• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures:An ensemble Monte Carlo simulation

    2022-11-21 09:30:06YanLiu劉妍PingWang王平TingYang楊婷QianWu吳茜YintangYang楊銀堂andZhiyongZhang張志勇
    Chinese Physics B 2022年11期
    關(guān)鍵詞:張志勇王平

    Yan Liu(劉妍) Ping Wang(王平) Ting Yang(楊婷) Qian Wu(吳茜)Yintang Yang(楊銀堂) and Zhiyong Zhang(張志勇)

    1State Key Laboratory of Integrated Service Networks,School of Telecommunications Engineering,Xidian University,Xi’an 710071,China

    2Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    3School of Information Science and Technology,Northwest University,Xi’an 710127,China

    The steady-state and transient electron transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures were investigated by Monte Carlo simulation with the classic three-valley model. In particular, the electronic band structures were acquired by first-principles calculations,which could provide precise parameters for calculating the transport properties of the two-dimensional electron gas (2DEG), and the quantization effect was considered in the Γ valley with the five lowest subbands. Wave functions and energy eigenvalues were obtained by iteration of the Schr¨odinger–Poisson equations to calculate the 2DEG scattering rates with five main scattering mechanisms considered. The simulated low-field electron mobilities agree well with the experimental results,thus confirming the effectiveness of our models. The results show that the room temperature electron mobility of the β-(Al0.188Ga0.812)2O3/Ga2O3 heterostructure at 10 kV·cm-1 is approximately 153.669 cm2·V-1·s-1, and polar optical phonon scattering would have a significant impact on the mobility properties at this time. The region of negative differential mobility, overshoot of the transient electron velocity and negative diffusion coefficients are also observed when the electric field increases to the corresponding threshold value or even exceeds it.This work offers significant parameters for the β-(AlxGa1-x)2O3/Ga2O3 heterostructure that may benefit the design of high-performance β-(AlxGa1-x)2O3/Ga2O3 heterostructure-based devices.

    Keywords: electron transport,first-principles calculations,Monte Carlo simulation

    1. Introduction

    As a wide band gap semiconductor, gallium oxide(Ga2O3) is attractive for high-power electronics and ultraviolet optoelectronic applications.[1,2]β-Ga2O3has the most stable crystal structure among the five phases (α,β,γ,ε, andδ) of Ga2O3.[3]β-Ga2O3also has excellent intrinsic material properties, including a large breakdown field strength of~8 MV·cm-1,[4]a high Baliga figure of merit of~3444,[5]and the availability of highquality native substrates grown directly from the melt.[4]β-(AlxGa1-x)2O3is a ternary alloy ofβ-Ga2O3with a tunable band gap ranging from 4.8 eV to 6 eV.[6,7]In particularβ-(AlxGa1-x)2O3/Ga2O3heterostructures can be formed,[8]and the introduction of ternary alloys and the formation of heterostructures can significantly increase the number of possible applications and the performance of devices.[9]Knowledge about transport properties is a fundamental instrument for any physicist or engineer involved in technology design and preparation of semiconductor-based devices. Thus, the electron transport properties inβ-(AlxGa1-x)2O3/Ga2O3heterostructures must be understood in depth. Recently, some studies have been carried out to explore the performance ofβ-(AlxGa1-x)2O3/Ga2O3heterostructures.[10–21]Zhangetal.[13]measured the mobilities of a modulation-dopedβ-(Al0.18Ga0.82)2O3/Ga2O3heterostructure grown by oxygen plasma-assisted molecular beam epitaxy as 180 cm2·V-1·s-1at 300 K and 2790 cm2·V-1·s-1at 90 K. Later, this group[15]fabricated a modulation-doped field effect transistor based on theβ-(Al0.18Ga0.82)2O3/Ga2O3heterostructure. Their results showed that the two-dimentional electron gas (2DEG) channel mobility and saturation velocity of this device at 50 K were 1520 cm2·V-1·s-1and 1.1×107cm·s-1, respectively. Rangaet al.[19]prepared modulation-dopedβ-(AlxGa1-x)2O3/Ga2O3heterostructures by metalorganic vapor-phase epitaxy. They observed that the mobility was 111 cm2·V-1·s-1at room temperature.Ghosh and Singisetti[20]calculated the electron mobility by solving the Boltzmann transport equation and found that the mobility improved on the higher 2DEG density side as the remote impurity center moved away from the interface. The aforementioned investigations concerned dopedβ-(AlxGa1-x)2O3/Ga2O3heterostructures, and the electron mobility will be heavily affected by the impurity scattering because of the dopant impurities;[13,14,20]therefore, the performance of heterostructure-based devices will be seriously limited.[15,20]Actually,it is feasible to limit the carriers at the interface of unintentionally dopedβ-(AlxGa1-x)2O3/Ga2O3heterosystems owing to the staggered band alignment with a positive conduction band offset and small valence band offset betweenβ-(AlxGa1-x)2O3andβ-Ga2O3. Free carriers would be transferred to the high-purityβ-Ga2O3layer where they could populate a narrow potential well and form a high-density 2DEG. This phenomenon has also been observed in the unintentionally doped AlGaAs/GaAs heterostructures,[22]which are similar toβ-(AlxGa1-x)2O3/Ga2O3heterostructures.[11]Moreover, the unintentionally doped heterostructures can be used to fabricate quantum cascade detectors;[23]thus investigation of the electron transport of such heterostructures is required to further study properties such as the current–voltage characteristic and improve the performance ofβ-(AlxGa1-x)2O3/Ga2O3heterostructure-based devices. When applied to charge transport in semiconductors, the Monte Carlo (MC) method is much more flexible than the iterative method, and it can be used to model high-field electron transport in semiconductor materials.[24]To the best of our knowledge,the electron transport properties of unintentionally dopedβ-(AlxGa1-x)2O3/Ga2O3heterostructures have not yet been investigated by MC simulation, which stimulated us to investigate this and hope to fill the gap.

