• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic Structures and Optical Properties of Ilmenite-Type Hexagonal ZnTiO3

    2014-10-14 03:44:10ZHANGXiaoChaoFANCaiMeiLIANGZhenHaiHANPeiDe
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:張志勇鈦鐵礦局域

    ZHANG Xiao-Chao FAN Cai-Mei,* LIANG Zhen-Hai HAN Pei-De

    (1Institute of Clean Technique for Chemical Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China;2College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China)

    Electronic Structures and Optical Properties of Ilmenite-Type Hexagonal ZnTiO3

    ZHANG Xiao-Chao1FAN Cai-Mei1,*LIANG Zhen-Hai1HAN Pei-De2

    (1Institute of Clean Technique for Chemical Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China;2College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China)

    Abstract:The electronic structures of ilmenite(IL)-type hexagonal ZnTiO3were investigated using the generalized gradient approximation(GGA)and local density approximation(LDA)based on density functional theory(DFT).The optical properties of ZnTiO3were also calculated by the LDA method.The calculated results were compared with experimental data.Results show that the structural parameters obtained by the LDA calculation are rather close to the experimental values.IL-type hexagonal ZnTiO3is a kind of direct bandgap(Eg=3.11 eV)semiconductor material at theZpoint in the Brillouin zone.An analysis of the density of states(DOS)and the Mulliken charge population clearly reveal that the Zn―O bond is a typical ionic bond whereas the Ti―O bond,which is similar to the Ti―O bond in perovskites ATiO3(A=Sr,Pb,Ba),is covalent in character.Furthermore,the dielectric function,absorption spectrum,and refractive index were obtained and analyzed on the basis of electronic band structures and the DOS for radiation up to 50 eV.

    Key Words:First-principles;Electronic structure;Optical property;Ilmenite-type hexagonal ZnTiO3

    Fundamental studies concerning the phase diagram and characterization of the ZnO/TiO2system have been published by several researchers[1-4].There are three zinc titanate compounds that exist in ZnO/TiO2system:Zn2TiO4(cubic),ZnTiO3(hexag-onal),and Zn2Ti3O8(cubic).Among these compounds,ilmenite(IL)-type hexagonal zinc titanate(ZnTiO3)has attracted great attention due to its potential application,such as microwave dielectrics[5-6],gas sensors[7],ceramics[8-9],photoluminescence materials[10],sorbents for the desulfurization of hot coal gases and paint pigments[11-13].Recent studies[14-15]had also found that the pure hexagonal ZnTiO3prepared by a modified alcoholysis may be a promising photocatalyst in large-scale application of the photocatalysis under solar light irradiation for photodegradation of water contamination and environmental pollution.

    Although the ATiO3(A=Sr,Pb,Ba,Zn,Fe,etc.)materials have been investigated at least for half a century,a proper description of their electronic and optical properties is still an active research area from theoretical point of view.Since 1990s,the electronic structures and optical properties of perovskites ATiO3(A=Sr,Pb,Ba)had been calculated successfully using first-principles methods by several research groups[16-22].In the beginning of 1990s,Cohenet al.[16-17]examined successfully the ferroelectric properties of cubic BaTO3and PbTO3perovskite crystals by the full-potential linearized augmented plane wave(FP-LAPW)approach within the local density approximation(LDA).A few years later,Tinte and Stachiotti[18]reported the results of the generalized gradient approximation(GGA)in the scheme of Perdew-Burke-Erzernhof(PBE)calculations for structural and dynamical properties of perovskite oxides.Soon after,bulk properties and electronic structures of cubic SrTiO3,BaTiO3,and PbTiO3perovskites had been published using anab initioHF/DFT study by Piskunovet al.[19].In 2007,the cohesive energy and electronic properties of PbTiO3had been studied using the FP-LAPW method together with the LDA and GGA methods based on DFT by Hosseiniet al.[20].Most recently,Zhanget al.[21]studied the electronic structures and optical properties of cubic and tetragonal BaTiO3perovskite using the LDA,GGA,and pseudo-potential plane wave(PP-PW)methods,respectively.The effect of In and Scp-type doping on the structural stability,electronic structure,and optical properties of SrTiO3perovskite was investigated by first-principles calculations of PP-PW based on DFT by Yun and Zhang[22].Their calculated results are in good agreement with the experimental data in Refs.[16-22].However,there has been little theoretical work on the electronic structures and optical properties for IL-type hexagonal ZnTiO3,thus it is necessary for us to use the first-principles method to explore the electronic structures and optical properties of IL-type hexagonal ZnTiO3,and we hope the calculated results can provide a theoretical basis for the experimental process and practical application of hexagonal ZnTiO3.

    In this paper,the lattice constants of IL-type hexagonal Zn-TiO3were firstly optimized using the LDA in the scheme of Ceperley-Aider and Perdew-Zunger(CA-PZ)and GGA in the scheme of PBE based on DFT,and the calculated lattice constants were compared with experimental data.In addition,a systematic study of the electronic structures,density of states,Mulliken charge population,optical properties of IL-type hexagonal ZnTiO3were conducted and analyzed using the LDA(CA-PZ)method.It is found that our calculated results are in good agreement with experimental data.

    1 Computational method

    All of the calculations were performed using the well tested CASTEP code[23]in Material Studio 4.1 based on DFT.In the present calculation,the exchange and correlation potential were described with LDA in the scheme of CA-PZ[24]and GGA in the scheme of PBE[25].The states of Zn 3d104s2,Ti 3d24s2,and O 2s22p4were treated as valence states.The cutoff energy of a plane-wave was set at 340 eV.The maximum root-meansquare convergent tolerance was less than 2×10-5eV·atom-1.The force imposed on each atom was not greater than 0.1 eV·nm-1and a stress of less than 0.03 GPa.The Brillouin zone integrations were approximated using the specialk-point sampling scheme of Monkhorst-Pack[26],and a 3×3×4k-point grid was used.

