材料科學與工程學院材料先進技術(shù)教育部重點實驗室成都6003四川大學華西口腔醫(yī)院口腔疾病國家重點實驗室成都6003
    物理化學學報 2015年4期
    關(guān)鍵詞:前驅(qū)異質(zhì)摩爾

    李湘奇 范慶飛 李廣立 黃瑤翰 高 照范希梅,* 張朝良 周祚萬(西南交通大學材料科學與工程學院,材料先進技術(shù)教育部重點實驗室,成都6003;四川大學華西口腔醫(yī)院,口腔疾病國家重點實驗室,成都6003)

    合成ZnO納米陣列及刺突狀CuO/ZnO異質(zhì)結(jié)

    李湘奇1范慶飛1李廣立1黃瑤翰1高 照1范希梅1,*張朝良2周祚萬1
    (1西南交通大學材料科學與工程學院,材料先進技術(shù)教育部重點實驗室,成都610031;2四川大學華西口腔醫(yī)院,口腔疾病國家重點實驗室,成都610031)

    采用低溫水熱法在摻氟SnO2(FTO)導(dǎo)電玻璃表面制備ZnO納米陣列,研究了前驅(qū)體溶液濃度摩爾配比對ZnO納米陣列形貌、光學性能及其生長機理的影響.研究發(fā)現(xiàn),隨著前驅(qū)體溶液濃度摩爾配比的增加,ZnO納米陣列形貌及光學性能也隨之變化.ZnO納米陣列高度逐漸降低,ZnO納米陣列直徑和光學帶隙值大體上出現(xiàn)先增大后降低的趨勢.而當前驅(qū)體溶液(Zn(NO3)2:環(huán)六亞甲基四胺(HMT,C6H12N4))濃度摩爾配比為5:5時,其光學禁帶值(3.2 eV)接近于理論值.結(jié)果顯示制備ZnO納米陣列的最優(yōu)濃度摩爾配比為5:5.隨后選用最優(yōu)濃度摩爾配比下制備的ZnO納米陣列為基底,通過一種兩步溶液法成功在其表面制備刺突狀CuO/ZnO異質(zhì)結(jié).從場發(fā)射掃描電鏡(FE-SEM)結(jié)果中可以清楚看見,大量的CuO納米粒子沉積在ZnO納米陣列表面形成刺突狀異質(zhì)結(jié)結(jié)構(gòu).研究發(fā)現(xiàn)該CuO/ZnO納米異質(zhì)結(jié)相對于純ZnO納米陣列在紫外光下光催化性能明顯增加.最后,討論了CuO/ZnO納米異質(zhì)結(jié)光催化機理.

    ZnO納米陣列;CuO/ZnO異質(zhì)結(jié);水熱法;光學性能;摩爾比

    1 Introduction

    ZnO is a II-VI semiconductor with a wide direct band gap of 3.37 eV at room temperature and large exciton binding energy(60 meV).As a promising functional material,its nanostructures have attracted great attention.There are lots of literature about ZnO nanostructure,1-4such as nano-film,nano-flower,nano-sphere, nano-array and so on.Because of its high aspect ratio and faster rate of electronic transmission,the ZnO nano-arrays are widely used in light emitting diodes,5field emission devices,6solar cells,7etc.Especially in photocatalysis,there are lots of papers about the photocatalysis of ZnO.8,9Kuo et al.8used the chemical vapor transport method to synthesize ZnO nanowires as recyclable photocatalysts on silicon substrates coated with a very thin gold catalyst film.Zhai et al.9used the sol-gel method to synthesize ZnO nanowires for photocatalytic degradation of 4-chlorophenol on the surface of ZnO nanorod arrays.There are many methods that were used to synthesize ZnO nanorods,such as electrochemical growths,10physical vapor deposition,11magnetron sputtering deposition,12high pressure pulsed laser deposition,13and hydrothermal method14.In more recent years,the hydrothermal method has become a hot spot of research in the growth of ZnO nanorods because of its simple procedure,moderate-temperature, and low cost.For example,Liu and Zeng15reported that ZnO nanorods in the diameter regime of 50 nm were grown on the fluorinated tin oxide(FTO)glass substrate by hydrothermal method.Kumar et al.16reported that ZnO nanorods were successfully grown on glass substrate by a hydrothermal method through controlling the ZnO nanostructure seed layer.

    However,one-dimensional(1D)ZnO nano-arrays could not meet the demand for the development of modern advanced materials,due to the wide band-gap and easy recombination of the photo-induced electrons and holes in the photocatalytic reactions.17Hence,the separation process is considered as one of the most important roads for modification of single ZnO nano-arrays. Recently,coupled semiconductors formed between ZnO and other metal oxides or sulfides have been studied,18-20such as In2O3,CdS, CuO and so on.CuO is a p-type semiconductor with a narrow band gap(1.2-1.9 eV),21,22owning unique electrical,magnetic, and catalytic properties,which had been widely used in various applications such as lithium ion electrode materials,heterogeneous catalysts,gas sensors,and solar cells.23-26Therefore,when CuO nano-structure coupled on the surface of ZnO nano-arrays and formed the nano-arrays heterojunction,it may produce more applications.In the past few years,there are a lot of researches about CuO/ZnO nano-arays.27-29However,most of them are used for hydrogen productions,gas sensors,and solar cells,few used for photodegradations.For instance,Kim et al.27used photochemical method to synthesize CuO/ZnO heterostructured nanorods as H2S gas sensor at low temperature.Kargar et al.28synthesized ZnO/CuO heterojunction branched nano-arrays by a thermal oxidation method,applied as photocathodes for photoelectrochemical solar hydrogen production.Jung and Yong29used photochemical method to prepare CuO/ZnO nano-array structure on the mesh substrate,which shows highly efficient photocatalytic applications for dye.

    The aim of this study is to optimize the preparation of the 1D ZnO nano-arrays and investigate the role of CuO in enhancing the photocatalytic properties of 1D ZnO nano-arrays.Firstly,we reported a hydrothermal method for the synthesis of 1D ZnO nanoarrays with polyethyleneimine(PEI)as additive,PEI could efficiently increase the length of ZnO nano-arrays.30In this process, different molar ratios of Zn(NO3)2to C6H12N4(HMT)were added into the growth solutions to synthesize ZnO nano-arrays.The effects of OH-ion concentrations on the ZnO nano-arrays,including the structures,growth mechanism,and optical properties, were investigated.In this case,the molar ratios of Zn(NO3)2to HMT not only changed the geometrical shape of ZnO nano-arrays, but also affected optical properties of ZnO nano-arrays.Secondly, the spike-shaped CuO/ZnO heterostructure arrays were prepared by a two-step solution-system method,the structures and morphology were also discussed in details.Further,the samples were used for the photocatalytic degradation of methyl orange(MO) under UV light irradiation.We also discussed the possible photodegradation mechanism.

    2 Experimental

    2.1 Materials

    All chemicals were of analytical reagent grade and used without further purification.All the aqueous solutions were prepared using distilled water.Fluorinated tin oxide(10 Ω·cm-2,Xiang Town Technologies Ltd.,China)was used as substrates and cleaned by standard procedures prior to use.

    2.2 Preparation of ZnO nano-arrays on FTO coated glass substrates

    ZnO nano-arrays were grown by a low temperature hydrothermal route with a two-step method of seed deposition and nanoarray growth.The ZnO nano-arrays were deposited onto FTO coated glass substrates.First,FTO glass substrates were rinsed ultrasonically in acetone,ethanol,and distilled water for 15 min, successively.ZnO seed layer was prepared on FTO glass by dipcoating(10 cm·min-1)in 5-7 mol·L-1ethanolic solutions of zinc acetate(99%,analytical grade),followed by thermal decomposition at 300°C for 15 min.Then,the obtained ZnO seed layer was transferred into a Teflon crucible filled with a growth solutionof Zn(NO3)2(99%,analytical grade),HMT(99%,analytical grade) and PEI(branched,low molecular weight,Chengdu Xiya Chemical Co.Ltd.,China)and kept inside the autoclave at 90°C for 24 h.The concentrations of Zn(NO3)2,HMT,and PEI in the resulting solution are listed in Table 1.The growth solutions were refreshed every 6 h during the reaction period.After reaction,all samples were taken out to rinse with deionized water and ethanol,successively,for several times,and annealed in air at 450°C for 30 min to remove any residual organics before investigating their properties.