    In this work,a systematic three-valley MC simulation of the steady-state and transient electron transport characteristics was carried out onβ-(AlxGa1-x)2O3/Ga2O3heterostructures.Electronic band structures were determined by first-principles calculations. The wave function and energy eigenvalue were obtained by self-consistently solving the Schr¨odinger and Poisson equations. With five scattering mechanisms, the calculated mobility matches well with the reported experimental results,which verifies the correctness of our simulation.

    2. Band structures and model description

    In this study theβ-(AlxGa1-x)2O3barrier andβ-Ga2O3well layers are nominally undoped and the electronic structure is investigated by a first-principles method based on density functional theory. Different Al mole fractions ofβ-(AlxGa1-x)2O3supercells can be constructed by replacing some Ga atoms by Al atoms inβ-Ga2O3. All systems are calculated in reciprocal space. The plane-wave cutoff energy is 400 eV,[25]and a 2×4×4 Monkhorst–Pack grid is set to ensure good convergence between the computed structures and energies. In the self-consistent field calculation the convergence precision of the energy charge is 1.0×10-5eV/atom,the maximum displacement convergence criterion is 1.0×10-3?A, the maximum force acting on each atom is 0.03 eV·?A-1and the maximum stress is 0.05 GPa.To correct the band gap value ofβ-Ga2O3, the HubbardU,an effective on-site Coulomb interaction scheme, is incorporated into the generalized gradient approximation method to improve the theoretical prediction,and the parameterUis set to be 14.0 eV for the Ga 3d orbital and 8.35 eV for the O 2p orbital.[26]Figure 1 presents the electronic band structure for pureβ-Ga2O3andβ-(AlxGa1-x)2O3(x=0.125, 0.188, and 0.313). The corrected band gap and the fitted effective mass of the lowest valley are compared with the available experimental results(see Table 1). The good agreement between the simulated values and the experimental data[12,17,18,27,28]confirms the validity of our calculation. These results are used for the next self-consistent numerical calculations and MC simulation.

    Fig.1. Calculated electronic structures for(a)β-Ga2O3,(b)β-(Al0.125Ga0.875)2O3,(c)β-(Al0.188Ga0.812)2O3 and(d)β-(Al0.313Ga0.687)2O3.

    Table 1. Material parameters for β-(AlxGa1-x)2O3.

    Table 2. Main material parameters.

    In our MC simulation,the critical features of the conduction bands are theΓ,YΓ,andMvalleys. The quantization effect is considered only in theΓvalley with the five lowest subbands. The material parameters[4,10,13,29,30]used in the calculations are listed in Table 2. To compute the scattering rates of the 2DEG,the energy levels and wave functions are achieved by self-consistently solving the Schr¨odinger–Poisson equations. The scattering mechanisms include interface roughness scattering (IRS), polar optical phonon scattering (POP), alloy disorder scattering(ADS),acoustic deformation potential scattering (ADP) and dislocation scattering (DIS). Then the total mobility can be obtained using Matthiesen’s rule. The main processes of the calculation are described below.

    Within the framework of the effective mass approximation,the Schr¨odinger equation can be written as

    whereeis the electronic charge,φ(z)is the electrostatic potential and ΔEc(z)is the conduction band discontinuity at theβ-(AlxGa1-x)2O3/Ga2O3interface.[31]Then, the Poisson equation is written as

    whereε(z)is the dielectric constant. The electron concentrationn(z)in the quantum well can be obtained as

    Here,mis the number of occupied subbands,kBis the Boltzmann constant,Tis the temperature andEFis the Fermi level.

    When manufacturing heterostructures the roughness of the interface between different materials cannot be completely avoided,thus the IRS must be considered. The inverse of the momentum relaxation timeτlimited by IRS can be expressed by

    Here,meis the effective mass ofβ-Ga2O3andElis the polar optical photon energy, the value of which is based on the fitting of experimental data. Inβ-Ga2O3, although there are eight longitudinal optical phonon modes in a(100)direction,it can be found that a POP energy of 48 meV is good enough to capture the POP effect based on the Fr¨ohlich model.[4,13]Nqis the phonon occupation number,ε∞is the high-frequency dielectric constant,εsis the static dielectric constant,kiandkfare the wave vectors of the initial and final states,respectively,‘+’ represents phonon absorption and ‘–’ represents phonon emission.

