• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic Structures and Optical Properties of Ilmenite-Type Hexagonal ZnTiO3

    2014-10-14 03:44:10ZHANGXiaoChaoFANCaiMeiLIANGZhenHaiHANPeiDe
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:張志勇鈦鐵礦局域

    ZHANG Xiao-Chao FAN Cai-Mei,* LIANG Zhen-Hai HAN Pei-De

    (1Institute of Clean Technique for Chemical Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China;2College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China)

    Electronic Structures and Optical Properties of Ilmenite-Type Hexagonal ZnTiO3

    ZHANG Xiao-Chao1FAN Cai-Mei1,*LIANG Zhen-Hai1HAN Pei-De2

    (1Institute of Clean Technique for Chemical Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China;2College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China)

    Abstract:The electronic structures of ilmenite(IL)-type hexagonal ZnTiO3were investigated using the generalized gradient approximation(GGA)and local density approximation(LDA)based on density functional theory(DFT).The optical properties of ZnTiO3were also calculated by the LDA method.The calculated results were compared with experimental data.Results show that the structural parameters obtained by the LDA calculation are rather close to the experimental values.IL-type hexagonal ZnTiO3is a kind of direct bandgap(Eg=3.11 eV)semiconductor material at theZpoint in the Brillouin zone.An analysis of the density of states(DOS)and the Mulliken charge population clearly reveal that the Zn―O bond is a typical ionic bond whereas the Ti―O bond,which is similar to the Ti―O bond in perovskites ATiO3(A=Sr,Pb,Ba),is covalent in character.Furthermore,the dielectric function,absorption spectrum,and refractive index were obtained and analyzed on the basis of electronic band structures and the DOS for radiation up to 50 eV.

    Key Words:First-principles;Electronic structure;Optical property;Ilmenite-type hexagonal ZnTiO3

    Fundamental studies concerning the phase diagram and characterization of the ZnO/TiO2system have been published by several researchers[1-4].There are three zinc titanate compounds that exist in ZnO/TiO2system:Zn2TiO4(cubic),ZnTiO3(hexag-onal),and Zn2Ti3O8(cubic).Among these compounds,ilmenite(IL)-type hexagonal zinc titanate(ZnTiO3)has attracted great attention due to its potential application,such as microwave dielectrics[5-6],gas sensors[7],ceramics[8-9],photoluminescence materials[10],sorbents for the desulfurization of hot coal gases and paint pigments[11-13].Recent studies[14-15]had also found that the pure hexagonal ZnTiO3prepared by a modified alcoholysis may be a promising photocatalyst in large-scale application of the photocatalysis under solar light irradiation for photodegradation of water contamination and environmental pollution.

    Although the ATiO3(A=Sr,Pb,Ba,Zn,Fe,etc.)materials have been investigated at least for half a century,a proper description of their electronic and optical properties is still an active research area from theoretical point of view.Since 1990s,the electronic structures and optical properties of perovskites ATiO3(A=Sr,Pb,Ba)had been calculated successfully using first-principles methods by several research groups[16-22].In the beginning of 1990s,Cohenet al.[16-17]examined successfully the ferroelectric properties of cubic BaTO3and PbTO3perovskite crystals by the full-potential linearized augmented plane wave(FP-LAPW)approach within the local density approximation(LDA).A few years later,Tinte and Stachiotti[18]reported the results of the generalized gradient approximation(GGA)in the scheme of Perdew-Burke-Erzernhof(PBE)calculations for structural and dynamical properties of perovskite oxides.Soon after,bulk properties and electronic structures of cubic SrTiO3,BaTiO3,and PbTiO3perovskites had been published using anab initioHF/DFT study by Piskunovet al.[19].In 2007,the cohesive energy and electronic properties of PbTiO3had been studied using the FP-LAPW method together with the LDA and GGA methods based on DFT by Hosseiniet al.[20].Most recently,Zhanget al.[21]studied the electronic structures and optical properties of cubic and tetragonal BaTiO3perovskite using the LDA,GGA,and pseudo-potential plane wave(PP-PW)methods,respectively.The effect of In and Scp-type doping on the structural stability,electronic structure,and optical properties of SrTiO3perovskite was investigated by first-principles calculations of PP-PW based on DFT by Yun and Zhang[22].Their calculated results are in good agreement with the experimental data in Refs.[16-22].However,there has been little theoretical work on the electronic structures and optical properties for IL-type hexagonal ZnTiO3,thus it is necessary for us to use the first-principles method to explore the electronic structures and optical properties of IL-type hexagonal ZnTiO3,and we hope the calculated results can provide a theoretical basis for the experimental process and practical application of hexagonal ZnTiO3.

    In this paper,the lattice constants of IL-type hexagonal Zn-TiO3were firstly optimized using the LDA in the scheme of Ceperley-Aider and Perdew-Zunger(CA-PZ)and GGA in the scheme of PBE based on DFT,and the calculated lattice constants were compared with experimental data.In addition,a systematic study of the electronic structures,density of states,Mulliken charge population,optical properties of IL-type hexagonal ZnTiO3were conducted and analyzed using the LDA(CA-PZ)method.It is found that our calculated results are in good agreement with experimental data.

    1 Computational method

    All of the calculations were performed using the well tested CASTEP code[23]in Material Studio 4.1 based on DFT.In the present calculation,the exchange and correlation potential were described with LDA in the scheme of CA-PZ[24]and GGA in the scheme of PBE[25].The states of Zn 3d104s2,Ti 3d24s2,and O 2s22p4were treated as valence states.The cutoff energy of a plane-wave was set at 340 eV.The maximum root-meansquare convergent tolerance was less than 2×10-5eV·atom-1.The force imposed on each atom was not greater than 0.1 eV·nm-1and a stress of less than 0.03 GPa.The Brillouin zone integrations were approximated using the specialk-point sampling scheme of Monkhorst-Pack[26],and a 3×3×4k-point grid was used.