    2.3 Preparation of CuO hybridized ZnO nano-arrays

    CuO/ZnO nano-arrays were also grown by a two-step solutionsystem method of seed deposition and nanoparticle(NP)growth. Firstly,the as-prepared ZnO nano-arrays on FTO substrate(molar ratio of Zn(NO3)2to HMT is 5:5)was immersed in the reaction solutionof 60°Cfor 2h.31The reactionsolutionconsistedof 1mol· L-1copper nitrate((Cu(NO3)2,99%,analytical grade)as copper source,2.6 mol·L-1potassium sodium tartrate tetrahydrate(PSTT, 99%,analytical grade)as a complexing agent,2.7 mol·L-1sodium hydroxide(NaOH,90%,analytical grade)and 6.3 mol·L-1sodium carbonate(Na2CO3,99.8%,analytical grade)as an alkaline medium,and a drop of formaldehyde(HCHO,37%,analytical grade) as a reducing agent,all these chemicals were purchased from Kelong Chemical Co.Ltd.(Chengdu,China).Then,the substrate was rinsed thoroughly with deionized water and immediately annealed in air at 250°C for 1 h to form CuO seeds on the surfaces of the ZnO nano-arrays.After annealing,the oxidized substrate was immersed in above-mentioned solution at 65°C for 7 h to obtain the desired thicknesses of CuO shells.

    2.4 Characterization

    The morphology of the nano-arrays was characterized using scanning electron microscopy(SEM,Fei Quanta 200,USA).The crystal phase of the nano-arrays was determined by X-ray diffraction(XRD,PanalyticalX'pertPRO,Netherlands),using Cu Kαradiation from 20°to 80°.X-ray photoelectron spectroscopy (XPS)measurement was performed with a PHI 5600 multitechnique system by using a monochromatic Al KαX-ray source. The UV-Vis diffuse reflectance spectra in the wavelength range of 300-800 nm were carried out with a UV-Vis 2550 spectrophotometer(Shimadzu 2550,Japan).

    2.5 Photocatalytic test

    The photocatalytic activities of the pure ZnO nano-arrays and CuO/ZnO heterostructures were investigated using the photodegradation of MO solution.Firstly,the sample(2 cm×3 cm)was vertically immersed in a beaker filled with 20 mL MO aqueous solution(1 mg·L-1,99%,analytical grade,Chengdu Kelong Chemical Co.Ltd.,China),and then kept for 30 min in the dark to equilibrate.Subsequently,the solution with the samples was irradiated under a 100 W UV-lamp with 254 nm emission wavelength or a 100 W visible light for 5 h,the location of the lamp was on the right above the front side of the samples,the distance between the lamp and the solution surface was 14 cm, and meanwhile stirred continuously at 25°C.The solution was sampled every 1 h during UV irradiation in order to determine the degree of degradation of MO,which was done by measuring the absorbance at 466 nm using a UV-Vis 2550 spectrophotometer.

    Table 1 Synthesis conditions for the growth of ZnO nano-arrays

    3 Results and discussion

    3.1 Structural characterization of ZnOnano-arrays

    Fig.1 (a)X-ray diffraction patterns of ZnO nano-arrays under different molar ratios of Zn(NO3)2to HMT on FTO glass substrates;(b)enlarged(002)diffraction peaks about ZnO

    The crystallinity of ZnO nano-arrays prepared under the different synthesis conditions was investigated using X-ray diffraction analysis.Fig.1 shows the XRD patterns of ZnO nanoarrays grown for 24 h in the aqueous solutions with different molar ratios of Zn(NO3)2to HMT.As shown in Fig.1,FTO glass substrate had three characteristic diffraction peaks at 2θ=26.6°, 37.8°,51.8°,which corresponded to the(110),(200),(211) crystalline planes of tetragonal rutile structure of SnO2(JCPDS file No.41-1445),respectively.Besides,the diffraction peaks at 2θ=34.4°,36.1°,47.4°,62.7°for all the samples were attributed to the(002),(101),(102),(103)crystalline planes of typical wurtzite structure of ZnO(JCPDS file No.36-1451),respectively.The dominant(002)peak appearance in XRD patterns strongly supported that the ZnO nano-arrays show a high orientation along c-axis which was perpendicular to the FTO substrates.The results could also be inferred from the next SEM observations.Furthermore,enlarged(002)peaks of ZnO nano-arrays grown under different molar ratios of Zn(NO3)2to HMT were inserted in Fig.1b.We can find that all the(002)diffraction peak located on the same positions,and the(002)peak with the molar ratio of 5: 5 has the highest intensity.This result can be attributed to different molar ratios of Zn(NO3)2to HMT.ZnO is formed in the solution of OH?and Zn2+ions,and their stoichiometry is very critical parameter for ZnO.In the reaction process,if OH?concentrationis too low,this may lead to slow-growing and non-full reaction to form incomplete grain structure,while OH?concentration is too high,this may lead to fast-growing and the dissolution of ZnO crystals due to the presence of excess OH?.32All these reasons might result in the decrease of preferential growth trend.

    3.2 Surface morphology analysis of ZnO nanoarrays

    Fig.2 shows the top-down and cross-section SEM images of the ZnO nano-arrays synthesized under the conditions of different molar ratios of the Zn(NO3)2to HMT.From Fig.2,we observed that the majority ZnO nano-arrays were uniform and vertical grown on the FTO substrate with a high aspect ratio.The results were consistent with the XRD analysis.Averages were taken from the measurements for the ZnO nano-arrays on FTO substrate, where the lengths were measured using the cross-sectional SEM images and the diameters were measured using the top-down SEM images.33The mean values of the ZnO nano-array dimension, including the length and diameter estimated from a statistical evaluation of SEM images,are given in Fig.2f.It was obvious that as the molar ratios of Zn(NO3)2to HMT increased from 5:2 to 5: 15,the lengths of ZnO nano-arrays correspondingly decreased from 6.78 to 2.92 μm.The diameters of the nano-arrays increased to 311 nm with increasing the molar ratio of Zn(NO3)2to HMT to 5:6,and when further increasing the molar ratio to 5:15 the diameters of the nano-arrays decreased to 190.7 nm.

    Fig.2 Top-down SEM images of ZnO nano-arrays grown under different molar ratios of Zn(NO3)2to HMT of (a)5:2,(b)5:5,(c)5:6,(d)5:10,and(e)5:15;(f)mean diameter and length from a to e

    It was reported that ZnO was an amphoteric substance,it could not only act as an acid to form[Zn(OH)4]2?in the presence of OH?, but also act as a base to produce Zn2+in the presence of H+. Therefore,it was deduced that increasing the molar ratios of Zn(NO3)2to HMT could suppress the growth rate.This might result from the dissolution of ZnO crystals due to the presence of excess OH?.32

    As all we know,the growth of ZnO nano-arrays in the aqueous solution is based on the crystallization theory of solid phase from the solution,which involves two steps of nucleation and growth.

    In our experiments,the ZnO seeds derived by the thermal decomposition of zinc acetate were used as the nuclei,which was propitious to lower activation energy barrier for ZnO nano-arrays. The following reactions are involved in the formation of ZnO seeds:34

    Next,ZnO nano-arrays were grown in aqueous solution of Zn(NO3)2and HMT at 90°C.In our experiment,Zn(NO3)2was used as source of zinc,HMT as source of OH?,and PEI as additive.No precipitate generated initially when HMT was added to the mixture solution.With the increase of growth temperature,the HMT began to decompose and form ammonia,which reacted with Zn(NO3)2to generate Zn(OH)2and finally obtained ZnO nanoarrays on the substrate.The involved reactions can be expressed as follows:35

    The formation for superior alignment on ZnO seed film is attributed to the polar nature of the ZnO surface.36ZnO,as a polar crystal,its surface is either positively charged or negatively charged.34,37Therefore,the seed surface attracts ions of opposite charges(OH?or Zn2+)to form the new surface,which in turn attracts ions with opposite charges to cover the surface and thereby reacting to form ZnO.It was reported that the optimized(001) surface had roughly a 60%higher cleavage energy than the nonpolar(100)and(110)faces,and ZnO had a dipole moment along(001)direction.These properties suggested that the c-axis was the fastest growth direction and the ZnO(001)had the highest energy of the low-index surface.34,37Hence,ZnO could easily grow along this direction and the resultant ZnO nano-arrays stand mostly perpendicular onto substrates as shown in Fig.2.