    3. Analysis and discussion

    To investigate the electron transport properties ofβ-(AlxGa1-x)2O3/Ga2O3, the mobility of this heterostructure is studied first and the microscopic behaviors such as electron velocity and electron occupancy then discussed to further understand the transport phenomena ofβ-(AlxGa1-x)2O3/Ga2O3and the corresponding mechanisms.Finally,on the basis of the obtained velocity and displacement of the electrons,the diffusion coefficient is studied. In this work, all the properties are discussed at different temperatures or electric field strengths.

    As is known, mobility is an important parameter for semiconductor devices such as transistors because it determines the power dissipation and switching speed.[32]To simulate the mobility properties ofβ-(AlxGa1-x)2O3/Ga2O3,some key parameters of the conduction band are required.The calculated conduction band profile, the first subband energy level and the corresponding wave function forβ-(Al0.188Ga0.812)2O3/Ga2O3are demonstrated in Fig. 2(a).Confinement of the 2DEG at the interface leads to the formation of energy subbands because of the quantization of the electronic band structure.[21]The ground wave function is well localized with some penetration to the potential barrier due to the finite conduction band offsets, which may induce ADS.The variation of the calculated electron mobility in aβ-(Al0.188Ga0.812)2O3/Ga2O3heterostructure with temperature is displayed in Fig.2(b). The reported theoretical and experimental results[13,15,16,19]are also provided for comparison. As can be observed,when IRS,POP and ADP are separately considered, the corresponding electron mobility calculated is in accordance with the reported theoretical result. When all five different scattering mechanisms are included, the calculated 2DEG electron mobility (the solid green line in Fig. 2(b))matches well with the experimental data at 100 K–300 K.However,at low temperatures the calculated mobility is higher than that in the experiment,mainly because the remote impurity scattering (RI) and background impurity scattering (BI)have a great impact on the doped heterostructures in the experiment. This effect is negligible for the unintentionally doped heterostructure in our model; therefore, when the contributions of RI and BI are removed, the calculated electron mobility is in good agreement with the experimental data,thus confirming the validity of our model. Figures 2(c) and 2(d)illustrate the electron mobility ofβ-(AlxGa1-x)2O3/Ga2O3with different Al compositions versus the applied electric field by MC simulation at different temperatures. In Fig. 2(c), the mobility decreases with the increase in the temperature for a fixed electric field,and the mobility for 10 kV·cm-1at 300 K is approximately 153.669 cm2·V-1·s-1. This is because the total scattering rate increases with increasing temperature.The electron mobility at room temperature decreases with the increasing Al composition when the electric field remains constant in Fig. 2(d), which is due to the fact that the impacts of ADS, DIS, and IRS are strengthened by the increasing Al content.[33]

    Fig.2. (a)Calculated energy band profile,ground state subband energy level and the corresponding wave function of a β-(Al0.188Ga0.812)2O3/Ga2O3 quantum well at 300 K.(b)β-(Al0.188Ga0.812)2O3/Ga2O3 low-field electron mobility as a function of temperature. The solid lines and dashed lines with symbols represent the theoretical data,and the scatter dots denote the experimental data. Electron mobility as a function of the applied electric field in(c)β-(Al0.188Ga0.812)2O3/Ga2O3 at different temperatures and(d)β-(AlxGa1-x)2O3/Ga2O3 with different Al compositions at 300 K.

    Fig. 3. Electron steady-state drift velocity as a function of the applied electric field in (a) β-(Al0.188Ga0.812)2O3/Ga2O3at different temperatures,and(b)β-(AlxGa1-x)2O3/Ga2O3with varying Al compositions at 300 K.The dashed lines with symbols represent the steady-state drift velocity of β-Ga2O3. (c)–(f)Electrons’occupancy as a function of the applied electric field in β-(Al0.188Ga0.812)2O3/Ga2O3at different temperatures.

    To gain a good understanding of the electron mobility characteristic ofβ-(AlxGa1-x)2O3/Ga2O3heterostructures,the microscopic behavior of the electrons must be investigated in depth. As is known, steady-state electron transport is the dominant transport mechanism in devices with larger dimensions. For devices with smaller dimensions, however, transient electron transport must also be considered when evaluating device performance. Therefore, both the electron steadystate drift velocity and the electron transient velocity ofβ-(AlxGa1-x)2O3/Ga2O3were investigated in this work.