    2 Results and discussion

    2.1 Geometry optimization

    In order to describe IL-type hexagonal ZnTiO3crystals,it is necessary to optimize structural parameters,which would be suitable for the electronic structure calculations of crystals.The lattice constants of ZnTiO3were optimized using the GGA(PBE)and LDA(CA-PZ),respectively.The results and a set of experimental data[2]are listed in Table 1 for comparison.X-ray powder diffraction data(PDF:26-1500)(a=b=0.5079 nm,c=1.3927 nm,α=β=90°,γ=120°,c/a=2.7421,Vo=0.3111 nm3,Z=6)[2]were used as a starting point for geometry optimization.The unit cell of hexagonal ZnTiO3contains six molecules as shown in Fig.1.The space group isR3.

    Table 1 Comparison between calculated structural data and experimental data

    2.2 Band structure,density of states and Mulliken charge population

    The electronic band structures along the symmetry lines of the Brillouin zone for IL-type hexagonal ZnTiO3using LDA calculation are shown in Fig.2.The results demonstrate that the IL-type hexagonal ZnTiO3is a direct band gap semiconductor material atZpoint in the Brillouin zone.The calculated band gap(Eg)is about 3.11 eV,which is a little smaller than the experimental value(3.34 eV[29])of hexagonal ZnTiO3.The reason for this disagreement is the well-known shortcoming of the theoretical frame of the LDAcalculation based on DFT[30].

    Total density of state(TDOS)and partial density of states(PDOSs)of IL-type hexagonal ZnTiO3are shown in Fig.3.As shown in Figs.(2-3),the valence band(VB)of ZnTiO3can be divided into two main zones:a lower valence band zone(-17.79--15.86 eV)and an upper one(-5.92-0.00 eV).The top of the upper VB is mainly dominated by the contribution of O 2pstates,which is very similar to those of perovskites ATiO3(A=Sr,Pb,Ba)[16,19-22]and IL-type ZnSnO3[28].Moreover,Zn 3dorbital in ZnTiO3not only distinctly contributes to the whole valence band but also has a strong interaction with O 2p,which is also similar to the case of Zn in IL-type ZnSnO3[28].However,Zn 3din ZnTiO3is quite different from the A site atom in perovskites ATiO3(A=Sr,Pb,Ba)[16,19-22].Therefore,IL-type ZnTiO3would have more covalent features than the previous studied perovskites ATiO3(A=Sr,Pb,Ba).An additional valence band between-17.37 and-15.92 eV mainly consists of O 2sstates.In addition,the other two VBs,-32.28--31.90 eV and-55.44--55.37 eV,are not considered,because their interaction with the two main mentioned VBs is very weak.For the conduction band(CB),the bottom of CB mainly originates from the contribution of Ti 3dstates,which also gives the main contribution to CB at about the lowest portion of the spectrum.There are some small contributions from O 2pstates to this part of the spectrum by analyzing TDOS and PDOSs of IL-type ZnTiO3.

    In order to understand bonding behavior,the Mulliken charge population for IL-type ZnTiO3was performed and analyzed and the results are listed in Table 2.For IL-type ZnTiO3,the net charge of Zn(+0.99e)is 1.01eless than its+2eformal charges,whereas O atom is with-0.67enegative charges and Ti atom carries+1.02epositive charges,which are much smaller than their-2eand+4eformal charges by 1.33eand 2.98e,respectively.The analysis shows that the Ti—O bond possesses a stronger covalent bonding strength than the Zn—O bond,which agrees well with the DOS analysis for ZnTiO3.Therefore,we have a conclusion that the bond between Zn—O is typically ionic whereas Ti—O bond has covalent character,these results are very similar to those of perovskites ATiO3(A=Sr,Pb,Ba)[16,1922].

    From Table 1 it can be clearly seen that the GGA overestimates the lattice parameters while the LDA underestimates them in comparison with the experimental data.These results are consistent with the general trends of these approximations.The lattice parameters from our LDA calculation are about 0.5%smaller than the experimental value,while the GGA results are about 1.1%larger.The LDA approach gives lattice parameters much closer to the experimental data.The volume change value(+0.0129 nm3)by GGA calculation is also larger than the LDA value(-0.0123 nm3).These trends are very similar to those of the calculated findings of perovskite BaLiF3using the GGA and LDA approaches by Amaraet al.[27]and IL-type ZnSnO3using GGA approach by Gouet al.[28].More importantly,the 0.5%error of the lattice parameters using LDA implies that the LDA approach should be a suitable method for calculating a system like IL-type hexagonal ZnTiO3material.

    2.3 Optical properties

    The optical properties of matter can be described by the complex dielectric functionε(ω),which represents the linear response of the system to an external electromagnetic fi eld with a small wave vector.It can be expressed as[31]:

    Calculations ignore excitonic effects but include the local field effect.The interband contribution to the imaginary part ofdielectric function is calculated by taking all possible transitions from occupied to unoccupied states.The imaginary part of the dielectric function ε2(ω)is then given by[32-33]:

    Table 2 Mulliken charge population of IL-type ZnTiO3

    where M is the dipole matrix,i and j denote the initial and fi nal states,respectively,fiis the Fermi distribution function for the ith state,and Eiis the energy of the electron in the ith state.