    3.3 Optical properties of ZnO nano-arrays

    The optical band gap is an important parameter for the semiconductor materials.It links to the absorption line in the spectrum for these materials.Fig.3a shows the optical transmittance spectra of ZnO nano-arrays deposited at different growth conditions in the wavelength range of 300-800 nm.The average transmittance of the samples can be calculated by this formula:

    where Aois absorbance tested by a UV-Vis 2550 spectrophotometer,T is the average transmittance.It can be found that the ZnO nano-arrays present low transmittance in the wavelength range of 300-800 nm and the average transmittances are 1.57%, 2.01%,0.67%,11.68%,and 3.54%for the molar ratios of Zn(NO3)2to HMT from 5:2 to 5:15,respectively.This indicates a strong adsorption in the wavelength range from 300 to 800 nm.

    However,absorption coefficient is related to transmittance. From the transmission spectra of Fig.3a,the values of the absorption coefficient α are calculated using the equation:38

    The relationship between absorption coefficientαand the incident photon energy hνcan be described by Tauc formula:

    where A is a constant,Egis the optical band gap energy,νis the frequency of the incident photon,h is the Planck's constant,and d is the nano-array length.The optical band gaps for the as-prepared samples are 2.70,3.20,2.90,3.15,and 3.05 eV,respectively, which are given in Fig.3(b-f).With increasing the molar ratios of Zn(NO3)2to HMT from 5:2 to 5:15,the optical band gap increased at first with the molar ratio increasing from 5:2 to 5:5 and then decreased from 5:5 to 5:15,the change trend of optical band gap was generally like as the changing trend of diameter.Wang39and Schmidt40et al.also found the width of the band gap was connected with nano-arrays diameter.Therefore,we can regulate the optical band gap of ZnO nano-arrays through controlling the structure and diameter by changing the molar ratios of precursor solution.

    3.4 CuO hybridized ZnO nano-arrays

    Although the ZnO nano-arrays have higher specific surface area and excellent electron transmission,the photocatalytic activity is relatively low.The recombination process is considered as one of the most important factors to control photocatalytic activity.Therefore,we try to deposite nano-CuO on the surface of ZnO nano-arrays to form p-n heterojunctions to reduce the recombination of photo-induced electrons and holes.

    3.4.1 Structural characterization of CuO/ZnOnanoarrays

    The XRD patterns of the pure CuO and the as-synthesized samples with the 5:5 molar ratio of Zn(NO3)2to HMT were shown in Fig.4.As shown in Fig.4,the diffraction peaks at 2θ=34.4°, 36.2°,47.5°,62.8°,72.4°of as-prepared sample were attributed to the typical wurtzite structure of ZnO(JCPDS file No.36-1451). Then,the other peaks at 2θ=26.5°,37.8°,51.6°,65.8°were belong to the(110),(200),(211),(301)crystalline planes of tetragonal rutile structure of SnO2(JCPDS file No.41-1445),respectively. Besides,the two characteristic diffraction peaks at 2θ=61.6°,68.3° were assigned to the(113),(221)crystalline planes of monoclinic structure of CuO(JCPDS file No.80-1917),respectively.This observation indicated that the crystal structure of ZnO was intact during the CuO fabrication process.What's more,no other peaks for possible impurity phases such as Cu2O and metal Cu could be detected.So,it could be concluded that the nanocomposites were only composed of CuO and ZnO.

    3.4.2 Composition analysis of CuO/ZnOnano-arrays

    It is well known that surface composition and chemical states of materials are very important during photodegradation process since they can strongly affect the photocatalytic activity.The XPS analysis is carried out to investigate the composition information by the characteristic binding energy of different elements and element chemical states on material surfaces.The XPS results are given in Fig.5.The binding energies in the XPS spectra were calibrated by using that of C 1s(284.8 eV).All peaks in the XPS full spectrum of the as-prepared CuO/ZnOnano-arrays shownin Fig.5a could be ascribed to Zn,Cu,O,and C elements and no peaks of other elements are observed.However,the appearance of weak C peak mainly came from gaseous carbon molecules of vacuum treatment before the XPS test.

    The high resolution spectra for Zn,O,and Cu species are shown in Fig.5(b-d),respectively.The two strong peaks of Zn 2p at 1021.8 and 1045.0 eV in Fig.5b corresponded to Zn 2p3/2and Zn2p1/2,respectively.The peaks were symmetrical and nearly the same positions as those of pure ZnO.41Thus,it could be confirmed that Zn element existed mainly as the form of Zn2+chemical states on sample surfaces.As shown in Fig.5c,the broad O 1s core-level spectrum could be fitted to two symmetrical peaks by Gaussian rule.The peak at a lower binding energy(529.9 eV)in Fig.5c agreed with lattice oxygen(OL)in mental oxide such as CuO and ZnO,42,43while the other peak at 531.4 eV was attributed to chemisorbed oxygen and/or hydroxide(OH).42,43Fig.5d shows the Cu 2p XPS spectrum,the Cu 2p spectra of the as-synthesized sample show two main 2p3/2and 2p1/2spinorbit lines at 933.8 and 953.7 eV,respectively,which corresponded to the binding energies of Cu 2p3/2and Cu 2p1/2of CuO.44,45Simultaneously,the peak at 941.1, 943.6,and 962.7 eV were considered to be the satellite peaks of CuO,which could also confirm the presence of CuO.46,47So,it was further deduced that CuO was formed on the ZnO.

    Fig.3 (a)Optical transmittance of all the ZnO nano-arrays under different molar ratios of Zn(NO3)2to HMT on FTO glass substrates;(b-f)optical band gap calculations of ZnO nano-arrays grown under different molar ratios of Zn(NO3)2to HMT

    Fig.4 XRD patterns of the bare CuO and the as-prepared CuO/ZnO nano-arrays

    3.4.3 Surface morphology analysis of CuO/ZnO nanoarrays

    SEM tests were subsequently carried out to try to observe the location and morphology of CuO.Fig.6(a-c)shows the typical FE-SEM images of CuO NPs prepared on the surface of ZnO nano-arrays which were obtained under the conditions of 5:5 molar ratio of Zn(NO3)2to HMT,which was shown in Fig.2b.As can be seen from Fig.6(a-c),lots of CuO NPs uniformly enwrapped on the surface of ZnO nano-arrays and the structure of the CuO hybridized ZnO still presented the spike shape.In addition,no isolated CuO particles were found in the mixture, meaning that CuO particles were strongly anchored to the ZnO surface.The average size of CuO NPs was about 48.37 nm by using image analysis software(Image Pro Plus 6.0).48Therefore, combination with the results of XRD and XPS tests,we can be sure that this sample was CuO/ZnO heterostructure.

    Fig.5 XPS spectra of the as-prepared CuO/ZnO nano-arrays

    Fig.6 Cross-sectional FE-SEM images of ZnO and CuO/ZnO heterostructure nano-arrays

    3.4.4 Photocatalytic performance of CuO/ZnOnanoarrays

    The photocatalytic activities of the CuO/ZnO photocatalysts were evaluated with respect to the degradation of MO dye aqueous solution(1 mg·L-1)under UV light irradiation,and the results are shown in Fig.7a.The rate of photodegradation was tested by measuring the absorbance at 466 nm for MO.The degradation efficiency is calculated by the following equation:

    where D is the degradation rate of dye solution,A0and Atare theinitial maximum absorbance and the maximum absorbance of dye solution after irradiation for t hours,respectively.