    The electron drift velocity versus electric field ofβ-(AlxGa1-x)2O3/Ga2O3heterostructures is shown in Figs.3(a)and 3(b). In Fig.3(a),both the peak and the saturation velocities are dependent on temperature. This is because the POP rate increases significantly with increasing temperature. Besides, at a fixed temperature, the dependence of the drift velocity on electric field is almost linear at low electric fields.After the electron drift velocity reaches its peak value, the velocity decreases in response to further increase in the applied electric field. This behavior is a clear evidence of negative differential mobility (NDM). NDM occurs because electrons in theΓvalley will accelerate under high fields and gain enough energy to transfer to the satellite valleys. As can be seen in the electron occupancy curves in Figs. 3(c)–3(f),the inter-valley deformation scattering becomes effective when the electrons significantly populate the satellite valleys,and the effective masses of the satellite valleys are higher than that of theΓvalley. Then, with a continued increase in electric field, the short-range intra-valley electron–phonon interaction would result in saturation of the velocity.[34]Specifically, at 300 K with an electric field of 150 kV·cm-1, the maximum drift velocity is 1.197×107cm·s-1. This implies thatβ-(AlxGa1-x)2O3/Ga2O3can tolerate a high voltage with steady performance. Figure 3(b) gives the electron drift velocity versus electric field ofβ-Ga2O3for comparison. As can be observed, when the electric field is within 100 kV·cm-1, the steady-state drift velocities of bothβ-Ga2O3andβ-(AlxGa1-x)2O3/Ga2O3increase almost linearly with increasing electric field. The average drift velocity decreases with the increasing Al content. This situation is due to the increase in 2DEG density induced by the increasing Al content:an increasing number of electrons are electrostatically pushed closer to the heterointerface and the impact of IRS will be enhanced.

    Fig.4. Transient electron velocity as a function of the applied electric field in β-(Al0.188Ga0.812)2O3/Ga2O3 at(a)77 K,(b)150 K,and(c)300 K.Inset: the transient electron velocity of β-Ga2O3 (results from Ref.[5]). The electron occupancy of β-(Al0.188Ga0.812)2O3/Ga2O3 as a function of time at 300 K with an applied electric field of(d)50 kV·cm-1,(e)150 kV·cm-1,and(f)300 kV·cm-1.

    The electron transient characteristics ofβ-(Al0188Ga0.812)2O3/Ga2O3heterostructure are presented in Fig.4. Figures 4(a)–4(c)show the transient electron velocity versus the applied electric field at different temperatures. In the inset of Fig.4(c)the electron transient velocity versus time forβ-Ga2O3is given for comparison. As can be seen,the critical electric fields corresponding to the significant overshoot ofβ-(AlxGa1-x)2O3/Ga2O3andβ-Ga2O3are 100 kV·cm-1and 300 kV·cm-1,respectively. Besides,for the same electric field the peak transient velocities ofβ-Ga2O3are lower than those ofβ-(AlxGa1-x)2O3/Ga2O3. The overshoot is mainly because the momentum relaxation time is much lower than the energy relaxation time,and the time required for the transient process is of the same order of magnitude as the energy relaxation time. It can also be observed that the peak transient velocities are much higher than the peak velocities of electron steady-state drift properties in Fig. 3(a) under the same conditions. This is because in the ballistic regime the electrons can acquire energy from the applied field without losing energy to the lattice from scattering, and their velocity will reach a higher value than in the steady state.[35]Figures 4(d)–4(f) show the time evolution of the electron occupancy inβ-(Al0.188Ga0.812)2O3/Ga2O3at 300 K for different electric fields. It can be seen that the population of electrons in the first subband decreases at the beginning and that in higher subbands gradually increases. However, most electrons are still in theΓvalley, therefore the drift velocity initially increases,as shown in Fig. 4(c). As time progresses, electron excitation to the higher subbands and valleys begins to dominate,causing a decrease in the drift velocity. This phenomenon has also been observed in MgZnO/ZnO heterostructures by MC simulation.[33]

    Fig. 5. Longitudinal diffusion coefficients as a function of time for β-(Al0.188Ga0.812)2O3/Ga2O3 at 300 K for different applied electric fields. Inset: longitudinal and transverse diffusion coefficients as a function of the applied electric field for β-(Al0.188Ga0.812)2O3/Ga2O3 at 300 K.

    It is known that diffusion arises from the correlation between the velocity and displacement of particles, and the diffusion coefficient is of great significance in the study of the effect of carrier diffusion on the microwave characteristics of integratedβ-(AlxGa1-x)2O3/Ga2O3devices.[36]Figure 5 presents the longitudinal diffusion coefficient (D‖) versus time for different electric fields at room temperature. As can be seen,D‖sharply increases within the first 1 ps, then decreases with time and finally approaches zero. Because the diffusion coefficient is related to the correlation function of the velocity fluctuation for electrons,[36]and the transient electron velocityVtwill lose its correlation withVt=0 with time due to the irregular fluctuations of the velocity inβ-(Al0.188Ga0.812)2O3/Ga2O3. The inset showsD‖and the transverse diffusion coefficient (D⊥) versus electric field forβ-(Al0.188Ga0.812)2O3/Ga2O3at 300 K.D‖ <D⊥in the whole range of electric field is caused by the anisotropic effect of the crystallographic orientation.[37]This phenomenon is a significant feature of multivalley semiconductors[36]and can also be found in GaAs by MC investigation.[38]