    The real part ε1(ω)of the dielectric function can be extracted from the imaginary part using the Kramers-Kroning relation[34]:

    where P is the principal value of the integral.The knowledge of both the real and imaginary parts of the dielectric function allows the calculation of important optical functions.Expressions for the absorption coefficient I(ω),refractive index n(ω),and extinction coefficient k(ω)are given below[35-36]:

    To give an overview of the optical properties of ZnTiO3and in particular to show the different optical interband transitions,Figs.(4-6)show the calculated complex dielectric function ε(ω),absorption coefficient I(ω),refractive index n(ω),and extinction coefficient k(ω)in an energy region of 0 to 50 eV using LDA(CA-PZ)method.

    Fig.4 shows the results of calculated dielectric function of ZnTiO3.The imaginary part ε2(ω)of the dielectric function has three prominent peaks of A(4.15 eV),B(19.8 eV),and C(35.8 eV).The peak A mainly corresponds to the transition of O 2p electron VB into Ti 3d CB states.The peak B originates from the transition of O 2s electron VB into Ti 3d CB states.The peak C is assigned to the transition of inner electrons from Ti 3p levels to the CB.Therefore the origin of these peaks includes the indirect and direct transitions of the inner electrons in materials.

    The main features of the dispersive part ε1(ω)of the dielectric function are:a maximum peak in the curve at around 3.2 eV and a minimum peak at around 5.0 eV;there is a rather steep decrease from 3.2 to 5.0 eV;after the minimum peak(5.0 eV),ε1(ω)rises slowly up to 34.5 eV,and then ε1(ω)has a little obvious decrease from 34.5 eV to 36.5 eV followed by a slow increase toward the value of 1.0 at high energies.For ε1(ω),the most important quantity is the zero frequency limit ε1(0),which gives the static dielectric constant of 3.50.These features show that IL-type ZnTiO3could be a good transparent conductive film material.

    The calculated absorption coefficient I(ω)of IL-type ZnTiO3is displayed in Fig.5.Three peaks are found in the range of 0 to 50 eV,locating at 5.0,20.0 and 35.9 eV,respectively,which are very similar to the peaks of ε2(ω).Besides,based on the analysis of the transitions of the electrons,the origins of the three peaks structure in the absorption coefficient spectra are consistent with the origin of peaks A,B and C in ε2(ω),respectively.As a material of photo-electron transition,IL-type ZnTiO3may have a promising application not only in the transparent conductive film,but also in the photoelectrocatalysis.There are three main reasons[37]for the application of IL-type ZnTiO3in the high transparent conductive film material:the electrons are not easy to transition,the rather weak absorption of IL-type ZnTiO3is in the lowest(0-3.0 eV)and middle energy regions(10.0-33.5 eV),and IL-type ZnTiO3itself is the wide band gap(3.1 eV).In addition,IL-type ZnTiO3owns the rather strong absorption in the lower energy region(3.1-6.2 eV),which is well consistent with the experiment data(200-401 nm).In the experiment of photocatalytic degradation of the azo dye methyl violet,IL-type ZnTiO3sample exhibits the maximum photocatalytic performance in the ultraviolet range(200-401 nm)[14].

    The extinction coefficient k(ω)and the refractive index n(ω)have been calculated and showed in Fig.6.The local maxima of k(ω)corresponds to the zero of ε1(ω)(E=4.73 eV).The extinction coefficient and the refractive index of IL-type ZnTiO3have resonance in the two energy regions(from 1.77 to 10.0 eV,from 33.6 to 37.8 eV).For n(ω),the static value n2(0)=1.87 represents the important quantity.The value of n(ω)increases with the energy increasing in the transparency region and reaches a peak in the ultraviolet at about 3.40 eV.Moreover,we note that the obtained refractive index spectra k(ω)and the extinction coefficient n(ω)is similar to the imaginary part ε2(ω)of the dielectric function and the dispersive part ε1(ω)of the dielectric function,respectively.

    3 Conclusions

    The electronic structures of IL-type hexagonal ZnTiO3were investigated using the LDA and GGA based on the DFT,and the optical properties of ZnTiO3were also calculated by the LDA method.The obtained results are in good agreement with the experimental data.From the above calculations,the following conclusions can be given.

    (1)The lattice constants from LDA calculation are about 0.5%smaller than the experimental value,while the GGA results are about 1.1%larger.It is clear that the LDA approximation gives lattice parameters rather close to the experimental values.

    (2)The top of the valence band of IL-type hexagonal ZnTiO3is mainly dominated by the contribution of the hybridization Ti 3d and O 2p states.The bottom of the conduction band mainly originates from the contribution of Ti 3d states.The calculated energy band structure shows that the hexagonal ZnTiO3is a direct band gap(Eg=3.11 eV)semiconductor materials.

    (3)The analysis of the density of states and Mulliken charge population indicates that the bond Zn—O is typically ionic whereas Ti—O bond has covalent character.