    2 Results and discussion

    2.1 Geometry optimization

    In order to describe IL-type hexagonal ZnTiO3crystals,it is necessary to optimize structural parameters,which would be suitable for the electronic structure calculations of crystals.The lattice constants of ZnTiO3were optimized using the GGA(PBE)and LDA(CA-PZ),respectively.The results and a set of experimental data[2]are listed in Table 1 for comparison.X-ray powder diffraction data(PDF:26-1500)(a=b=0.5079 nm,c=1.3927 nm,α=β=90°,γ=120°,c/a=2.7421,Vo=0.3111 nm3,Z=6)[2]were used as a starting point for geometry optimization.The unit cell of hexagonal ZnTiO3contains six molecules as shown in Fig.1.The space group isR3.

    Table 1 Comparison between calculated structural data and experimental data

    2.2 Band structure,density of states and Mulliken charge population

    The electronic band structures along the symmetry lines of the Brillouin zone for IL-type hexagonal ZnTiO3using LDA calculation are shown in Fig.2.The results demonstrate that the IL-type hexagonal ZnTiO3is a direct band gap semiconductor material atZpoint in the Brillouin zone.The calculated band gap(Eg)is about 3.11 eV,which is a little smaller than the experimental value(3.34 eV[29])of hexagonal ZnTiO3.The reason for this disagreement is the well-known shortcoming of the theoretical frame of the LDAcalculation based on DFT[30].

    Total density of state(TDOS)and partial density of states(PDOSs)of IL-type hexagonal ZnTiO3are shown in Fig.3.As shown in Figs.(2-3),the valence band(VB)of ZnTiO3can be divided into two main zones:a lower valence band zone(-17.79--15.86 eV)and an upper one(-5.92-0.00 eV).The top of the upper VB is mainly dominated by the contribution of O 2pstates,which is very similar to those of perovskites ATiO3(A=Sr,Pb,Ba)[16,19-22]and IL-type ZnSnO3[28].Moreover,Zn 3dorbital in ZnTiO3not only distinctly contributes to the whole valence band but also has a strong interaction with O 2p,which is also similar to the case of Zn in IL-type ZnSnO3[28].However,Zn 3din ZnTiO3is quite different from the A site atom in perovskites ATiO3(A=Sr,Pb,Ba)[16,19-22].Therefore,IL-type ZnTiO3would have more covalent features than the previous studied perovskites ATiO3(A=Sr,Pb,Ba).An additional valence band between-17.37 and-15.92 eV mainly consists of O 2sstates.In addition,the other two VBs,-32.28--31.90 eV and-55.44--55.37 eV,are not considered,because their interaction with the two main mentioned VBs is very weak.For the conduction band(CB),the bottom of CB mainly originates from the contribution of Ti 3dstates,which also gives the main contribution to CB at about the lowest portion of the spectrum.There are some small contributions from O 2pstates to this part of the spectrum by analyzing TDOS and PDOSs of IL-type ZnTiO3.

    In order to understand bonding behavior,the Mulliken charge population for IL-type ZnTiO3was performed and analyzed and the results are listed in Table 2.For IL-type ZnTiO3,the net charge of Zn(+0.99e)is 1.01eless than its+2eformal charges,whereas O atom is with-0.67enegative charges and Ti atom carries+1.02epositive charges,which are much smaller than their-2eand+4eformal charges by 1.33eand 2.98e,respectively.The analysis shows that the Ti—O bond possesses a stronger covalent bonding strength than the Zn—O bond,which agrees well with the DOS analysis for ZnTiO3.Therefore,we have a conclusion that the bond between Zn—O is typically ionic whereas Ti—O bond has covalent character,these results are very similar to those of perovskites ATiO3(A=Sr,Pb,Ba)[16,1922].

    From Table 1 it can be clearly seen that the GGA overestimates the lattice parameters while the LDA underestimates them in comparison with the experimental data.These results are consistent with the general trends of these approximations.The lattice parameters from our LDA calculation are about 0.5%smaller than the experimental value,while the GGA results are about 1.1%larger.The LDA approach gives lattice parameters much closer to the experimental data.The volume change value(+0.0129 nm3)by GGA calculation is also larger than the LDA value(-0.0123 nm3).These trends are very similar to those of the calculated findings of perovskite BaLiF3using the GGA and LDA approaches by Amaraet al.[27]and IL-type ZnSnO3using GGA approach by Gouet al.[28].More importantly,the 0.5%error of the lattice parameters using LDA implies that the LDA approach should be a suitable method for calculating a system like IL-type hexagonal ZnTiO3material.

    2.3 Optical properties

    The optical properties of matter can be described by the complex dielectric functionε(ω),which represents the linear response of the system to an external electromagnetic fi eld with a small wave vector.It can be expressed as[31]:

    Calculations ignore excitonic effects but include the local field effect.The interband contribution to the imaginary part ofdielectric function is calculated by taking all possible transitions from occupied to unoccupied states.The imaginary part of the dielectric function ε2(ω)is then given by[32-33]:

    Table 2 Mulliken charge population of IL-type ZnTiO3

    where M is the dipole matrix,i and j denote the initial and fi nal states,respectively,fiis the Fermi distribution function for the ith state,and Eiis the energy of the electron in the ith state.