    4. Conclusion

    In summary, a three-valley ensemble MC simulation is presented for detailed investigation of the electron transport characteristics ofβ-(AlxGa1-x)2O3/Ga2O3heterostructures.The electronic band structures are obtained by first-principles calculations, and the results are important parameters used in our simulations. Considering the quantization effects in theΓvalley, the wave functions and energy levels are obtained by iterative calculation and then used to compute the scattering rates of the 2DEG. The achieved electron mobility matches well with the experimental data, therefore proving the validity of our models. Forβ-(AlxGa1-x)2O3/Ga2O3, the electron mobility decreases when the Al content increases for a fixed electric field. A region of negative differential mobility can be observed in the velocity–field characteristics.At room temperature, the steady-state electron velocity could reach the order of 107cm·s-1at 150 kV·cm-1. Furthermore, a pronounced anisotropy of the diffusion coefficient is found. This work provides detailed information regarding the transport properties ofβ-(AlxGa1-x)2O3/Ga2O3,which is essential knowledge that will benefit the design and fabrication of high-qualityβ-(AlxGa1-x)2O3/Ga2O3heterostructure-based devices.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant No.61474090),the Key Research and Development Program of Shaanxi Province of China (Grant No. 2017ZDXM-GY-052), and the Fundamental Research Funds for the Central Universities(Grant No.20109205456),and the Innovation Fund of Xidian University.