    1 Dulin,F.H.;Rase,D.E.J.Am.Ceram.Soc.,1960,43:125

    2 Bartram,S.F.;Slepetys,A.J.Am.Ceram.Soc.,1961,44:493

    3 Chang,Y.S.;Chang,Y.H.;Chen,I.G.;Chen,G.J.;Chai,Y.L.J.Cryst.Growth,2002,43:319

    4 Botta,P.M.;Aglietti,E.F.;Lopez,J.M.P.J.Mater.Sci.,2004,39:5195

    5 Kim,H.T.;Byun,J.D.;Kim,Y.Mater.Res.Bull.,1998,33:963

    6 Kim,H.T.;Byun,J.D.;Kim,Y.Mater.Res.Bull.,1998,33:975

    7 Obayashi,H.;Sakurai,Y.;Gejo,T.J.Solid State Chem.,1976,17:299

    8 Chang,Y.S.;Chang,Y.H.;Chen,I.G.;Chen,G.J.;Chai,Y.L.;Fang,T.H.;Wu,S.A.Ceram.Int.,2004,30:2183

    9 Chaouchi,A.;Aliouat,M.;Marinel,S.;Bourahla,H.Ceram.Int.,2007,33:245

    10 Wang,S.F.;Lü,M.K.;Gu,F.;Song,C.F.;Dong,X.;Yuan,D.R.;Zhou,G.J.;Qi,Y.X.Inorg.Chem.Commun.,2003,6:185

    11 Mojmhedi,W.;Abbasian,J.Energy Fuels,1995,9:429

    12 Chen,Z.X.;Derking,A.;Koot,W.;Van-Dijk,M.P.J.Catal.,1996,161:730

    13 Huang,J.J.;Zhao,J.T.;Wei,X.F.;Wang,Y.;Bu,X.P.Powd.Technol.,2008,180:196

    14 Kong,J.Z.;Li,A.D.;Zhai,H.F.;Li,H.;Yan,Q.Y.;Ma,J.;Wu,D.J.Hazard.Mater.,2009,171:918

    15 Simin,J.D.;Mahjoub,A.R.J.Alloy.Compd.,2009,486:805

    16 Cohen,R.E.;Krakauer,H.Phys.Rev.B,1990,42:6416

    17 Cohen,R.E.Nature,1992,358:136

    18 Tinte,S.;Stachiotti,M.G.Phys.Rev.B,1998,58:11959

    19 Piskunov,S.;Heifets,E.;Eglitis,R.I.;Borstel,G.Comput.Mater.Sci.,2004,9:165

    20 Hosseini,S.M.;Movlarooy,T.;Kompany,A.Physica B,2007,391:316

    21 Zhang,Z.Y.;Yang,D.L.;Liu,Y.H.;Cao,H.B.;Shao,J.X.;Jing,Q.Acta Phys.-Chim.Sin.,2009,25:1731 [張子英,楊德林,劉云虎,曹海濱,邵建新,井 群.物理化學(xué)學(xué)報(bào),2009,25:1731]

    22 Yun,J.N.;Zhang,Z.Y.Acta Phys.-Chim.Sin.,2010,26:751[贠江妮,張志勇.物理化學(xué)學(xué)報(bào),2010,26:751]

    23 Segall,M.D.;Lindan,P.L.D.;Probert,M.J.J.Phys.-Condes.Matter,2002,14:2717

    24 Payne,M.C.;Teter,M.P.;Allan,D.C.Rev.Mod.Phys.,1992,64:1045

    25 Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.,1996,77:3865

    26 Monkhorst,H.J.;Pack,J.D.;Freeman,D.L.Solid State Commun.,1979,29:723

    27 Korba,S.A.;Meradji,H.;Ghemid,S.;Bouhafs,B.Comput.Mater.Sci.,2009,44:1265

    28 Gou,H.Y.;Gao,F.M.;Zhang,J.W.Comput.Mater.Sci.2010,49:552

    29 Ye,C.;Pan,S.S.;Teng,X.M.Appl.Phys.A,2008,90:375

    30 Jones,R.O.;Gunnarsson,O.Rev.Mod.Phys.,1989,61:689

    31 Tell,J.S.Phys.Rev.,1956,104:1760

    32 Sharma,S.;Ambrosch-Draxl,C.;Khan,M.A.;Blaha,P.;Auluck,S.Phys.Rev.B,1999,60:8610

    33 Puschnig,P.;Ambrosch-Draxl,C.Phys.Rev.B,2002,66:165105

    34 Ambrosch-Draxl,C.;Sofo,J.O.Comput.Phys.Commun.,2006,175:1

    35 Delin,A.;Eriksson,O.;Ahuja,R.;Johansson,B.Phys.Rev.B,1996,54:1673

    36 Fox,M.Optical properties of solids.New York:Oxford University Press,2001

    37 Zhang,F.C.;Zhang,Z.Y.;Zhang,W.H.;Yan,J.F.;Yun,J.N.Acta Chim.Sin.,2008,66:1863 [張富春,張志勇,張威虎,閻軍峰,贠江妮.化學(xué)學(xué)報(bào),2008,66:1863]

    鈦鐵礦型六方相ZnTiO3的電子結(jié)構(gòu)和光學(xué)性質(zhì)

    張小超1樊彩梅1,*梁鎮(zhèn)海1韓培德2

    (1太原理工大學(xué)潔凈化工研究所,太原030024;2太原理工大學(xué)材料科學(xué)與工程學(xué)院,太原030024)

    分別采用基于密度泛函理論(DFT)的局域密度近似(LDA)和廣義梯度近似(GGA)方法對(duì)鈦鐵礦型六方相ZnTiO3的電子結(jié)構(gòu)進(jìn)行了第一性原理計(jì)算,并在局域密度近似下計(jì)算了六方相ZnTiO3的光學(xué)性質(zhì),并將計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)進(jìn)行了對(duì)比.結(jié)果表明,在局域密度近似下計(jì)算得到的結(jié)構(gòu)參數(shù)更接近實(shí)驗(yàn)數(shù)據(jù).理論預(yù)測六方相ZnTiO3屬于直接帶隙半導(dǎo)體材料,其禁帶寬度(布里淵區(qū)Z點(diǎn))為3.11 eV.電子態(tài)密度和Mulliken電荷布居分析表明Zn―O鍵是典型的離子鍵而Ti―O鍵是類似于鈣鈦礦型ATiO3(A=Sr,Pb,Ba)的Ti―O共價(jià)鍵.在50 eV的能量范圍內(nèi)研究了ZnTiO3的介電函數(shù)、吸收光譜和折射率等光學(xué)性質(zhì),并基于電子能帶結(jié)構(gòu)和態(tài)密度對(duì)光學(xué)性質(zhì)進(jìn)行了解釋.