    The real part ε1(ω)of the dielectric function can be extracted from the imaginary part using the Kramers-Kroning relation[34]:

    where P is the principal value of the integral.The knowledge of both the real and imaginary parts of the dielectric function allows the calculation of important optical functions.Expressions for the absorption coefficient I(ω),refractive index n(ω),and extinction coefficient k(ω)are given below[35-36]:

    To give an overview of the optical properties of ZnTiO3and in particular to show the different optical interband transitions,Figs.(4-6)show the calculated complex dielectric function ε(ω),absorption coefficient I(ω),refractive index n(ω),and extinction coefficient k(ω)in an energy region of 0 to 50 eV using LDA(CA-PZ)method.

    Fig.4 shows the results of calculated dielectric function of ZnTiO3.The imaginary part ε2(ω)of the dielectric function has three prominent peaks of A(4.15 eV),B(19.8 eV),and C(35.8 eV).The peak A mainly corresponds to the transition of O 2p electron VB into Ti 3d CB states.The peak B originates from the transition of O 2s electron VB into Ti 3d CB states.The peak C is assigned to the transition of inner electrons from Ti 3p levels to the CB.Therefore the origin of these peaks includes the indirect and direct transitions of the inner electrons in materials.

    The main features of the dispersive part ε1(ω)of the dielectric function are:a maximum peak in the curve at around 3.2 eV and a minimum peak at around 5.0 eV;there is a rather steep decrease from 3.2 to 5.0 eV;after the minimum peak(5.0 eV),ε1(ω)rises slowly up to 34.5 eV,and then ε1(ω)has a little obvious decrease from 34.5 eV to 36.5 eV followed by a slow increase toward the value of 1.0 at high energies.For ε1(ω),the most important quantity is the zero frequency limit ε1(0),which gives the static dielectric constant of 3.50.These features show that IL-type ZnTiO3could be a good transparent conductive film material.

    The calculated absorption coefficient I(ω)of IL-type ZnTiO3is displayed in Fig.5.Three peaks are found in the range of 0 to 50 eV,locating at 5.0,20.0 and 35.9 eV,respectively,which are very similar to the peaks of ε2(ω).Besides,based on the analysis of the transitions of the electrons,the origins of the three peaks structure in the absorption coefficient spectra are consistent with the origin of peaks A,B and C in ε2(ω),respectively.As a material of photo-electron transition,IL-type ZnTiO3may have a promising application not only in the transparent conductive film,but also in the photoelectrocatalysis.There are three main reasons[37]for the application of IL-type ZnTiO3in the high transparent conductive film material:the electrons are not easy to transition,the rather weak absorption of IL-type ZnTiO3is in the lowest(0-3.0 eV)and middle energy regions(10.0-33.5 eV),and IL-type ZnTiO3itself is the wide band gap(3.1 eV).In addition,IL-type ZnTiO3owns the rather strong absorption in the lower energy region(3.1-6.2 eV),which is well consistent with the experiment data(200-401 nm).In the experiment of photocatalytic degradation of the azo dye methyl violet,IL-type ZnTiO3sample exhibits the maximum photocatalytic performance in the ultraviolet range(200-401 nm)[14].

    The extinction coefficient k(ω)and the refractive index n(ω)have been calculated and showed in Fig.6.The local maxima of k(ω)corresponds to the zero of ε1(ω)(E=4.73 eV).The extinction coefficient and the refractive index of IL-type ZnTiO3have resonance in the two energy regions(from 1.77 to 10.0 eV,from 33.6 to 37.8 eV).For n(ω),the static value n2(0)=1.87 represents the important quantity.The value of n(ω)increases with the energy increasing in the transparency region and reaches a peak in the ultraviolet at about 3.40 eV.Moreover,we note that the obtained refractive index spectra k(ω)and the extinction coefficient n(ω)is similar to the imaginary part ε2(ω)of the dielectric function and the dispersive part ε1(ω)of the dielectric function,respectively.

    3 Conclusions

    The electronic structures of IL-type hexagonal ZnTiO3were investigated using the LDA and GGA based on the DFT,and the optical properties of ZnTiO3were also calculated by the LDA method.The obtained results are in good agreement with the experimental data.From the above calculations,the following conclusions can be given.

    (1)The lattice constants from LDA calculation are about 0.5%smaller than the experimental value,while the GGA results are about 1.1%larger.It is clear that the LDA approximation gives lattice parameters rather close to the experimental values.

    (2)The top of the valence band of IL-type hexagonal ZnTiO3is mainly dominated by the contribution of the hybridization Ti 3d and O 2p states.The bottom of the conduction band mainly originates from the contribution of Ti 3d states.The calculated energy band structure shows that the hexagonal ZnTiO3is a direct band gap(Eg=3.11 eV)semiconductor materials.

    (3)The analysis of the density of states and Mulliken charge population indicates that the bond Zn—O is typically ionic whereas Ti—O bond has covalent character.