    Fig.7 (a)Photoactivity of CuO/ZnO nano-arrays in the MO aqueous solution under UV irradiation;(b)photocatalytic degradation of MO in recycling tests of CuO/ZnO nano-arrays

    The blank test with only UV irradiation exhibited a decomposition rate of only 2.2%after 5 h irradiation.Pure CuO NPs show slightly progressed degradation for MO solution with 5.43%.And it could be noticed that the degradation rate of pure ZnO nano-arrays was 56.7%which was superior to that of pure CuO NPs,which might be due to the fact that ZnO nano-arrays had higher aspect ratio and higher specific surface area than pure CuO NPs.Further,the degradation rate of MO experienced another considerable increase and reached to 92.8%when CuO/ZnO nano-arrays were applied.As a contrast,we used commercial titania(P25,Degussa)as a reference catalyst,and the degradation rate of MO for P25 under UV irradiation for 5 h was 81.1%. Therefore,the photocatalytic activities were in the order of CuO/ ZnO>P25>pure ZnO>pure CuO>the blank test under UV light irradiation.The phenomenon is attributed to the formation of heterojunctions between the interface of CuO and ZnO nanoarrays,which favors the separation of photo-generated electrons and holes.20,49

    Photocatalytic recycling experiments were used for photocatalytic stability test.Fig.7b shows the results for photocatalytic recycling degradation of MO under UV irradiation.The photocatalytic activity decreased slightly after the third cycle;the MO degradation rate was 92.8%at the end of the first cycle and 84.6% after the third cycle,showing that the photocatalyst had excellent stability.

    The enhanced activities of the CuO/ZnO heterostructure could be explained based on the schematic diagram of excitation and separation of electrons and holes for CuO/ZnO heterojunction under UV irradiation,shown in Fig.8.It was reported that interparticle transfer of charge carriers contributes to the enhanced photocatalytic efficiency of coupled semiconductors when the energies of valence band(VB)and conduction band(CB)were properly matched.50As shown in Fig.8,when the CuO/ZnO heterostructure was irradiated by UV light,the valence band electrons of CuO and ZnO could be excited to their conduction band, respectively.According to the thermodynamic theory,51the photogenerated electrons transfer from CB of CuO to that of ZnO, while the photogenerated holes immigrate from VB of ZnO to that of CuO.Consequently,the photogenerated electrons and holes are effectively separated,the electrons accumulated in CB of ZnO and holes accumulated in VB of CuO can be consumed for degradation of pollutants.The possible photo-degradation mechanism of CuO/ZnO nano-arrays was as follows:29,52

    From the above reactions,it had been confirmed that the photodegradation of dyes was mainly governed by the direct oxidation of photo-induced holes53,54which could reduce H2O molecules to OH·,and OH·was strong oxidizing agent for organic pollutant and electrophilic reagent.46

    The UV-Vis absorption abilities of the one-dimensional ZnO nano-arrays and the CuO/ZnO nano-arrays are shown in Fig.9a. The absorption edge was about 380 nm for bare ZnO nano-arrays, while the absorption edge of the CuO/ZnO nano-arrays was about 550 nm.Obviously,the CuO/ZnO nano-arrays had the better light utilization rate than one-dimensional ZnO nano-arrays.The enhanced absorption of visible light for CuO/ZnO nano-arrays might be also very useful in the photo-degradation of dyes applications.

    Fig.8 Schematic diagram of excitation and separation of electrons and holes for CuO/ZnO heterojunction under UV irradiation

    Fig.9 (a)Diffuse reflectance UV-Vis spectra of the bare ZnO and CuO/ZnO nano-arrays;(b)photoactivity of CuO/ZnO nanoarrays in the MO aqueous solution under visible light irradiation

    The photocatalytic activities for the degradation of MO dye aqueous solution(1 mg·L-1)of the one-dimensional ZnO nanoarrays and the CuO/ZnO nano-arrays under 100 W visible light irradiation are shown in Fig.9b.The results show that the degradations of MO dye aqueous solution of the one-dimensional ZnO nano-arrays,P25,and CuO/ZnO nano-arrays were very lower from 10.4%to 14.9%under visible light than the results under the UV irradiation,these results might be attributed to the optical absorption.The UV light can stimulate CuO and ZnO to generate photoproduction electron-holes at the same time,and be more effective to separate the photogenerated electrons and holes, while the visible light can only stimulate CuO.Therefore,the photodegradation of MO under UV irradiation is higher than that under the visible light.

    4 Conclusions

    In summary,the spike-shaped CuO/ZnO nano-arrays were successfully fabricated using a two-step solution-system method. Firstly,the characters of the ZnO nano-arrays,such as the structures,growth mechanism,and optical properties could be controlled by the molar ratios of Zn(NO3)2to HMT.As the molar ratios increased from 5:2 to 5:15,the lengths of ZnO nano-arrays correspondingly decreased from 6.78 to 2.92 μm,and the diameter firstly increased to 311.0 nm and then decreased to 190.7 nm.By and large,the change of optical band gap also had the same trend as the change of diameter,when the molar ratio is 5:5,the(002) peak had the highest intensity and the optical gap was 3.20 eV. Afterwards,the CuO NPs were deposited on the surface of ZnO nano-arrays which were obtained under the 5:5 malar ratio of Zn(NO3)2to HMT.The prepared sample presented spike shape, excellent photocatalytic properties for MO under UV irradiation, and also showed advanced light absorption ability in the UV-Vis region.Next,we expect that this unique morphology will provide more promising applications,such as solar energy conversion and gas sensor devices.

    (1) Zhang,C.H.;Wang,G.F.;Liu,M.;Feng,Y.H.;Zhang,Z.D.; Fang,B.Electrochim.Acta 2010,55(8),2835.doi:10.1016/j. electacta.2009.12.068

    (2) Jiang,C.Y.;Sun,X.W.;Lo,G.Q.;Kwong,D.L.Appl.Phys. Lett.2007,90(26),263501.doi:10.1063/1.2751588

    (3) Zhang,Y.Z.;Liu,Y.P.;Wu,L.H.;Li,H.;Han,L.Z.;Wang,B. C.;Xie,E.Q.Appl.Surf.Sci.2009,255(9),4801.doi:10.1016/ j.apsusc.2008.11.091

    (4) Yang,P.D.;Yan,H.Q.;Mao,S.;Russo,R.;Johnson,J.; Saykally,R.;Morris,N.;Pham,J.;He,R.H.;Choi,H.J.Adv. Funct.Mater.2002,12(5),323.doi:10.1002/1616-3028 (20020517)12:5<323::AID-ADFM323>3.0.CO;2-G

    (5) Liu,C.H.;Zapien,J.A.;Yao,Y.;Meng,X.M.;Lee,C.S.;Fan, S.S.;Lifshitz,Y.;Lee,S.T.Adv.Mater.2003,15(10),838.doi: 10.1002/adma.200304430

    (6) Lee,C.J.;Lee,T.J.;Lyu,S.C.;Zhang,Y.;Ruh,H.;Lee,H.J. Appl.Phys.Lett.2002,81(19),3648.doi:10.1063/1.1518810

    (7) Zhu,S.B.;Chen,X.N.;Zuo,F.B.;Jiang,M.;Zhou,Z.W. J.Solid State Chem.2013,197,69.doi:10.1016/j.jssc. 2012.09.001

    (8) Kuo,T.J.;Lin,C.N.;Kuo,C.L.;Huang,M.H.Chem.Mater. 2007,19(21),5143.doi:10.1021/cm071568a

    (9) Zhai,X.H.;Long,H.J.;Dong,J.Z.;Cao,Y.A.Acta Phys.-Chim.Sin.2010,26(3),663.[翟曉輝,龍繪錦,董江舟,曹亞安.物理化學學報,2010,26(3),663.]doi:10.3866/ PKU.WHXB20100317

    (10) Elias,J.;Lévy-Clément,C.;Bechelany,M.;Michler,J.;Wang, G.;Wang,Z.;Philippe,L.Adv.Mater.2010,22(14),1607.doi: 10.1002/adma.200903098

    (11) Lyu,S.C.;Zhang,Y.;Lee,C.J.;Ruh,H.;Lee,H.J.Chemistry of Materials 2003,15(17),3294.doi:10.1021/cm020465j

    (12) Kang,S.W.;Mohanta,S.K.;Kim,Y.Y.;Cho,H.K.Crystal Growth and Design 2008,8(5),1458.doi:10.1021/cg701216f

    (13) Sun,Y.;Fuge,G.M.;Ashfold,M.N.R.Chemical Physics Letters 2004,396(1),21.