    第一性原理;電子結(jié)構(gòu);光學(xué)性質(zhì);鈦鐵礦型六方相ZnTiO3

    O641

    Received:August 2,2010;Revised:October 27,2010;Published on Web:November 17,2010.

    ?Corresponding author.Email:fancm@163.com;Tel:+86-351-6018193,+86-13007011210.

    The project was supported by the National Natural Science Foundation of China(20876104,20771080)and Science and Technology Foundation of Shanxi Province,China(20090311082).

    國家自然科學(xué)基金(20876104,20771080)和山西省科技攻關(guān)項(xiàng)目(20090311082)資助

    猜你喜歡
    張志勇鈦鐵礦局域
    Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures:An ensemble Monte Carlo simulation
    苯甲羥肟酸浮選鈦鐵礦的作用機(jī)理
    鋼鐵釩鈦(2022年4期)2022-09-19 08:18:50
    第四次出獄之后
    方圓(2022年12期)2022-09-15 00:58:22
    第四次出獄后,他相信自己不會(huì)再碰毒品了
    方圓(2022年13期)2022-09-14 15:08:02
    元山子鈦鐵礦礦區(qū)水文地質(zhì)特征分析
    Designing of spin filter devices based on zigzag zinc oxide nanoribbon modified by edge defect?
    微細(xì)粒鈦鐵礦磁選回收率低原因分析
    局域積分散列最近鄰查找算法
    電子測試(2018年18期)2018-11-14 02:30:34
    利用鈦鐵礦制備納米鈦基功能材料
    PET成像的高分辨率快速局域重建算法的建立
    国产美女午夜福利| 搡老妇女老女人老熟妇| 日韩精品有码人妻一区| 精品人妻偷拍中文字幕| 亚洲精华国产精华液的使用体验 | 国产成人a区在线观看| 成人av在线播放网站| 一个人观看的视频www高清免费观看| 国产精品日韩av在线免费观看| 九九久久精品国产亚洲av麻豆| 国产乱人视频| 国产熟女欧美一区二区| av在线亚洲专区| 一本精品99久久精品77| 美女 人体艺术 gogo| 欧美激情在线99| 久久久久久久午夜电影| 国产精品久久久久久精品电影| 无遮挡黄片免费观看| 成年女人看的毛片在线观看| 亚洲无线观看免费| 日韩大尺度精品在线看网址| 亚洲男人的天堂狠狠| 国产麻豆成人av免费视频| 69av精品久久久久久| 变态另类丝袜制服| 亚洲av成人av| 日韩欧美一区二区三区在线观看| 美女免费视频网站| 国产三级中文精品| 国产亚洲精品久久久久久毛片| 色5月婷婷丁香| 国产伦精品一区二区三区四那| 久久精品国产鲁丝片午夜精品 | 亚洲欧美日韩东京热| 色尼玛亚洲综合影院| 国产日本99.免费观看| 久9热在线精品视频| 日韩av在线大香蕉| a级毛片a级免费在线| 久久久久久久久大av| 欧美bdsm另类| 99久久久亚洲精品蜜臀av| 观看免费一级毛片| 男人的好看免费观看在线视频| 国产精品爽爽va在线观看网站| 亚洲综合色惰| 黄片wwwwww| av中文乱码字幕在线| 亚洲国产高清在线一区二区三| 少妇熟女aⅴ在线视频| 国产av麻豆久久久久久久| 尤物成人国产欧美一区二区三区| 九色国产91popny在线| 欧美一级a爱片免费观看看| 午夜精品一区二区三区免费看| 国产精品伦人一区二区| bbb黄色大片| 男插女下体视频免费在线播放| 免费观看人在逋| 久久久久久大精品| 国产男人的电影天堂91| 国产精品久久久久久精品电影| 亚洲精品日韩av片在线观看| 嫩草影视91久久| 亚洲中文字幕一区二区三区有码在线看| 少妇高潮的动态图| 免费看光身美女| 日韩在线高清观看一区二区三区 | 欧美绝顶高潮抽搐喷水| 国产成人一区二区在线| 91在线观看av| 在线国产一区二区在线| 麻豆一二三区av精品| 中文字幕久久专区| av在线老鸭窝| 久久精品国产亚洲av天美| 91精品国产九色| 午夜精品久久久久久毛片777| 嫁个100分男人电影在线观看| 久久久久国内视频| x7x7x7水蜜桃| 乱码一卡2卡4卡精品| 国产精品永久免费网站| aaaaa片日本免费| 最后的刺客免费高清国语| 久久亚洲真实| 丝袜美腿在线中文| 毛片一级片免费看久久久久 | 午夜福利视频1000在线观看| 久久久久国内视频| a级毛片a级免费在线| 