    1 Dulin,F.H.;Rase,D.E.J.Am.Ceram.Soc.,1960,43:125

    2 Bartram,S.F.;Slepetys,A.J.Am.Ceram.Soc.,1961,44:493

    3 Chang,Y.S.;Chang,Y.H.;Chen,I.G.;Chen,G.J.;Chai,Y.L.J.Cryst.Growth,2002,43:319

    4 Botta,P.M.;Aglietti,E.F.;Lopez,J.M.P.J.Mater.Sci.,2004,39:5195

    5 Kim,H.T.;Byun,J.D.;Kim,Y.Mater.Res.Bull.,1998,33:963

    6 Kim,H.T.;Byun,J.D.;Kim,Y.Mater.Res.Bull.,1998,33:975

    7 Obayashi,H.;Sakurai,Y.;Gejo,T.J.Solid State Chem.,1976,17:299

    8 Chang,Y.S.;Chang,Y.H.;Chen,I.G.;Chen,G.J.;Chai,Y.L.;Fang,T.H.;Wu,S.A.Ceram.Int.,2004,30:2183

    9 Chaouchi,A.;Aliouat,M.;Marinel,S.;Bourahla,H.Ceram.Int.,2007,33:245

    10 Wang,S.F.;Lü,M.K.;Gu,F.;Song,C.F.;Dong,X.;Yuan,D.R.;Zhou,G.J.;Qi,Y.X.Inorg.Chem.Commun.,2003,6:185

    11 Mojmhedi,W.;Abbasian,J.Energy Fuels,1995,9:429

    12 Chen,Z.X.;Derking,A.;Koot,W.;Van-Dijk,M.P.J.Catal.,1996,161:730

    13 Huang,J.J.;Zhao,J.T.;Wei,X.F.;Wang,Y.;Bu,X.P.Powd.Technol.,2008,180:196

    14 Kong,J.Z.;Li,A.D.;Zhai,H.F.;Li,H.;Yan,Q.Y.;Ma,J.;Wu,D.J.Hazard.Mater.,2009,171:918

    15 Simin,J.D.;Mahjoub,A.R.J.Alloy.Compd.,2009,486:805

    16 Cohen,R.E.;Krakauer,H.Phys.Rev.B,1990,42:6416

    17 Cohen,R.E.Nature,1992,358:136

    18 Tinte,S.;Stachiotti,M.G.Phys.Rev.B,1998,58:11959

    19 Piskunov,S.;Heifets,E.;Eglitis,R.I.;Borstel,G.Comput.Mater.Sci.,2004,9:165

    20 Hosseini,S.M.;Movlarooy,T.;Kompany,A.Physica B,2007,391:316

    21 Zhang,Z.Y.;Yang,D.L.;Liu,Y.H.;Cao,H.B.;Shao,J.X.;Jing,Q.Acta Phys.-Chim.Sin.,2009,25:1731 [張子英,楊德林,劉云虎,曹海濱,邵建新,井 群.物理化學(xué)學(xué)報(bào),2009,25:1731]

    22 Yun,J.N.;Zhang,Z.Y.Acta Phys.-Chim.Sin.,2010,26:751[贠江妮,張志勇.物理化學(xué)學(xué)報(bào),2010,26:751]

    23 Segall,M.D.;Lindan,P.L.D.;Probert,M.J.J.Phys.-Condes.Matter,2002,14:2717

    24 Payne,M.C.;Teter,M.P.;Allan,D.C.Rev.Mod.Phys.,1992,64:1045

    25 Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.,1996,77:3865

    26 Monkhorst,H.J.;Pack,J.D.;Freeman,D.L.Solid State Commun.,1979,29:723

    27 Korba,S.A.;Meradji,H.;Ghemid,S.;Bouhafs,B.Comput.Mater.Sci.,2009,44:1265

    28 Gou,H.Y.;Gao,F.M.;Zhang,J.W.Comput.Mater.Sci.2010,49:552

    29 Ye,C.;Pan,S.S.;Teng,X.M.Appl.Phys.A,2008,90:375

    30 Jones,R.O.;Gunnarsson,O.Rev.Mod.Phys.,1989,61:689

    31 Tell,J.S.Phys.Rev.,1956,104:1760

    32 Sharma,S.;Ambrosch-Draxl,C.;Khan,M.A.;Blaha,P.;Auluck,S.Phys.Rev.B,1999,60:8610

    33 Puschnig,P.;Ambrosch-Draxl,C.Phys.Rev.B,2002,66:165105

    34 Ambrosch-Draxl,C.;Sofo,J.O.Comput.Phys.Commun.,2006,175:1

    35 Delin,A.;Eriksson,O.;Ahuja,R.;Johansson,B.Phys.Rev.B,1996,54:1673

    36 Fox,M.Optical properties of solids.New York:Oxford University Press,2001

    37 Zhang,F.C.;Zhang,Z.Y.;Zhang,W.H.;Yan,J.F.;Yun,J.N.Acta Chim.Sin.,2008,66:1863 [張富春,張志勇,張威虎,閻軍峰,贠江妮.化學(xué)學(xué)報(bào),2008,66:1863]

    鈦鐵礦型六方相ZnTiO3的電子結(jié)構(gòu)和光學(xué)性質(zhì)

    張小超1樊彩梅1,*梁鎮(zhèn)海1韓培德2

    (1太原理工大學(xué)潔凈化工研究所,太原030024;2太原理工大學(xué)材料科學(xué)與工程學(xué)院,太原030024)

    分別采用基于密度泛函理論(DFT)的局域密度近似(LDA)和廣義梯度近似(GGA)方法對(duì)鈦鐵礦型六方相ZnTiO3的電子結(jié)構(gòu)進(jìn)行了第一性原理計(jì)算,并在局域密度近似下計(jì)算了六方相ZnTiO3的光學(xué)性質(zhì),并將計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)進(jìn)行了對(duì)比.結(jié)果表明,在局域密度近似下計(jì)算得到的結(jié)構(gòu)參數(shù)更接近實(shí)驗(yàn)數(shù)據(jù).理論預(yù)測六方相ZnTiO3屬于直接帶隙半導(dǎo)體材料,其禁帶寬度(布里淵區(qū)Z點(diǎn))為3.11 eV.電子態(tài)密度和Mulliken電荷布居分析表明Zn―O鍵是典型的離子鍵而Ti―O鍵是類似于鈣鈦礦型ATiO3(A=Sr,Pb,Ba)的Ti―O共價(jià)鍵.在50 eV的能量范圍內(nèi)研究了ZnTiO3的介電函數(shù)、吸收光譜和折射率等光學(xué)性質(zhì),并基于電子能帶結(jié)構(gòu)和態(tài)密度對(duì)光學(xué)性質(zhì)進(jìn)行了解釋.