    (14) Gao,Y.F.;Nagai,M.;Chang,T.C.;Shyue,J.J.Crystal Growth and Design 2007,7(12),2467.doi:10.1021/cg060934k

    (15) Liu,B.;Zeng,H C.Journal of the American Chemical Society 2003,125(15),4430.doi:10.1021/ja0299452

    (16) Kumar,P.S.;Raj,A.D.;Mangalaraj,D.;Nataraj,D.Applied Surface Science 2008,255(5),2382.doi:10.1016/j.apsusc.2008.07.136

    (17) Liu,Z.Y.;Bai,H.W.;Sun,D.D.Int.J.Photoenergy 2011,2012.

    (18) Yan,W.P.;Wang,D.J.;Chen,L.P.;Lu,Y.C.;Xie,T.F.;Lin,Y. H.Acta Phys.-Chim.Sin.2013,29(5),1021.[閆偉平,王德軍,陳禮平,盧永春,謝騰峰,林艷紅.物理化學學報,2013,29 (5),1021.]doi:10.3866/PKU.WHXB201303043

    (19) Zhang,Q.B.;Feng,Z.F.;Han,N.N.;Lin,L.L.;Zhou,J.Z.; Lin,Z.H.Acta Phys.-Chim.Sin.2010,26(11),2927.[張橋保,馮增芳,韓楠楠,林玲玲,周劍章,林仲華.物理化學學報, 2010,26(11),2927.]doi:10.3866/PKU.WHXB20101113

    (20) Wang,J.;Fan,X.M.;Wu,D.Z.;Dai,J.;Liu,H.R.;Zhou,Z.W. Appl.Surf.Sci.2011,258(5),1797.doi:10.1016/j. apsusc.2011.10.048

    (21) Koffyberg,F.P.;Benko,F.A.J.Appl.Phys.1982,53(2),1173. doi:10.1063/1.330567

    (22) Wang,L.;Han,K.;Song,G.;Yang,X.;Tao,M.Characterization of Electro-Deposited CuO as a Low-Cost Material for High-Efficiency Solar Cells.In Photovoltaic Energy Conversion;the 2006 IEEE 4th World Conference,Singapore,2006;IEEE, 2006,1,130-133.

    (23) Rai,A.K.;Anh,L.T.;Gim,J.;Mathew,V.;Kang,J.;Paul,B.J.; Singh,N.K.;Song,J.;Kim,J.J.Power Sources 2013,244, 435.doi:10.1016/j.jpowsour.2012.11.112

    (24) Nezamzadeh-Ejhieh,A.;Karimi-Shamsabadi,M.Chem.Eng.J. 2013,228,631.doi:10.1016/j.cej.2013.05.035

    (25) Steinhauer,S.;Brunet,E.;Maier,T.;Mutinati,G.C.;Kock,A.; Freudenberg,O.;Gspan,C.;Grogger,W.;Neuhold,A.;Resel, R.Sensor Actuat.B-Chem.2013,187,50.doi:10.1016/j. snb.2012.09.034

    (26) Anandan,S.;Wen,X.G.;Yang,S.H.Mater.Chem.Phys.2005, 93(1),35.doi:10.1016/j.matchemphys.2005.02.002

    (27) Kim,J.;Kim,W.;Yong,K.J.Phys.Chem.C 2012,116(29), 15682.doi:10.1021/jp302129j

    (28) Kargar,A.;Jing,Y.;Kim,S.J.;Riley,C.T.;Pan,X.Q.;Wang, D.L.ACS Nano 2013,7(12),11112.doi:10.1021/nn404838n

    (29) Jung,S.;Yong,K.Chem.Commun.2011,47(9),2643.doi: 10.1039/c0cc04985a

    (30) Law,M.;Greene,L.E.;Johnson,J.C.;Saykally,R.;Yang,P.D. Nat.Mater.2005,4(6),455.doi:10.1038/nmat1387

    (31) Goldie,W.Plating 1964,51(11),1069.

    (32) Jung,J.;Myoung,J.;Lim,S.Thin Solid Films 2012,520(17), 5779.doi:10.1016/j.tsf.2012.04.052

    (33) Zhu,K.X.;Wang,W.J.;Chen,X.L.;Liu,J.;Song,B.;Jiang,L. B.;Guo,J.G.;Cheng,J.Y.J.Alloy.Compd.2011,509(24), 6942.doi:10.1016/j.jallcom.2011.04.007

    (34) Chen,Z.T.;Gao,L.J.Cryst.Growth 2006,293(2),522.doi: 10.1016/j.jcrysgro.2006.05.082

    (35) Lee,Y.L.;Zhang,Y.;Ng,S.L.G.;Kartawidja,F.C.;Wang,J. J.Am.Ceram.Soc.2009,92(9),1940.doi:10.1111/ jace.2009.92.issue-9

    (36) Wang,Z.L.Mater.Today 2004,7(6),26.doi:10.1016/S1369-7021(04)00286-X

    (37) Vayssieres,L.;Keis,K.;Lindquist,S.E.;Hagfeldt,A.J.Phys. Chem.B 2001,105(17),3350.doi:10.1021/jp010026s

    (38) Pankove,J.I.Optical Process in Semiconductor;Dover Publications:New York,2012.

    (39) Wang,B.L.;Zhao,J.J.;Jia,J.M.;Shi,D.N.;Wan,J.G.;Wang, G.H.Appl.Phys.Lett.2008,93(2),021918.doi:10.1063/ 1.2951617

    (40) Schmidt,T.M.;Miwa,R.H.Nanotechnology 2009,20(21), 215202.doi:10.1088/0957-4484/20/21/215202

    (41) Zheng,J.;Jiang,Z.Y.;Kuang,Q.;Xie,Z.X.;Huang,R.B.; Zheng,L.S.J.Solid State Chem.2009,182(1),115.doi: 10.1016/j.jssc.2008.10.009

    (42) Ai,Z.H.;Zhang,L.Z.;Lee,S.C.;Ho,W.K.J.Phys.Chem.C 2009,113(49),20896.doi:10.1021/jp9083647

    (43) Borgohain,K.;Murase,N.;Mahamuni,S.J.Appl.Phys.2002, 92(3),1292.doi:10.1063/1.1491020

    (44) Li,B.X.;Wang,Y.F.Superlattice Microst.2010,47(5),615. doi:10.1016/j.spmi.2010.02.005

    (45) Sakai,Y.;Ninomiya,S.;Hiraoka,K.Surf.Int.Anal.2012,44 (8),938.doi:10.1002/sia.4843

    (46) Capece,F.M.;Castro,V.D.;Furlani,C.;Mattogno,G. J.Electron.Spectrosc.1982,27(2),119.doi:10.1016/0368-2048(82)85058-5

    (47) Wan,Y.;Zhang,Y.D.;Wang,X.L.;Wang,Q.Electrochem. Commun.2013,36,99.doi:10.1016/j.elecom.2013.09.026

    (48) Xiang,F.M.;Wu,J.;Liu,L.;Huang,T.;Wang,Y.;Chen,C.; Peng,Y.;Jiang,C.X.;Zhou,Z.W.Polym.Adv.Technol.2011, 22(12),2533.doi:10.1002/pat.v22.12

    (49) Saravanan,R.;Karthikeyan,S.;Gupta,V.K.;Sekaran,G.; Narayanan,V.;Stephen,A.Mater.Sci.Eng.C 2013,33(1),91. doi:10.1016/j.msec.2012.08.011

    (50) Serpone,N.;Maruthamuthu,P.;Pichat,P.;Pelizzetti,E.; Hidaka,H.J.Photochem.Photobiol.A 1995,85(3),247.doi: 10.1016/1010-6030(94)03906-B

    (51) Wei,S.Q.;Chen,Y.Y.;Ma,Y.Y.;Shao,Z.C.J.Mol.Catal.AChem.2010,331(1),112.