有码 亚洲区| 麻豆国产97在线/欧美| 欧美精品国产亚洲| 亚洲国产欧洲综合997久久,| 美女黄网站色视频| 久久久久久久久久黄片| 在线免费观看的www视频| 九九久久精品国产亚洲av麻豆| 久久久久久伊人网av| 久久这里只有精品中国| 草草在线视频免费看| 日韩精品有码人妻一区| 最新中文字幕久久久久| 18禁黄网站禁片免费观看直播| 亚洲成人中文字幕在线播放| 波多野结衣高清无吗| 国产高潮美女av| 国产免费一级a男人的天堂| 欧美区成人在线视频| 小说图片视频综合网站| 中文资源天堂在线| 99久久精品一区二区三区| 可以在线观看毛片的网站| 精品一区二区三区av网在线观看| 黄色丝袜av网址大全| 国产在视频线在精品| 国产综合懂色| 又爽又黄a免费视频| 亚洲天堂国产精品一区在线| 日韩大尺度精品在线看网址| 日韩大尺度精品在线看网址| 人妻丰满熟妇av一区二区三区| 国产探花在线观看一区二区| 亚洲三级黄色毛片| 大又大粗又爽又黄少妇毛片口| a级一级毛片免费在线观看| 欧美日本视频| 亚洲无线观看免费| 亚洲久久久久久中文字幕| 欧美极品一区二区三区四区| 老司机福利观看| 老司机午夜福利在线观看视频| 人妻久久中文字幕网| 日本在线视频免费播放| 九九爱精品视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 色av中文字幕| 又爽又黄a免费视频| 少妇的逼水好多| 免费无遮挡裸体视频| av福利片在线观看| 国产色婷婷99| 老师上课跳d突然被开到最大视频| 午夜老司机福利剧场| 国产成人影院久久av| 毛片女人毛片| 久99久视频精品免费| 午夜激情欧美在线| 国产日本99.免费观看| 国产v大片淫在线免费观看| 内地一区二区视频在线| 久久精品国产亚洲av天美| a级一级毛片免费在线观看| 特级一级黄色大片| 亚洲专区国产一区二区| 亚洲电影在线观看av| 12—13女人毛片做爰片一| av天堂在线播放| 少妇丰满av| 亚洲国产欧洲综合997久久,| 狂野欧美激情性xxxx在线观看| 亚洲av熟女| 好男人在线观看高清免费视频| 麻豆精品久久久久久蜜桃| 午夜福利成人在线免费观看| 亚洲天堂国产精品一区在线| 国产伦精品一区二区三区四那| 亚洲欧美日韩东京热| 不卡一级毛片| 亚洲成人中文字幕在线播放| 国产不卡一卡二| 精品午夜福利在线看| 国国产精品蜜臀av免费| 超碰av人人做人人爽久久| www.www免费av| 亚洲成人久久爱视频| 欧美中文日本在线观看视频| 国产aⅴ精品一区二区三区波| 中文字幕高清在线视频| 老司机深夜福利视频在线观看| 三级男女做爰猛烈吃奶摸视频| 国产高清视频在线播放一区| 他把我摸到了高潮在线观看| 国产一区二区激情短视频| 美女xxoo啪啪120秒动态图| 亚洲黑人精品在线| 午夜激情福利司机影院| 精品99又大又爽又粗少妇毛片 | 91久久精品电影网| 国产三级在线视频| 久久精品国产清高在天天线| 琪琪午夜伦伦电影理论片6080| 69人妻影院| 99久久精品国产国产毛片| 久久99热6这里只有精品| 尤物成人国产欧美一区二区三区| 国产av麻豆久久久久久久| 国产伦在线观看视频一区| 麻豆成人av在线观看| 亚洲 国产 在线| 九九久久精品国产亚洲av麻豆| 91在线精品国自产拍蜜月| 日韩av在线大香蕉| 免费观看的影片在线观看| 无人区码免费观看不卡| 成年女人毛片免费观看观看9| 国产大屁股一区二区在线视频| 少妇的逼水好多| 白带黄色成豆腐渣| 成年女人看的毛片在线观看| 日韩精品青青久久久久久| 男人舔女人下体高潮全视频| 国产亚洲91精品色在线| 超碰av人人做人人爽久久| www.www免费av| 国内精品久久久久久久电影| 精品久久久久久成人av| 精品国内亚洲2022精品成人| 成人高潮视频无遮挡免费网站| 两个人的视频大全免费| 日本色播在线视频| 日韩欧美三级三区| 一级毛片久久久久久久久女| 春色校园在线视频观看| 亚洲人与动物交配视频| 桃色一区二区三区在线观看| 国产成人a区在线观看| 欧美精品啪啪一区二区三区| 91久久精品电影网| 亚洲精品日韩av片在线观看| 亚洲av成人av| 毛片一级片免费看久久久久 | 中文在线观看免费www的网站| 国产伦一二天堂av在线观看| 在线观看av片永久免费下载| 最新在线观看一区二区三区| 亚洲精品乱码久久久v下载方式| 99久久精品一区二区三区| 白带黄色成豆腐渣| 91久久精品电影网| 少妇被粗大猛烈的视频| 变态另类丝袜制服| 少妇猛男粗大的猛烈进出视频 | 亚洲人与动物交配视频| 久久精品国产亚洲av天美| 在线国产一区二区在线| 日本成人三级电影网站| 亚洲精品一区av在线观看| 久久这里只有精品中国| 国产精品日韩av在线免费观看| 久久午夜福利片| 日本撒尿小便嘘嘘汇集6| 观看免费一级毛片| 日韩国内少妇激情av| av中文乱码字幕在线| 免费高清视频大片| 免费人成视频x8x8入口观看| 国产中年淑女户外野战色| 观看免费一级毛片| 黄色配什么色好看| 