    猜你喜歡
    張志勇王平
    篆刻作品欣賞
    我眼中的太陽(yáng)
    Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
    篆刻作品欣賞
    Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure
    第四次出獄之后
    方圓(2022年12期)2022-09-15 00:58:22
    第四次出獄后,他相信自己不會(huì)再碰毒品了
    方圓(2022年13期)2022-09-14 15:08:02
    Designing of spin filter devices based on zigzag zinc oxide nanoribbon modified by edge defect?
    “上海干爹”張志勇:退伍后行善14年助百名孩子
    長(zhǎng)大以后
    成人18禁在线播放| 成人三级黄色视频| 亚洲无线在线观看| 18禁黄网站禁片午夜丰满| 精品午夜福利视频在线观看一区| 亚洲无线观看免费| 久久精品人妻少妇| 欧美日韩中文字幕国产精品一区二区三区| tocl精华| 亚洲精品乱码久久久v下载方式 | 亚洲av成人av| 国产亚洲精品久久久com| 色尼玛亚洲综合影院| 天天一区二区日本电影三级| 日韩 欧美 亚洲 中文字幕| 欧美性猛交╳xxx乱大交人| bbb黄色大片| 亚洲在线自拍视频| 国产亚洲精品久久久久久毛片| 一区福利在线观看| 老鸭窝网址在线观看| 国产精品久久久久久久久免 | 老熟妇乱子伦视频在线观看| 热99在线观看视频| 亚洲五月天丁香| 精品午夜福利视频在线观看一区| 国产精品98久久久久久宅男小说| 啦啦啦免费观看视频1| 18禁在线播放成人免费| 久久久国产成人精品二区| 亚洲午夜理论影院| 日韩成人在线观看一区二区三区| 欧美在线一区亚洲| 色尼玛亚洲综合影院| 亚洲av二区三区四区| 久久精品国产自在天天线| 精品免费久久久久久久清纯| 校园春色视频在线观看| 婷婷精品国产亚洲av| 男人舔女人下体高潮全视频| 亚洲精品久久国产高清桃花| 亚洲人成网站高清观看| 好男人电影高清在线观看| 国产国拍精品亚洲av在线观看 | 亚洲av五月六月丁香网| 国产精品久久久久久精品电影| 一个人观看的视频www高清免费观看| 精品午夜福利视频在线观看一区| 又紧又爽又黄一区二区| 亚洲18禁久久av| 国产亚洲av嫩草精品影院| 中文字幕人妻熟人妻熟丝袜美 | 亚洲人成电影免费在线| 日日摸夜夜添夜夜添小说| 日韩人妻高清精品专区| 叶爱在线成人免费视频播放| 欧美成人免费av一区二区三区| 内射极品少妇av片p| 村上凉子中文字幕在线| 超碰av人人做人人爽久久 | 国产精品综合久久久久久久免费| 乱人视频在线观看| 色av中文字幕| 婷婷精品国产亚洲av| 国产精品久久久久久精品电影| 免费看十八禁软件| 亚洲在线观看片| 不卡一级毛片| 综合色av麻豆| 老司机福利观看| 免费无遮挡裸体视频| 男女下面进入的视频免费午夜| 亚洲黑人精品在线| 国产在线精品亚洲第一网站| 91字幕亚洲| 亚洲av日韩精品久久久久久密| 国产美女午夜福利| 久久精品国产亚洲av涩爱 | 久久6这里有精品| 色综合欧美亚洲国产小说| 欧美精品啪啪一区二区三区| www.色视频.com| 亚洲精品久久国产高清桃花| 日日夜夜操网爽| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成伊人成综合网2020| 亚洲va日本ⅴa欧美va伊人久久| 国产真人三级小视频在线观看| 国产高清有码在线观看视频| 欧美大码av| 久久香蕉精品热| 国产精品一及| 欧美日韩福利视频一区二区| 国产免费男女视频| 色噜噜av男人的天堂激情| 夜夜爽天天搞| 国内精品久久久久精免费| av在线蜜桃| 亚洲精品粉嫩美女一区| 美女高潮的动态| 亚洲va日本ⅴa欧美va伊人久久| 男人舔女人下体高潮全视频| 久久久色成人| 欧美日韩国产亚洲二区| 久久99热这里只有精品18| 久久久久九九精品影院| 人人妻人人看人人澡| 人人妻,人人澡人人爽秒播| 超碰av人人做人人爽久久 | 日本五十路高清| 国产黄色小视频在线观看| 人妻久久中文字幕网| 波野结衣二区三区在线 | 色av中文字幕| av在线蜜桃| 精品久久久久久久毛片微露脸| xxxwww97欧美| 国产黄片美女视频| 精品乱码久久久久久99久播| aaaaa片日本免费| 熟妇人妻久久中文字幕3abv| 91麻豆精品激情在线观看国产| 免费观看的影片在线观看| 精品国内亚洲2022精品成人| 亚洲成人精品中文字幕电影| 99久久无色码亚洲精品果冻| 高潮久久久久久久久久久不卡| 精品人妻偷拍中文字幕| av视频在线观看入口| 亚洲天堂国产精品一区在线| 此物有八面人人有两片| 99久久无色码亚洲精品果冻| 免费一级毛片在线播放高清视频| 丁香欧美五月| 国产亚洲精品久久久com| 精品久久久久久久人妻蜜臀av| 午夜影院日韩av| 亚洲aⅴ乱码一区二区在线播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 成人国产一区最新在线观看| 国产欧美日韩一区二区三| 欧美性感艳星| 国产主播在线观看一区二区| 久久亚洲精品不卡| 51午夜福利影视在线观看| 亚洲国产色片| 欧美最黄视频在线播放免费| 激情在线观看视频在线高清| 变态另类成人亚洲欧美熟女| 三级国产精品欧美在线观看| 国产免费一级a男人的天堂| 亚洲专区中文字幕在线| 