    (52) Li,J.;Wang,J.;Huang,L.;Lu,G.D.Photochem.Photobiol. Sci.2010,9(1),39.doi:10.1039/b9pp00084d

    (53) Chandrinou,C.;Boukos,N.;Stogios,C.;Travlos,A. Microelectron.J.2009,40(2),296.doi:10.1016/j. mejo.2008.07.024

    (54) Greene,L.E.;Law,M.;Goldberger,J.;Kim,F.;Johnson,J.C.; Zhang,Y.F.;Saykally,R.J.;Yang,P.D.Angew.Chem.Int.Edit. 2003,42(26),3031.doi:10.1002/anie.200351461

    Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure

    LI Xiang-Qi1FAN Qing-Fei1LI Guang-Li1HUANG Yao-Han1GAO Zhao1FAN Xi-Mei1,*ZHANG Chao-Liang2ZHOU Zuo-Wan1
    (1Key Laboratory of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering, Southwest Jiaotong University,Chengdu 610031,P.R.China;2State Key Laboratory of Oral Diseases, West China Hospital of Stomatology,Sichuan University,Chengdu 610031,P.R.China)

    Alow-temperature hydrothermal route was applied to fabricate ZnO nano-arrays on fluorinated tin oxide(FTO)-coated glass substrates.The effects of the molar ratios of the precursor concentrations on the ZnO nano-arrays were studied with respect to morphology,optical properties,and growth mechanism.The results show that the length reduced with the increased molar ratios of precursor concentrations,and the diameter first increased then decreased.In general,the change of optical band gap followed the same trend as that for the change in diameter.When the molar ratio of precursor concentrations is 5:5,the optical band gap is 3.2 eV, which is similar to the theoretical value at room temperature.We propose that the optimal molar ratio of zinc nitrate(Zn(NO3)2)to hexamethylenetetramine(HMT,C6H12N4)is 5:5 for the preparation of ZnO nano-arrays. Spike-shaped CuO/ZnO nano-arrays were also successfully synthesized using a two-step solution-system method.Field emission scanning electron microscope(FE-SEM)results show that there were a large number of copper oxide(CuO)nano-particles(NPs)deposited onto the ZnO nano-array surfaces to form spike-shaped structures.The covered CuO NPs exhibited improved photocatalytic properties over pure ZnO nano-arraysunder UV irradiation,and the possible photocatalytic mechanism of the CuO/ZnO nano-heterojunction was discussed in detail.?Editorial office ofActa Physico-Chimica Sinica

    ZnO nano-array;CuO/ZnO heterostructure;Hydrothermal method;Optical property; Molar ratio

    O645;O611

    10.3866/PKU.WHXB201502062www.whxb.pku.edu.cn

    Received:December 15,2014;Revised:February 4,2015;Published on Web:February 6,2015.

    ?Corresponding author.Email:xmfan@home.swjtu.edu.cn;Tel:+86-28-87602714;Fax:+86-28-87600454.

    The project was supported by the High-Tech Research and Development Program of China(2009AA03Z427).