日韩一本色道免费dvd| 精品一区二区免费观看| 深爱激情五月婷婷| 精品欧美国产一区二区三| 精品久久久久久久久久免费视频| 免费av观看视频| av天堂中文字幕网| 人人妻人人澡欧美一区二区| 国产私拍福利视频在线观看| 免费看美女性在线毛片视频| 国产精品嫩草影院av在线观看 | 天堂网av新在线| 不卡视频在线观看欧美| 国产高清视频在线播放一区| 国产精品av视频在线免费观看| 亚洲最大成人av| 毛片女人毛片| 色av中文字幕| 伊人久久精品亚洲午夜| 22中文网久久字幕| 99久久中文字幕三级久久日本| 免费观看人在逋| 99在线视频只有这里精品首页| 亚洲一区高清亚洲精品| 人妻丰满熟妇av一区二区三区| 欧美激情久久久久久爽电影| 中文字幕av成人在线电影| 色吧在线观看| 国产高清有码在线观看视频| 人妻少妇偷人精品九色| 午夜久久久久精精品| 欧美精品啪啪一区二区三区| 日韩精品青青久久久久久| 成年女人永久免费观看视频| 麻豆成人午夜福利视频| 人妻久久中文字幕网| 午夜免费男女啪啪视频观看 | 国产探花极品一区二区| 22中文网久久字幕| 精品乱码久久久久久99久播| 久久天躁狠狠躁夜夜2o2o| 老司机福利观看| 国产精品亚洲美女久久久| 在线观看av片永久免费下载| 国产精品,欧美在线| 国产精品久久久久久av不卡| 精品日产1卡2卡| 欧美不卡视频在线免费观看| 国产一区二区三区av在线 | 日韩欧美在线乱码| 日韩人妻高清精品专区| 一进一出好大好爽视频| 久久久久久久精品吃奶| 欧美中文日本在线观看视频| 美女被艹到高潮喷水动态| 国产老妇女一区| avwww免费| 国产黄色小视频在线观看| 无人区码免费观看不卡| 免费观看精品视频网站| 国产亚洲精品久久久久久毛片| 成人国产麻豆网| 69av精品久久久久久| 成年女人毛片免费观看观看9| 韩国av一区二区三区四区| 人人妻,人人澡人人爽秒播| 免费av毛片视频| 亚洲aⅴ乱码一区二区在线播放| 97超级碰碰碰精品色视频在线观看| 啦啦啦韩国在线观看视频| 国产精品久久久久久久电影| 午夜a级毛片| 亚洲七黄色美女视频| 国产视频内射| 午夜日韩欧美国产| 午夜福利在线在线| 九九热线精品视视频播放| 亚洲av免费高清在线观看| 午夜久久久久精精品| 国产白丝娇喘喷水9色精品| 国产 一区精品| 我要搜黄色片| 国产69精品久久久久777片| 午夜日韩欧美国产| 亚洲 国产 在线| 国产一区二区激情短视频| 午夜精品在线福利| 最近最新中文字幕大全电影3| 成人毛片a级毛片在线播放| 嫩草影院精品99| 亚洲一区高清亚洲精品| 午夜免费激情av| 如何舔出高潮| 伦理电影大哥的女人| 亚洲精品成人久久久久久| 国内毛片毛片毛片毛片毛片| 久久久久性生活片| 国产精品一区二区免费欧美| 久久香蕉精品热| 午夜福利欧美成人| 一个人免费在线观看电影| 很黄的视频免费| 国产免费男女视频| 国产探花极品一区二区| 亚洲专区中文字幕在线| 波多野结衣高清无吗| 久久精品影院6| 午夜精品久久久久久毛片777| 国产探花在线观看一区二区| 欧美一区二区精品小视频在线| a级毛片免费高清观看在线播放| aaaaa片日本免费| 中文资源天堂在线| 国产精品无大码| 99国产精品一区二区蜜桃av| 别揉我奶头 嗯啊视频| 亚洲人成网站在线播放欧美日韩| www.色视频.com| 男插女下体视频免费在线播放| 亚洲三级黄色毛片| 亚洲av中文av极速乱 | 老女人水多毛片| 色哟哟哟哟哟哟| 精品久久国产蜜桃| 国产麻豆成人av免费视频| 国产亚洲精品综合一区在线观看| 国产av在哪里看| 男女之事视频高清在线观看| 成人亚洲精品av一区二区| 国产高清不卡午夜福利| 国产精品免费一区二区三区在线| 久久国内精品自在自线图片| 免费观看精品视频网站| 91午夜精品亚洲一区二区三区 | 十八禁国产超污无遮挡网站| 国产精品一区二区性色av| 麻豆国产97在线/欧美| xxxwww97欧美| 欧美精品啪啪一区二区三区| 长腿黑丝高跟| 日韩亚洲欧美综合| 看片在线看免费视频| 免费看a级黄色片| 久久久久久久精品吃奶| 久久人妻av系列| 成人av一区二区三区在线看| 国国产精品蜜臀av免费| 国产亚洲欧美98| 国产免费男女视频| 丰满的人妻完整版| 久9热在线精品视频| 亚洲精华国产精华液的使用体验 | 热99re8久久精品国产| av在线亚洲专区| 久久这里只有精品中国| 毛片女人毛片| 国产精品99久久久久久久久| 一区福利在线观看| 午夜精品在线福利| 日日摸夜夜添夜夜添av毛片 | 99热这里只有是精品在线观看| 国产精品国产高清国产av| 国产私拍福利视频在线观看| 好男人在线观看高清免费视频| 天堂av国产一区二区熟女人妻| 国产一区二区三区av在线 | 日韩国内少妇激情av| 久久99热这里只有精品18| 麻豆国产av国片精品| 91狼人影院| 黄色女人牲交| 别揉我奶头~嗯~啊~动态视频| 91狼人影院| 99久久中文字幕三级久久日本| 好男人在线观看高清免费视频| 