    第一性原理;電子結(jié)構(gòu);光學(xué)性質(zhì);鈦鐵礦型六方相ZnTiO3

    O641

    Received:August 2,2010;Revised:October 27,2010;Published on Web:November 17,2010.

    ?Corresponding author.Email:fancm@163.com;Tel:+86-351-6018193,+86-13007011210.

    The project was supported by the National Natural Science Foundation of China(20876104,20771080)and Science and Technology Foundation of Shanxi Province,China(20090311082).

    國家自然科學(xué)基金(20876104,20771080)和山西省科技攻關(guān)項(xiàng)目(20090311082)資助

    猜你喜歡
    張志勇鈦鐵礦局域
    Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures:An ensemble Monte Carlo simulation
    苯甲羥肟酸浮選鈦鐵礦的作用機(jī)理
    鋼鐵釩鈦(2022年4期)2022-09-19 08:18:50
    第四次出獄之后
    方圓(2022年12期)2022-09-15 00:58:22
    第四次出獄后,他相信自己不會(huì)再碰毒品了
    方圓(2022年13期)2022-09-14 15:08:02
    元山子鈦鐵礦礦區(qū)水文地質(zhì)特征分析
    Designing of spin filter devices based on zigzag zinc oxide nanoribbon modified by edge defect?
    微細(xì)粒鈦鐵礦磁選回收率低原因分析
    局域積分散列最近鄰查找算法
    電子測試(2018年18期)2018-11-14 02:30:34
    利用鈦鐵礦制備納米鈦基功能材料
    PET成像的高分辨率快速局域重建算法的建立
    国产精品亚洲一级av第二区| 十八禁网站免费在线| 窝窝影院91人妻| 9色porny在线观看| 成人18禁在线播放| 老司机午夜福利在线观看视频| 日韩一卡2卡3卡4卡2021年| 国内精品久久久久久久电影| 国产精品亚洲av一区麻豆| 性少妇av在线| 成熟少妇高潮喷水视频| 桃红色精品国产亚洲av| 久久久久久久午夜电影| 久久精品影院6| 亚洲伊人色综图| 欧美亚洲日本最大视频资源| 淫妇啪啪啪对白视频| 级片在线观看| 欧美久久黑人一区二区| 亚洲精品av麻豆狂野| 免费观看精品视频网站| 香蕉久久夜色| 精品福利观看| 悠悠久久av| 精品一区二区三区视频在线观看免费| 精品不卡国产一区二区三区| 黄网站色视频无遮挡免费观看| 精品不卡国产一区二区三区| 黄色 视频免费看| 亚洲精品在线观看二区| 午夜福利一区二区在线看| 99国产精品免费福利视频| 亚洲av美国av| 嫩草影院精品99| 性色av乱码一区二区三区2| 国产精品九九99| 色综合站精品国产| 国产精品九九99| 精品久久久久久久毛片微露脸| 成在线人永久免费视频| 女生性感内裤真人,穿戴方法视频| 99在线人妻在线中文字幕| 在线天堂中文资源库| 国产黄a三级三级三级人| 久久久久久国产a免费观看| 亚洲人成77777在线视频| 国产成人精品无人区| 久久久久国内视频| 制服诱惑二区| a在线观看视频网站| 国产欧美日韩一区二区精品| 黄色片一级片一级黄色片| 99久久国产精品久久久| 无人区码免费观看不卡| 女人精品久久久久毛片| 久久伊人香网站| 人人澡人人妻人| 午夜日韩欧美国产| 欧美性长视频在线观看| 亚洲熟女毛片儿| 国产精品影院久久| 亚洲国产看品久久| 亚洲,欧美精品.| 国产欧美日韩精品亚洲av| 露出奶头的视频| 免费观看人在逋| 亚洲中文av在线| 欧美最黄视频在线播放免费| 波多野结衣巨乳人妻| 不卡av一区二区三区| 侵犯人妻中文字幕一二三四区| 亚洲三区欧美一区| 国产精品免费视频内射| 国产99白浆流出| 神马国产精品三级电影在线观看 | 一级毛片高清免费大全| 久久精品国产99精品国产亚洲性色 | 久久香蕉国产精品| 成人免费观看视频高清| av视频在线观看入口| 嫁个100分男人电影在线观看| 久99久视频精品免费| 非洲黑人性xxxx精品又粗又长| 校园春色视频在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美一级a爱片免费观看看 | 91成年电影在线观看| 男女之事视频高清在线观看| 视频在线观看一区二区三区| 成年人黄色毛片网站| 免费在线观看亚洲国产| 