    國家高技術(shù)研究發(fā)展計劃項目(2009AA03Z427)資助

    猜你喜歡
    前驅(qū)異質(zhì)摩爾
    戰(zhàn)場上的雕塑家——亨利摩爾
    河北畫報(2020年10期)2020-11-26 07:20:56
    西方摩爾研究概觀
    SiBNC陶瓷纖維前驅(qū)體的結(jié)構(gòu)及流變性能
    可溶性前驅(qū)體法制備ZrC粉末的研究進展
    隨機與異質(zhì)網(wǎng)絡(luò)共存的SIS傳染病模型的定性分析
    Ag2CO3/Ag2O異質(zhì)p-n結(jié)光催化劑的制備及其可見光光催化性能
    前驅(qū)體磷酸鐵中磷含量測定的不確定度評定
    MoS2/ZnO異質(zhì)結(jié)的光電特性
    物理實驗(2015年10期)2015-02-28 17:36:52
    溶膠-凝膠微波加熱合成PbZr0.52Ti0.48O3前驅(qū)體
    執(zhí)政者應(yīng)學習異質(zhì)傳播
    视频中文字幕在线观看| 中文字幕久久专区| 天堂中文最新版在线下载| 精品国产三级普通话版| av国产精品久久久久影院| 亚洲国产精品成人久久小说| 日本欧美视频一区| 日本-黄色视频高清免费观看| 亚洲欧美成人综合另类久久久| 成人漫画全彩无遮挡| 在现免费观看毛片| 男人添女人高潮全过程视频| 大话2 男鬼变身卡| 国产男女内射视频| 免费观看无遮挡的男女| 91精品伊人久久大香线蕉| 国产亚洲最大av| 久久久国产一区二区| 久久99热这里只有精品18| 国产一区亚洲一区在线观看| 午夜老司机福利剧场| 久久久久久人妻| 不卡视频在线观看欧美| 成人国产麻豆网| 校园人妻丝袜中文字幕| 特大巨黑吊av在线直播| 欧美激情极品国产一区二区三区 | 亚洲四区av| 97在线人人人人妻| 插逼视频在线观看| 国产亚洲91精品色在线| 精品人妻熟女av久视频| 97超碰精品成人国产| 男人舔奶头视频| 国产男女内射视频| 人妻系列 视频| 亚洲人成网站在线观看播放| av网站免费在线观看视频| 大码成人一级视频| 一区二区三区乱码不卡18| 直男gayav资源| 网址你懂的国产日韩在线| 日本午夜av视频| 综合色丁香网| 99热这里只有精品一区| 国产av码专区亚洲av| 美女国产视频在线观看| 男人和女人高潮做爰伦理| 国产色爽女视频免费观看| 欧美日韩综合久久久久久| 男女下面进入的视频免费午夜| 国产高清有码在线观看视频| 纯流量卡能插随身wifi吗| 黄色一级大片看看| 免费播放大片免费观看视频在线观看| av国产久精品久网站免费入址| 九九爱精品视频在线观看| 色综合色国产| 久久久久久久久大av| av国产久精品久网站免费入址| 亚洲精品一区蜜桃| 黄色日韩在线| 国产亚洲91精品色在线| 亚洲国产精品成人久久小说| 国产av一区二区精品久久 | 黄色怎么调成土黄色| 建设人人有责人人尽责人人享有的 | 亚洲精品一二三| 日韩av不卡免费在线播放| 黑人猛操日本美女一级片| 狂野欧美激情性bbbbbb| 在线精品无人区一区二区三 | 女的被弄到高潮叫床怎么办| 伦理电影大哥的女人| 久久国产乱子免费精品| 国产黄片视频在线免费观看| 亚洲精品一区蜜桃| 夜夜看夜夜爽夜夜摸| 亚洲精品色激情综合| 成人无遮挡网站| 欧美成人午夜免费资源| 国产高清不卡午夜福利| 一级毛片黄色毛片免费观看视频| 三级国产精品欧美在线观看| 国产精品.久久久| 亚洲欧美精品自产自拍| 久久国产乱子免费精品| 国产精品一及| 免费久久久久久久精品成人欧美视频 | 80岁老熟妇乱子伦牲交| 国产在线视频一区二区| 亚洲第一区二区三区不卡| 欧美亚洲 丝袜 人妻 在线| 99久久精品热视频| 国产精品三级大全| 久久久久久久精品精品| 亚洲高清免费不卡视频| 乱系列少妇在线播放| 欧美丝袜亚洲另类| 亚洲av成人精品一区久久| 在线精品无人区一区二区三 | 观看免费一级毛片| 这个男人来自地球电影免费观看 | 精品午夜福利在线看| 久久久色成人| 欧美+日韩+精品| 亚洲精品久久久久久婷婷小说| 少妇被粗大猛烈的视频| av卡一久久| 久久久久久久久久久丰满| 99视频精品全部免费 在线| 日日撸夜夜添| 免费黄色在线免费观看| 亚洲色图av天堂| 丰满人妻一区二区三区视频av| 亚洲精品国产av成人精品| 久久久a久久爽久久v久久| 高清黄色对白视频在线免费看 | 在线免费十八禁| 成人午夜精彩视频在线观看| 亚洲天堂av无毛| 91精品国产国语对白视频| 精品亚洲乱码少妇综合久久| 国内少妇人妻偷人精品xxx网站| 国产精品一区二区在线不卡| 亚洲图色成人| 日本-黄色视频高清免费观看| 亚洲欧洲日产国产| 国产爽快片一区二区三区| 精品国产露脸久久av麻豆| 啦啦啦在线观看免费高清www| 最近2019中文字幕mv第一页| 人妻一区二区av| 在线观看一区二区三区| 国产精品熟女久久久久浪| 久久久精品免费免费高清| 日本与韩国留学比较| 日本av手机在线免费观看| 久久精品国产亚洲av天美| 亚洲第一区二区三区不卡| 黑人猛操日本美女一级片| 亚洲精品456在线播放app| 岛国毛片在线播放| 亚洲av成人精品一二三区| 男人和女人高潮做爰伦理| av视频免费观看在线观看| 少妇人妻一区二区三区视频| 男人和女人高潮做爰伦理| 日韩在线高清观看一区二区三区| 久久久久精品久久久久真实原创| 精品人妻熟女av久视频| 欧美最新免费一区二区三区| 国产视频首页在线观看| 伊人久久国产一区二区| av在线观看视频网站免费| 精品久久国产蜜桃| 日日摸夜夜添夜夜爱| 亚洲精品乱久久久久久| 亚洲伊人久久精品综合| 欧美一区二区亚洲| 免费观看性生交大片5| 成人影院久久| 久久99热这里只频精品6学生| 夜夜骑夜夜射夜夜干| 美女高潮的动态| 国产爽快片一区二区三区| 久热这里只有精品99| 国产av码专区亚洲av| 少妇被粗大猛烈的视频| 99热国产这里只有精品6| 欧美少妇被猛烈插入视频| 欧美日韩国产mv在线观看视频 | 亚洲精品久久久久久婷婷小说| 一本—道久久a久久精品蜜桃钙片| 免费观看的影片在线观看| av视频免费观看在线观看| 精品国产乱码久久久久久小说| 日本欧美国产在线视频| 伦精品一区二区三区| 亚洲怡红院男人天堂| 久久久久网色| 网址你懂的国产日韩在线| 又粗又硬又长又爽又黄的视频| 久久精品久久久久久久性| 黄色日韩在线| 亚洲国产精品一区三区| 免费少妇av软件| 国产精品福利在线免费观看| 国产片特级美女逼逼视频| 99国产精品免费福利视频| 99热网站在线观看| 蜜桃亚洲精品一区二区三区| 欧美精品一区二区大全| av国产久精品久网站免费入址| 人妻 亚洲 视频| 国产一区二区在线观看日韩| 久久久久国产精品人妻一区二区| 99精国产麻豆久久婷婷| 久久99热这里只频精品6学生| 少妇精品久久久久久久| 亚洲熟女精品中文字幕| 18禁裸乳无遮挡免费网站照片| 成人午夜精彩视频在线观看| 最近最新中文字幕免费大全7| 少妇熟女欧美另类| av在线蜜桃| 日韩成人av中文字幕在线观看| 国产一区有黄有色的免费视频| 一区二区三区精品91| 王馨瑶露胸无遮挡在线观看| 欧美激情国产日韩精品一区| 亚洲欧洲日产国产| 丝袜喷水一区| 男女下面进入的视频免费午夜| 下体分泌物呈黄色| 黑丝袜美女国产一区| 男女国产视频网站| 欧美97在线视频| 欧美日韩在线观看h| 亚洲综合精品二区| 日本黄色日本黄色录像| 国国产精品蜜臀av免费| 免费黄频网站在线观看国产| 美女主播在线视频| 黄色视频在线播放观看不卡| 大陆偷拍与自拍| 777米奇影视久久| 日韩亚洲欧美综合| 99久久人妻综合| 欧美日本视频| 黄色一级大片看看| 国产午夜精品久久久久久一区二区三区| 我要看日韩黄色一级片| 成年人午夜在线观看视频| 久久精品国产鲁丝片午夜精品| 欧美激情国产日韩精品一区| 欧美亚洲 丝袜 人妻 在线| 国产精品人妻久久久影院| 91精品国产国语对白视频| 国产欧美日韩一区二区三区在线 | 国产亚洲精品久久久com| 直男gayav资源| 国产成人freesex在线| 日韩一本色道免费dvd| 精品久久国产蜜桃| 久久久色成人| 丝袜喷水一区| 国产精品秋霞免费鲁丝片| 三级国产精品片| 一级毛片黄色毛片免费观看视频| 毛片一级片免费看久久久久| 国产探花极品一区二区| 舔av片在线| 国产日韩欧美在线精品| 视频区图区小说| 少妇人妻精品综合一区二区| 日本黄大片高清| 一区二区三区四区激情视频| 高清视频免费观看一区二区| 久久人人爽人人爽人人片va| 老女人水多毛片| av免费观看日本| 精品一区二区三区视频在线| 国产精品久久久久久久电影| 欧美成人a在线观看| 日日摸夜夜添夜夜添av毛片| 成人特级av手机在线观看| 乱码一卡2卡4卡精品| av免费观看日本| 亚洲人与动物交配视频| 肉色欧美久久久久久久蜜桃| 国模一区二区三区四区视频| 国产黄片美女视频| 高清不卡的av网站| 亚洲精品一二三| 午夜激情久久久久久久| 少妇精品久久久久久久| 亚洲av.av天堂| 91精品国产九色| 亚洲激情五月婷婷啪啪| a 毛片基地| 国产有黄有色有爽视频| 久久午夜福利片| 伊人久久精品亚洲午夜| 欧美一区二区亚洲| 日日摸夜夜添夜夜添av毛片| 国产精品爽爽va在线观看网站| 国产成人精品一,二区| 国内揄拍国产精品人妻在线| 天堂俺去俺来也www色官网| 