久久国产精品影院| 亚洲成人免费电影在线观看| 97碰自拍视频| 男女做爰动态图高潮gif福利片| 久久久精品欧美日韩精品| 男插女下体视频免费在线播放| 99久久综合精品五月天人人| 一区二区三区国产精品乱码| 亚洲国产高清在线一区二区三| 丁香欧美五月| 国产精品一区二区三区四区久久| 久久久久国内视频| 99精品久久久久人妻精品| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品一卡2卡三卡4卡5卡| 国产精品一区二区三区四区久久| 欧美极品一区二区三区四区| 91久久精品电影网| 99久久无色码亚洲精品果冻| 午夜日韩欧美国产| 久久这里只有精品中国| 一级黄片播放器| 成年版毛片免费区| 黄色视频,在线免费观看| 亚洲男人的天堂狠狠| 老汉色∧v一级毛片| 日本免费a在线| 精品久久久久久久久久久久久| 久久久久久人人人人人| 男女视频在线观看网站免费| 99久久99久久久精品蜜桃| 婷婷六月久久综合丁香| 老司机午夜十八禁免费视频| 日韩中文字幕欧美一区二区| 性色av乱码一区二区三区2| 国产精品一区二区免费欧美| 精华霜和精华液先用哪个| 最后的刺客免费高清国语| 亚洲av中文字字幕乱码综合| 国产欧美日韩一区二区三| 一级黄片播放器| 免费av不卡在线播放| 有码 亚洲区| 99久久综合精品五月天人人| 免费在线观看影片大全网站| 嫩草影院入口| 国产伦一二天堂av在线观看| 国产国拍精品亚洲av在线观看 | 激情在线观看视频在线高清| or卡值多少钱| 脱女人内裤的视频| 国产一区二区在线观看日韩 | 在线观看66精品国产| 国产一区二区在线av高清观看| 国产精品久久久久久久久免 | 欧美av亚洲av综合av国产av| 亚洲国产色片| 午夜两性在线视频| 国产精品久久久久久人妻精品电影| 免费人成在线观看视频色| 色噜噜av男人的天堂激情| 可以在线观看的亚洲视频| 婷婷亚洲欧美| 五月玫瑰六月丁香| 久久精品国产清高在天天线| 天堂网av新在线| 窝窝影院91人妻| 国产精品亚洲av一区麻豆| 99精品久久久久人妻精品| 国产美女午夜福利| 精品午夜福利视频在线观看一区| 老司机午夜福利在线观看视频| 久久精品国产99精品国产亚洲性色| 国内久久婷婷六月综合欲色啪| 波多野结衣巨乳人妻| 国产乱人视频| 十八禁网站免费在线| 青草久久国产| 99热这里只有精品一区| 天堂av国产一区二区熟女人妻| 一个人看的www免费观看视频| netflix在线观看网站| 白带黄色成豆腐渣| 日韩欧美国产一区二区入口| 精品乱码久久久久久99久播| 久久精品91无色码中文字幕| 色尼玛亚洲综合影院| 波野结衣二区三区在线 | 有码 亚洲区| 99热6这里只有精品| 国产激情偷乱视频一区二区| 亚洲一区二区三区色噜噜| 五月玫瑰六月丁香| 亚洲av免费高清在线观看| 国产aⅴ精品一区二区三区波| 国产极品精品免费视频能看的| 高清日韩中文字幕在线| aaaaa片日本免费| 日本成人三级电影网站| 一夜夜www| 看片在线看免费视频| 国产91精品成人一区二区三区| 亚洲成人久久爱视频| 欧美区成人在线视频| 少妇裸体淫交视频免费看高清| 精品久久久久久久久久免费视频| 国产伦精品一区二区三区视频9 | 欧美日韩黄片免| 精品免费久久久久久久清纯| 一本综合久久免费| 一个人免费在线观看的高清视频| 啦啦啦观看免费观看视频高清| 久久这里只有精品中国| 99久国产av精品| 精品一区二区三区视频在线观看免费| 欧美激情在线99| 91在线观看av| 久久精品综合一区二区三区| 男女那种视频在线观看| 日韩欧美一区二区三区在线观看| 欧美成人免费av一区二区三区| 好男人电影高清在线观看| 国产亚洲av嫩草精品影院| 老熟妇乱子伦视频在线观看| 两个人视频免费观看高清| 亚洲中文日韩欧美视频| 国产精品日韩av在线免费观看| 精品人妻一区二区三区麻豆 | 51国产日韩欧美| 国产精品亚洲一级av第二区| 亚洲五月天丁香| 熟妇人妻久久中文字幕3abv| 叶爱在线成人免费视频播放| 在线播放无遮挡| 国产高清视频在线观看网站| 制服人妻中文乱码| 久久婷婷人人爽人人干人人爱| 老司机午夜十八禁免费视频| 国产精品久久久久久亚洲av鲁大| 免费看美女性在线毛片视频| 给我免费播放毛片高清在线观看| 淫妇啪啪啪对白视频| 搡老岳熟女国产| 一本一本综合久久| 亚洲国产高清在线一区二区三| 一个人观看的视频www高清免费观看| 国产熟女xx| 亚洲国产欧美人成| a级一级毛片免费在线观看| 亚洲激情在线av| 精品午夜福利视频在线观看一区| 搡老岳熟女国产| 国产视频内射| 一进一出抽搐gif免费好疼| 美女cb高潮喷水在线观看| 99久久九九国产精品国产免费| 欧美性猛交╳xxx乱大交人| 国产欧美日韩精品一区二区| 亚洲精品粉嫩美女一区| 国产欧美日韩精品一区二区| 亚洲国产欧美人成| 一级毛片高清免费大全| 亚洲av日韩精品久久久久久密| 怎么达到女性高潮| 97超视频在线观看视频| 精品久久久久久久久久免费视频| 深夜精品福利| 黑人欧美特级aaaaaa片| 美女黄网站色视频| 99热这里只有是精品50| 欧美黄色片欧美黄色片| 亚洲人成网站高清观看| 亚洲熟妇中文字幕五十中出| 精品一区二区三区av网在线观看| 香蕉av资源在线| 校园春色视频在线观看| 一区福利在线观看| 久久伊人香网站| avwww免费| 成年女人毛片免费观看观看9| 国产三级在线视频| 夜夜夜夜夜久久久久| 亚洲专区中文字幕在线| 中文字幕精品亚洲无线码一区| 国产爱豆传媒在线观看| 18禁黄网站禁片午夜丰满| 12—13女人毛片做爰片一| 