91在线观看av| av国产免费在线观看| 亚洲va在线va天堂va国产| 午夜免费男女啪啪视频观看 | 男人舔奶头视频| 欧美黑人巨大hd| 欧美最黄视频在线播放免费| 2021天堂中文幕一二区在线观| 天天躁日日操中文字幕| 日韩大尺度精品在线看网址| 国产av在哪里看| 久久亚洲真实| 窝窝影院91人妻| 一级a爱片免费观看的视频| av天堂在线播放| 成人午夜高清在线视频| 久久国产精品人妻蜜桃| 五月伊人婷婷丁香| 给我免费播放毛片高清在线观看| 中国美白少妇内射xxxbb| www日本黄色视频网| 久久久色成人| 国产探花极品一区二区| 亚洲自偷自拍三级| 国产v大片淫在线免费观看| 动漫黄色视频在线观看| 99九九线精品视频在线观看视频| 久久久久久久亚洲中文字幕| 国产一区二区三区av在线 | 欧美一区二区精品小视频在线| 一夜夜www| 99热精品在线国产| 日韩中字成人| 久99久视频精品免费| 欧美不卡视频在线免费观看| 床上黄色一级片| 亚洲人成网站高清观看| 99久久精品热视频| 久久99热6这里只有精品| 一区二区三区高清视频在线| 999久久久精品免费观看国产| 狂野欧美激情性xxxx在线观看| 亚洲图色成人| 亚洲精品在线观看二区| 春色校园在线视频观看| 亚洲,欧美,日韩| 国产男人的电影天堂91| 亚洲美女搞黄在线观看 | 国产高清不卡午夜福利| 久久精品综合一区二区三区| 国产av一区在线观看免费| 国产一区二区三区av在线 | 国产一级毛片七仙女欲春2| 校园人妻丝袜中文字幕| 可以在线观看毛片的网站| 久久99热这里只有精品18| 久久久久性生活片| 国产一级毛片七仙女欲春2| 日本a在线网址| 国产av麻豆久久久久久久| 精品一区二区免费观看| 欧美色欧美亚洲另类二区| 亚洲人成网站在线播放欧美日韩| 美女xxoo啪啪120秒动态图| 免费观看精品视频网站| 成人国产麻豆网| 一级黄片播放器| 国产高潮美女av| 日韩高清综合在线| 国产毛片a区久久久久| 麻豆国产97在线/欧美| 在线播放国产精品三级| 成人三级黄色视频| 乱系列少妇在线播放| 国产老妇女一区| 成人午夜高清在线视频| 看免费成人av毛片| 深爱激情五月婷婷| 中文字幕久久专区| 成人国产麻豆网| 99热这里只有是精品在线观看| 欧美一区二区精品小视频在线| 一个人观看的视频www高清免费观看| 久久久久免费精品人妻一区二区| 亚洲熟妇中文字幕五十中出| 亚洲av电影不卡..在线观看| 国产男靠女视频免费网站| 一本一本综合久久| 亚洲专区国产一区二区| а√天堂www在线а√下载| 少妇的逼水好多| 亚洲熟妇熟女久久| 中文在线观看免费www的网站| 少妇被粗大猛烈的视频| 很黄的视频免费| 一区二区三区高清视频在线| 国产成人影院久久av| 亚洲色图av天堂| 狠狠狠狠99中文字幕| 免费av观看视频| 成年女人永久免费观看视频| 国产高清三级在线| 久久久久久伊人网av| 精品99又大又爽又粗少妇毛片 | 国产精品嫩草影院av在线观看 | 亚洲精品日韩av片在线观看| 99热6这里只有精品| 欧美日韩黄片免| 亚洲欧美清纯卡通| 变态另类成人亚洲欧美熟女| 亚洲aⅴ乱码一区二区在线播放| 一个人看视频在线观看www免费| 丰满乱子伦码专区| 99久久精品一区二区三区| 国产成年人精品一区二区| av在线老鸭窝| 久久久久久久久大av| 亚洲精品乱码久久久v下载方式| 亚洲欧美日韩无卡精品| 夜夜夜夜夜久久久久| 亚洲精品在线观看二区| 可以在线观看的亚洲视频| 国产精品综合久久久久久久免费| 国内精品宾馆在线| 12—13女人毛片做爰片一| 久久九九热精品免费| 免费av不卡在线播放| av视频在线观看入口| 色5月婷婷丁香| 国产精品精品国产色婷婷| 韩国av一区二区三区四区| a级毛片a级免费在线| 在线国产一区二区在线| 久久精品综合一区二区三区| 看片在线看免费视频| 变态另类丝袜制服| 99精品在免费线老司机午夜| 国产精品国产三级国产av玫瑰| 天堂影院成人在线观看| 亚洲美女视频黄频| 日本三级黄在线观看| 少妇丰满av| 欧美日韩亚洲国产一区二区在线观看| 欧美bdsm另类| 欧美另类亚洲清纯唯美| 欧美bdsm另类| 亚洲avbb在线观看| 男人舔女人下体高潮全视频| 婷婷丁香在线五月| av国产免费在线观看| 极品教师在线视频| www日本黄色视频网| 女的被弄到高潮叫床怎么办 | 国产人妻一区二区三区在| 1000部很黄的大片| 国产欧美日韩一区二区精品| 国产精品一区二区性色av| 久久久国产成人免费| 精品人妻偷拍中文字幕| 欧美xxxx性猛交bbbb| 日本五十路高清| 成人二区视频| 18禁黄网站禁片免费观看直播| 老司机福利观看| 一a级毛片在线观看| 国产久久久一区二区三区| 99久久精品热视频| 乱码一卡2卡4卡精品| 亚洲精品色激情综合| 日韩大尺度精品在线看网址| 有码 亚洲区| 看黄色毛片网站| 免费看美女性在线毛片视频| 日韩国内少妇激情av| 亚洲av熟女| 又紧又爽又黄一区二区| 国产成人影院久久av| 午夜福利在线观看免费完整高清在 |