亚洲免费av在线视频| 免费久久久久久久精品成人欧美视频| 久久国产精品人妻蜜桃| 国产1区2区3区精品| 一本大道久久a久久精品| 手机成人av网站| 久久中文字幕一级| 日本精品一区二区三区蜜桃| 久久久久久大精品| 日韩欧美免费精品| 一个人观看的视频www高清免费观看 | 12—13女人毛片做爰片一| 久久人人97超碰香蕉20202| 欧美在线黄色| 美女高潮喷水抽搐中文字幕| 亚洲无线在线观看| 国产精品久久久久久人妻精品电影| 如日韩欧美国产精品一区二区三区| av片东京热男人的天堂| 丰满人妻熟妇乱又伦精品不卡| 免费一级毛片在线播放高清视频 | 亚洲aⅴ乱码一区二区在线播放 | 国产野战对白在线观看| 两个人免费观看高清视频| 久久久水蜜桃国产精品网| 黄色视频,在线免费观看| 亚洲成av人片免费观看| 非洲黑人性xxxx精品又粗又长| 黄色丝袜av网址大全| 91在线观看av| 国产亚洲av高清不卡| 男人舔女人的私密视频| 欧美黑人精品巨大| 女性生殖器流出的白浆| 欧美在线一区亚洲| 真人一进一出gif抽搐免费| 国产精品亚洲av一区麻豆| 精品国内亚洲2022精品成人| 国产精品国产高清国产av| 男人的好看免费观看在线视频 | 亚洲国产看品久久| 琪琪午夜伦伦电影理论片6080| 欧美日韩乱码在线| 99在线视频只有这里精品首页| 中文字幕色久视频| 精品国产乱子伦一区二区三区| 国产成+人综合+亚洲专区| 丝袜在线中文字幕| av在线播放免费不卡| 88av欧美| 欧美成人性av电影在线观看| 18禁裸乳无遮挡免费网站照片 | 久久亚洲真实| 大香蕉久久成人网| 性少妇av在线| 天堂影院成人在线观看| 波多野结衣巨乳人妻| 老熟妇乱子伦视频在线观看| 身体一侧抽搐| 亚洲国产毛片av蜜桃av| 久久精品国产清高在天天线| 日韩三级视频一区二区三区| 国产精品久久久久久精品电影 | 精品不卡国产一区二区三区| 亚洲成人免费电影在线观看| 999久久久国产精品视频| 丁香欧美五月| 免费av毛片视频| 啦啦啦 在线观看视频| 黄频高清免费视频| 男人操女人黄网站| 99香蕉大伊视频| 99在线视频只有这里精品首页| 午夜老司机福利片| 大码成人一级视频| 伦理电影免费视频| 国产在线精品亚洲第一网站| 亚洲色图综合在线观看| 成人永久免费在线观看视频| 一级a爱视频在线免费观看| 一级a爱片免费观看的视频| 久久久国产欧美日韩av| 岛国视频午夜一区免费看| 亚洲av熟女| 老司机午夜十八禁免费视频| 制服人妻中文乱码| 香蕉久久夜色| 日韩免费av在线播放| av视频免费观看在线观看| 黑丝袜美女国产一区| tocl精华| 国产亚洲欧美精品永久| 亚洲国产欧美网| 精品少妇一区二区三区视频日本电影| 波多野结衣高清无吗| 精品国产美女av久久久久小说| 亚洲性夜色夜夜综合| 亚洲人成电影观看| 亚洲成国产人片在线观看| 午夜免费鲁丝| 在线观看66精品国产| 午夜免费成人在线视频| 国产精品久久久人人做人人爽| 欧美日韩亚洲综合一区二区三区_| 99精品久久久久人妻精品| 国产日韩一区二区三区精品不卡| 熟妇人妻久久中文字幕3abv| 久久婷婷成人综合色麻豆| 国产免费av片在线观看野外av| 久久中文字幕一级| 操出白浆在线播放| 两个人看的免费小视频| 女人爽到高潮嗷嗷叫在线视频| 国产一级毛片七仙女欲春2 | 国产又爽黄色视频| 亚洲无线在线观看| 男人操女人黄网站| 国内久久婷婷六月综合欲色啪| 国产精品乱码一区二三区的特点 | 亚洲人成电影免费在线| 亚洲在线自拍视频| 欧美不卡视频在线免费观看 | 法律面前人人平等表现在哪些方面| 又黄又爽又免费观看的视频| 午夜精品国产一区二区电影| avwww免费| 露出奶头的视频| 在线观看免费午夜福利视频| 精品国产乱子伦一区二区三区| 亚洲欧美日韩另类电影网站| 两个人免费观看高清视频| 亚洲国产欧美一区二区综合| 久久久久国产一级毛片高清牌| 色播在线永久视频| 12—13女人毛片做爰片一| 在线永久观看黄色视频| 午夜亚洲福利在线播放| bbb黄色大片| 久久 成人 亚洲| 在线观看免费视频日本深夜| 黄色女人牲交| 日韩av在线大香蕉| 欧美一级毛片孕妇| 香蕉久久夜色| 亚洲精品在线观看二区| 色综合站精品国产| 久久久国产成人免费| 久久人人爽av亚洲精品天堂| 亚洲最大成人中文| 91字幕亚洲| 美女高潮到喷水免费观看| 午夜福利视频1000在线观看 | 国产不卡一卡二| 亚洲七黄色美女视频| 中出人妻视频一区二区| 亚洲av五月六月丁香网| 久久精品aⅴ一区二区三区四区| 国产成人精品久久二区二区91| 午夜福利成人在线免费观看| 成年版毛片免费区| 日本欧美视频一区| 黄频高清免费视频| 人妻久久中文字幕网| 免费在线观看视频国产中文字幕亚洲| 男女午夜视频在线观看| 丝袜美腿诱惑在线| 极品人妻少妇av视频| 中文字幕精品免费在线观看视频| 久久国产乱子伦精品免费另类| 搡老妇女老女人老熟妇| 可以免费在线观看a视频的电影网站| 国产亚洲精品一区二区www| 无遮挡黄片免费观看| 