在线看a的网站| 久久午夜福利片| 国产一区二区三区综合在线观看 | 免费看光身美女| 免费av中文字幕在线| av在线老鸭窝| 丰满人妻一区二区三区视频av| 国产91av在线免费观看| 五月伊人婷婷丁香| 久热久热在线精品观看| 国产精品无大码| 午夜激情福利司机影院| 日韩av在线免费看完整版不卡| 国产亚洲精品久久久com| 亚洲经典国产精华液单| 91久久精品国产一区二区成人| 久久亚洲国产成人精品v| 一边亲一边摸免费视频| 中文字幕亚洲精品专区| 全区人妻精品视频| 亚洲国产av新网站| 久久久久网色| 久久久久久久久久久免费av| 国产精品三级大全| 久久99热6这里只有精品| 欧美+日韩+精品| 精品国产三级普通话版| 好男人视频免费观看在线| 欧美高清性xxxxhd video| 免费大片黄手机在线观看| 日本av免费视频播放| 国产成人免费无遮挡视频| 蜜桃久久精品国产亚洲av| 亚洲国产日韩一区二区| 高清日韩中文字幕在线| 亚洲精品国产av成人精品| 日本欧美视频一区| 九九在线视频观看精品| 精品午夜福利在线看| 亚洲精品日本国产第一区| 久久久精品免费免费高清| 免费高清在线观看视频在线观看| 国产av国产精品国产| 国产高清三级在线| 亚洲av成人精品一二三区| 国产精品蜜桃在线观看| 精品久久久久久久久亚洲| 成人二区视频| 精华霜和精华液先用哪个| 妹子高潮喷水视频| 亚洲av欧美aⅴ国产| 久久久色成人| 日韩欧美 国产精品| 色婷婷久久久亚洲欧美| 久久久久久久久久人人人人人人| 久久韩国三级中文字幕| av天堂中文字幕网| 欧美日韩国产mv在线观看视频 | 女性被躁到高潮视频| 免费观看在线日韩| 色婷婷久久久亚洲欧美| 天堂中文最新版在线下载| 婷婷色综合www| 国产av精品麻豆| 99久久综合免费| h日本视频在线播放| 91精品伊人久久大香线蕉| 国产在线免费精品| 一区二区三区四区激情视频| 亚洲色图av天堂| 一二三四中文在线观看免费高清| 精品酒店卫生间| 久久青草综合色| 国产一区二区三区综合在线观看 | 99视频精品全部免费 在线| videossex国产| 人妻制服诱惑在线中文字幕| 久久韩国三级中文字幕| 欧美日韩综合久久久久久| 欧美成人一区二区免费高清观看| 精品国产一区二区三区久久久樱花 | 欧美成人精品欧美一级黄| 街头女战士在线观看网站| 国产精品一二三区在线看| 只有这里有精品99| 亚洲av综合色区一区| 黄片无遮挡物在线观看| 国产精品久久久久久精品古装| 亚洲欧美日韩无卡精品| 在线亚洲精品国产二区图片欧美 | 在线观看av片永久免费下载| 韩国av在线不卡| 亚洲真实伦在线观看| 韩国高清视频一区二区三区| 欧美日韩精品成人综合77777| 亚洲av不卡在线观看| 国产一区二区在线观看日韩| 国产在线一区二区三区精| 国产伦精品一区二区三区视频9| 九九爱精品视频在线观看| 亚洲怡红院男人天堂| 97在线人人人人妻| xxx大片免费视频| 观看免费一级毛片| 免费久久久久久久精品成人欧美视频 | 波野结衣二区三区在线| 一级毛片我不卡| 99视频精品全部免费 在线| 91在线精品国自产拍蜜月| 国产在线视频一区二区| 美女内射精品一级片tv| 夜夜看夜夜爽夜夜摸| 2021少妇久久久久久久久久久| 国产精品一区二区性色av| av不卡在线播放| 身体一侧抽搐| 亚洲欧美一区二区三区国产| 中文欧美无线码| 妹子高潮喷水视频| 26uuu在线亚洲综合色| 精品99又大又爽又粗少妇毛片| 亚洲欧美成人综合另类久久久| 亚洲国产精品国产精品| 国产免费一级a男人的天堂| 色婷婷久久久亚洲欧美| 亚洲av中文av极速乱| 国产亚洲一区二区精品| 免费播放大片免费观看视频在线观看| 伊人久久国产一区二区| 国产一区亚洲一区在线观看| 赤兔流量卡办理| 美女xxoo啪啪120秒动态图| 麻豆成人av视频| 日本av手机在线免费观看| 精品酒店卫生间| 亚洲国产最新在线播放| 国产精品一区二区性色av| 在线免费十八禁| 日本黄大片高清| 国产成人aa在线观看| 免费人妻精品一区二区三区视频| 日本黄色片子视频| 99热国产这里只有精品6| av线在线观看网站| 99热网站在线观看| h视频一区二区三区| 国产精品爽爽va在线观看网站| 久久亚洲国产成人精品v| 欧美性感艳星| 亚洲国产日韩一区二区| 久久 成人 亚洲| 夫妻性生交免费视频一级片| 女性被躁到高潮视频| 午夜日本视频在线| 在线亚洲精品国产二区图片欧美 | 婷婷色麻豆天堂久久| 亚洲av综合色区一区| 男女下面进入的视频免费午夜| 国产在线一区二区三区精| av又黄又爽大尺度在线免费看| 久久久精品免费免费高清| 少妇裸体淫交视频免费看高清| 一区二区三区四区激情视频| 日本黄色日本黄色录像| 精品久久久久久久末码| 91久久精品电影网| 99热这里只有是精品在线观看| 国产一区二区在线观看日韩| 亚洲国产毛片av蜜桃av| 亚洲内射少妇av| 欧美日本视频| 一二三四中文在线观看免费高清| 免费观看在线日韩| 久久精品国产亚洲网站| 少妇人妻 视频| 一个人免费看片子| 狂野欧美激情性xxxx在线观看| 伦精品一区二区三区| 亚洲av电影在线观看一区二区三区| 不卡视频在线观看欧美| 午夜福利影视在线免费观看| 在线观看av片永久免费下载| 国产精品蜜桃在线观看| 日韩三级伦理在线观看| 久久亚洲国产成人精品v| 一区二区三区四区激情视频| 天堂中文最新版在线下载| 一本一本综合久久| 国产精品偷伦视频观看了| 午夜精品国产一区二区电影| 777米奇影视久久| 人人妻人人看人人澡| 高清不卡的av网站| 在线看a的网站| 国产视频内射| 亚洲欧洲国产日韩| 成人综合一区亚洲| 91久久精品国产一区二区三区| 亚洲,欧美,日韩| 一二三四中文在线观看免费高清| 国产白丝娇喘喷水9色精品| 嫩草影院新地址| 亚洲人成网站高清观看| 精品国产三级普通话版| 干丝袜人妻中文字幕| av免费观看日本| 国产一级毛片在线| 久久99蜜桃精品久久| 丝袜脚勾引网站| 国产乱人视频| 国产精品久久久久久精品电影小说 | 国产真实伦视频高清在线观看| 99热这里只有精品一区| 国产精品免费大片| 人妻制服诱惑在线中文字幕| 一本一本综合久久| 精品人妻视频免费看| 国产亚洲av片在线观看秒播厂| 丰满乱子伦码专区| 少妇高潮的动态图| 男人和女人高潮做爰伦理| 免费高清在线观看视频在线观看| 日日啪夜夜爽| 91久久精品国产一区二区三区| 日韩,欧美,国产一区二区三区| 日韩免费高清中文字幕av| 午夜福利在线在线| 97在线人人人人妻| av一本久久久久| 网址你懂的国产日韩在线| 国产精品久久久久久精品电影小说 | 亚洲av免费高清在线观看| av播播在线观看一区| 极品少妇高潮喷水抽搐| 亚洲精品国产成人久久av| 久久久久久久久久久免费av| 国产黄色视频一区二区在线观看| 精品国产三级普通话版| 午夜视频国产福利| 18禁在线无遮挡免费观看视频| 国产乱人视频| 99久久人妻综合| 精品一区在线观看国产| 久久女婷五月综合色啪小说| 国产成人aa在线观看| 视频区图区小说| 亚洲av中文字字幕乱码综合| 亚洲成人手机| 国产黄色免费在线视频| 中文字幕人妻熟人妻熟丝袜美| 成人特级av手机在线观看| 精品酒店卫生间| 国产 精品1| 日韩不卡一区二区三区视频在线| 国产在线男女| 国模一区二区三区四区视频| 国产精品国产三级专区第一集| 久久久久久久久久久丰满| 久久ye,这里只有精品| 99精国产麻豆久久婷婷| 国产亚洲一区二区精品| 十分钟在线观看高清视频www | 久久鲁丝午夜福利片| 在线 av 中文字幕| 久久精品久久久久久噜噜老黄| 99久久精品一区二区三区| 黄色怎么调成土黄色| 我的老师免费观看完整版| 在线亚洲精品国产二区图片欧美 | 菩萨蛮人人尽说江南好唐韦庄| 久久婷婷青草| 18禁在线无遮挡免费观看视频| 男女边摸边吃奶| 尤物成人国产欧美一区二区三区| 成人影院久久| 免费观看av网站的网址| 99热6这里只有精品| 我的女老师完整版在线观看| 国产又色又爽无遮挡免| 日韩免费高清中文字幕av| 国产 一区精品| 男人添女人高潮全过程视频| 少妇猛男粗大的猛烈进出视频| 亚洲精品乱码久久久久久按摩| 97在线人人人人妻| 成人18禁高潮啪啪吃奶动态图 | 国产乱人偷精品视频| 99九九线精品视频在线观看视频| 在线天堂最新版资源| 美女视频免费永久观看网站| 麻豆国产97在线/欧美| av福利片在线观看| 日韩一区二区三区影片| 国产精品人妻久久久影院| 欧美激情极品国产一区二区三区 | 黄片wwwwww| 午夜视频国产福利| 午夜福利影视在线免费观看| 免费观看a级毛片全部| 日韩一区二区视频免费看| 成人无遮挡网站| 少妇人妻一区二区三区视频| 在线观看免费视频网站a站| videossex国产| 日本av免费视频播放| 一级毛片aaaaaa免费看小| 国产免费视频播放在线视频| 午夜福利在线在线| 成人美女网站在线观看视频| 午夜福利视频精品| 亚洲精品,欧美精品| 国产一区有黄有色的免费视频| 高清不卡的av网站| 日日啪夜夜撸| 精品久久久噜噜| 91久久精品国产一区二区成人| 在线观看av片永久免费下载| 中文在线观看免费www的网站| 免费观看性生交大片5| 日韩av在线免费看完整版不卡| 丝袜喷水一区| 91久久精品国产一区二区成人| 久久99精品国语久久久| 亚洲三级黄色毛片| 国模一区二区三区四区视频|