黄频高清免费视频| 校园春色视频在线观看| 老熟妇乱子伦视频在线观看| 国产蜜桃级精品一区二区三区| 日本 欧美在线| 欧美国产日韩亚洲一区| 亚洲色图av天堂| 美女午夜性视频免费| 日本 欧美在线| 成人18禁高潮啪啪吃奶动态图| 亚洲国产高清在线一区二区三 | 女同久久另类99精品国产91| 国产精品,欧美在线| 在线观看免费日韩欧美大片| 精品久久久久久久久久免费视频| 亚洲色图av天堂| 在线永久观看黄色视频| 国产精品久久久久久人妻精品电影| 黄色丝袜av网址大全| 妹子高潮喷水视频| 亚洲精品美女久久av网站| 热99re8久久精品国产| 欧美乱码精品一区二区三区| 纯流量卡能插随身wifi吗| 亚洲av电影在线进入| 色综合欧美亚洲国产小说| 亚洲午夜精品一区,二区,三区| 国产主播在线观看一区二区| 久久久久九九精品影院| 看免费av毛片| 天天躁夜夜躁狠狠躁躁| 亚洲av熟女| 亚洲情色 制服丝袜| 999久久久国产精品视频| 国产一区二区三区在线臀色熟女| 亚洲欧美激情综合另类| 在线十欧美十亚洲十日本专区| avwww免费| 成人手机av| 成人精品一区二区免费| av中文乱码字幕在线| 亚洲av第一区精品v没综合| 日本三级黄在线观看| 妹子高潮喷水视频| 免费高清在线观看日韩| 夜夜夜夜夜久久久久| 日韩国内少妇激情av| 啦啦啦免费观看视频1| 香蕉丝袜av| 老司机午夜福利在线观看视频| 精品福利观看| 亚洲成人国产一区在线观看| 国产av又大| 精品高清国产在线一区| 国产在线观看jvid| 大型av网站在线播放| 亚洲欧美精品综合久久99| 欧美乱码精品一区二区三区| 日本欧美视频一区| 午夜福利在线观看吧| 黑人欧美特级aaaaaa片| 老司机靠b影院| 亚洲av电影在线进入| 精品久久蜜臀av无| 曰老女人黄片| 国产精品免费一区二区三区在线| 午夜精品久久久久久毛片777| 搡老熟女国产l中国老女人| 在线永久观看黄色视频| tocl精华| 在线国产一区二区在线| 成人三级黄色视频| av视频在线观看入口| 国产片内射在线| 亚洲精品在线美女| 国产一区二区在线av高清观看| 国内精品久久久久久久电影| 欧美不卡视频在线免费观看 | 啦啦啦韩国在线观看视频| 国产成人欧美| 露出奶头的视频| 日本三级黄在线观看| 日本黄色视频三级网站网址| 视频区欧美日本亚洲| 国产激情久久老熟女| 亚洲成人久久性| 免费看美女性在线毛片视频| 国产日韩一区二区三区精品不卡| 悠悠久久av| 男女之事视频高清在线观看| 午夜福利成人在线免费观看| 动漫黄色视频在线观看| 色综合站精品国产| 校园春色视频在线观看| 精品国产亚洲在线| 国产午夜精品久久久久久| 国产麻豆成人av免费视频| 少妇熟女aⅴ在线视频| 国产蜜桃级精品一区二区三区| 久9热在线精品视频| 无限看片的www在线观看| 久久精品国产亚洲av香蕉五月| 又大又爽又粗| 亚洲欧洲精品一区二区精品久久久| 老熟妇仑乱视频hdxx| 精品国产乱码久久久久久男人| 两人在一起打扑克的视频| 国产精品免费视频内射| 国产成人精品在线电影| 大码成人一级视频| 一级a爱视频在线免费观看| 久久久国产精品麻豆| 欧美中文综合在线视频| 亚洲国产欧美日韩在线播放| 免费看美女性在线毛片视频| bbb黄色大片| 成年版毛片免费区| 色综合亚洲欧美另类图片| 女警被强在线播放| 岛国在线观看网站| 亚洲成人国产一区在线观看| 亚洲免费av在线视频| 午夜两性在线视频| 露出奶头的视频| 欧美中文综合在线视频| 99久久久亚洲精品蜜臀av| а√天堂www在线а√下载| 国产片内射在线| 精品国产超薄肉色丝袜足j| 久久精品人人爽人人爽视色| 国产亚洲欧美精品永久| 999久久久国产精品视频| 色播亚洲综合网| 日日爽夜夜爽网站| 国产xxxxx性猛交| 国产av又大| 韩国av一区二区三区四区| 亚洲欧美日韩无卡精品| 又大又爽又粗| 99久久99久久久精品蜜桃| 黄色女人牲交| 女警被强在线播放| 久热爱精品视频在线9| 成人亚洲精品一区在线观看| 国产av一区在线观看免费| 波多野结衣高清无吗| 久久久久九九精品影院| 少妇熟女aⅴ在线视频| 在线天堂中文资源库| 色av中文字幕| 韩国精品一区二区三区| 精品国内亚洲2022精品成人| 美女大奶头视频| 亚洲成av人片免费观看| 在线观看舔阴道视频| 天堂动漫精品| 日本三级黄在线观看| 成人国产一区最新在线观看| 夜夜爽天天搞| 99国产精品99久久久久| 黄色女人牲交| 亚洲成国产人片在线观看| 亚洲全国av大片| 日韩高清综合在线| 色综合婷婷激情| 免费在线观看完整版高清| 成熟少妇高潮喷水视频| 亚洲伊人色综图| tocl精华| www日本在线高清视频| 色综合站精品国产| 91大片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成av人片免费观看| 国产精品免费视频内射| 精品国产乱码久久久久久男人| 精品国内亚洲2022精品成人| 亚洲激情在线av| 亚洲第一欧美日韩一区二区三区| 国产99白浆流出| 18美女黄网站色大片免费观看| 国产成+人综合+亚洲专区| 女生性感内裤真人,穿戴方法视频| √禁漫天堂资源中文www| 国产在线观看jvid| 久99久视频精品免费| 亚洲专区国产一区二区| 精品免费久久久久久久清纯| 一区二区三区国产精品乱码| 日韩精品免费视频一区二区三区| 欧美激情 高清一区二区三区| 成在线人永久免费视频| 欧美日韩亚洲国产一区二区在线观看| 丝袜在线中文字幕| 黄片大片在线免费观看| 一边摸一边抽搐一进一出视频| 国产精品自产拍在线观看55亚洲| 久久久久久久久免费视频了| 亚洲片人在线观看| 欧美中文日本在线观看视频| 亚洲av成人不卡在线观看播放网| 两性夫妻黄色片| 亚洲欧美精品综合一区二区三区| 国产伦人伦偷精品视频| 热re99久久国产66热| 久久精品影院6| 国产日韩一区二区三区精品不卡| 国产一区在线观看成人免费| 操美女的视频在线观看| 999久久久国产精品视频| 精品熟女少妇八av免费久了| 999久久久精品免费观看国产| 日本 欧美在线| 欧美不卡视频在线免费观看 | 九色国产91popny在线| 丰满的人妻完整版| 免费久久久久久久精品成人欧美视频| 国产av在哪里看| 久99久视频精品免费| 两个人的视频大全免费| 亚洲欧美清纯卡通| 国产熟女欧美一区二区| 最近最新免费中文字幕在线| 国内精品一区二区在线观看| 黄色视频,在线免费观看| 18+在线观看网站| 亚洲内射少妇av| 国产欧美日韩精品一区二区| 国产高清视频在线观看网站| 又黄又爽又刺激的免费视频.| 色综合亚洲欧美另类图片| 亚洲第一电影网av| 一区福利在线观看| 校园春色视频在线观看| 3wmmmm亚洲av在线观看| 国产精品伦人一区二区| 国产精品福利在线免费观看| 免费在线观看成人毛片| 22中文网久久字幕| 国产人妻一区二区三区在| 三级国产精品欧美在线观看| 国内精品宾馆在线| 亚洲第一区二区三区不卡| 美女cb高潮喷水在线观看| 国产精品久久久久久久电影| 夜夜爽天天搞| h日本视频在线播放| 亚洲黑人精品在线| 日本熟妇午夜| 天美传媒精品一区二区| 尾随美女入室| 极品教师在线免费播放| 韩国av一区二区三区四区| 99国产精品一区二区蜜桃av| 亚洲欧美日韩高清在线视频| 日韩欧美三级三区| 精品久久久久久久久久久久久| 丰满的人妻完整版| 国内久久婷婷六月综合欲色啪| 久久精品国产亚洲av香蕉五月| 中文字幕免费在线视频6| 最新中文字幕久久久久| 内地一区二区视频在线| av国产免费在线观看| 久久久久性生活片| av天堂在线播放| 久久精品国产亚洲网站| av中文乱码字幕在线| 亚洲成a人片在线一区二区| 人人妻人人澡欧美一区二区| 国产亚洲欧美98| 亚洲美女黄片视频| 成年女人毛片免费观看观看9| 亚洲美女黄片视频| 性欧美人与动物交配| 亚洲自拍偷在线| 极品教师在线视频| 在线观看一区二区三区| 亚洲人成网站在线播| 国内揄拍国产精品人妻在线| 午夜福利成人在线免费观看| 男女下面进入的视频免费午夜| 99久国产av精品| av国产免费在线观看| 欧美日韩亚洲国产一区二区在线观看| 欧美bdsm另类| 九九爱精品视频在线观看| 香蕉av资源在线| 99久久成人亚洲精品观看| 免费不卡的大黄色大毛片视频在线观看 | 成人永久免费在线观看视频| 一夜夜www| 又黄又爽又免费观看的视频| 久久6这里有精品| 国产乱人伦免费视频| 午夜老司机福利剧场| 动漫黄色视频在线观看| 国产亚洲精品久久久com| 国产女主播在线喷水免费视频网站 | 日韩,欧美,国产一区二区三区 | 国内精品宾馆在线| 我的老师免费观看完整版| 麻豆成人午夜福利视频| 亚洲精品亚洲一区二区| 可以在线观看的亚洲视频| 久久久久久九九精品二区国产| bbb黄色大片| 神马国产精品三级电影在线观看| 在线看三级毛片| 无遮挡黄片免费观看| 国产精品久久久久久久久免| 欧美bdsm另类| 亚洲图色成人| 国产精品久久久久久精品电影| 日韩欧美国产在线观看| 精品乱码久久久久久99久播| 欧美一级a爱片免费观看看| 哪里可以看免费的av片| 99久久精品一区二区三区| 中文字幕熟女人妻在线| 欧美激情国产日韩精品一区| 亚洲黑人精品在线| 亚洲中文字幕日韩| 午夜精品在线福利| 国内少妇人妻偷人精品xxx网站| 国产精品一区www在线观看 | 禁无遮挡网站| 一进一出抽搐gif免费好疼| 国产麻豆成人av免费视频| 免费看a级黄色片| 亚洲av不卡在线观看| 国产蜜桃级精品一区二区三区| 国产精品一区二区免费欧美| 亚洲一级一片aⅴ在线观看| 日本一本二区三区精品| 国产国拍精品亚洲av在线观看| 成人精品一区二区免费| 俄罗斯特黄特色一大片| 亚洲精品一卡2卡三卡4卡5卡| 久久久色成人| 欧美又色又爽又黄视频| 免费看av在线观看网站| 一区福利在线观看| 99热这里只有是精品50| 成人特级av手机在线观看| 成人永久免费在线观看视频| 夜夜爽天天搞| 国产一级毛片七仙女欲春2| 三级毛片av免费| av国产免费在线观看| 国产大屁股一区二区在线视频|