欧美乱妇无乱码| 亚洲 欧美 日韩 在线 免费| 禁无遮挡网站| 免费在线观看影片大全网站| 亚洲成人久久爱视频| 99久久久亚洲精品蜜臀av| 男人的好看免费观看在线视频| 黄色成人免费大全| 夜夜爽天天搞| 女同久久另类99精品国产91| 男人的好看免费观看在线视频| 国产精品亚洲一级av第二区| 日本一二三区视频观看| 日本黄色视频三级网站网址| 久久性视频一级片| 亚洲成人久久性| 亚洲最大成人手机在线| 成人av一区二区三区在线看| 给我免费播放毛片高清在线观看| 又黄又爽又免费观看的视频| 亚洲av一区综合| 国产成+人综合+亚洲专区| 国内揄拍国产精品人妻在线| 国内精品久久久久久久电影| 村上凉子中文字幕在线| 精品日产1卡2卡| 欧美bdsm另类| 欧美国产日韩亚洲一区| 在线免费观看的www视频| 制服人妻中文乱码| 国产欧美日韩精品亚洲av| 啦啦啦观看免费观看视频高清| 一二三四社区在线视频社区8| 怎么达到女性高潮| 久久久国产精品麻豆| 久久久久久久久中文| 欧美性猛交黑人性爽| 成人精品一区二区免费| 叶爱在线成人免费视频播放| 欧美日韩瑟瑟在线播放| 国产精品久久久久久人妻精品电影| 成年版毛片免费区| 高清毛片免费观看视频网站| 悠悠久久av| 熟女人妻精品中文字幕| 日本五十路高清| 精品久久久久久久人妻蜜臀av| 老汉色av国产亚洲站长工具| 亚洲在线观看片| 国产国拍精品亚洲av在线观看 | 91麻豆精品激情在线观看国产| 一本精品99久久精品77| 99精品欧美一区二区三区四区| 国产成人a区在线观看| 88av欧美| 国产精品野战在线观看| 最近视频中文字幕2019在线8| 免费av观看视频| 最近视频中文字幕2019在线8| 欧美日韩国产亚洲二区| 久久久久久久精品吃奶| 久久香蕉精品热| 成年人黄色毛片网站| 国产免费一级a男人的天堂| 熟女人妻精品中文字幕| 村上凉子中文字幕在线| 欧美中文综合在线视频| 久久精品国产清高在天天线| 99热精品在线国产| 中文字幕熟女人妻在线| 日韩国内少妇激情av| 免费人成视频x8x8入口观看| 在线天堂最新版资源| 日本一二三区视频观看| 在线观看av片永久免费下载| 99久久精品国产亚洲精品| 亚洲国产精品sss在线观看| 午夜福利成人在线免费观看| 久久精品国产清高在天天线| 美女被艹到高潮喷水动态| 一个人免费在线观看的高清视频| 亚洲最大成人中文| 精品久久久久久久末码| 我的老师免费观看完整版| 三级毛片av免费| 亚洲自拍偷在线| 老司机福利观看| 国产欧美日韩一区二区三| 国产成人a区在线观看| 国产精品三级大全| 搡老熟女国产l中国老女人| 最近最新中文字幕大全免费视频| 亚洲人成网站在线播放欧美日韩| 欧美色视频一区免费| 每晚都被弄得嗷嗷叫到高潮| 成年人黄色毛片网站| 日韩人妻高清精品专区| 亚洲精品456在线播放app | 美女大奶头视频| 欧洲精品卡2卡3卡4卡5卡区| www.999成人在线观看| 一级毛片高清免费大全| 91在线精品国自产拍蜜月 | 国产麻豆成人av免费视频| 亚洲乱码一区二区免费版| 亚洲人成网站在线播| 美女黄网站色视频| 久久久久久久久中文| 一夜夜www| 在线a可以看的网站| 国产欧美日韩一区二区精品| 国产野战对白在线观看| 国产av一区在线观看免费| 亚洲18禁久久av| 午夜免费男女啪啪视频观看 | 在线a可以看的网站| 国产欧美日韩一区二区精品| 亚洲美女黄片视频| 黄色丝袜av网址大全| 亚洲精品美女久久久久99蜜臀| a级一级毛片免费在线观看| 日本免费a在线| 变态另类成人亚洲欧美熟女| 可以在线观看的亚洲视频| 国产真实伦视频高清在线观看 | 色综合欧美亚洲国产小说| 国产91精品成人一区二区三区| 国产欧美日韩精品一区二区| 亚洲欧美一区二区三区黑人| 全区人妻精品视频| 免费在线观看成人毛片| 最新中文字幕久久久久| 啦啦啦观看免费观看视频高清| 99国产综合亚洲精品| 欧美日韩精品网址| 国产真实乱freesex| 日韩欧美精品v在线| 丰满人妻熟妇乱又伦精品不卡| 国产高清视频在线观看网站| 久久精品亚洲精品国产色婷小说| 国产成人影院久久av| 精品电影一区二区在线| 成年女人毛片免费观看观看9| 高清日韩中文字幕在线| 18+在线观看网站| 两个人视频免费观看高清| 亚洲中文字幕日韩| av片东京热男人的天堂| 一进一出好大好爽视频| 午夜日韩欧美国产| 亚洲精品影视一区二区三区av| 亚洲中文字幕一区二区三区有码在线看| 精品无人区乱码1区二区| 在线观看一区二区三区| 啦啦啦韩国在线观看视频| 国内毛片毛片毛片毛片毛片| 久久香蕉精品热| 国内精品久久久久久久电影| 九九久久精品国产亚洲av麻豆| 窝窝影院91人妻| 91在线精品国自产拍蜜月 | 最新在线观看一区二区三区| 国产蜜桃级精品一区二区三区| 国产欧美日韩精品一区二区| 久久6这里有精品| 国内精品美女久久久久久| 欧美黄色淫秽网站| 99热只有精品国产| 韩国av一区二区三区四区| 久久精品91无色码中文字幕| 男人舔奶头视频| 亚洲av电影不卡..在线观看| 波多野结衣高清作品| 又黄又粗又硬又大视频| 桃红色精品国产亚洲av| 亚洲美女黄片视频| 黑人欧美特级aaaaaa片| 少妇裸体淫交视频免费看高清| 在线天堂最新版资源| 日本撒尿小便嘘嘘汇集6| 久久亚洲精品不卡| av专区在线播放| 91在线精品国自产拍蜜月 | 久久久国产成人精品二区| 国产精品,欧美在线| 在线国产一区二区在线| 成人无遮挡网站| 日韩中文字幕欧美一区二区| tocl精华| 中文字幕av成人在线电影| 三级毛片av免费| 久久欧美精品欧美久久欧美| 国产视频内射| 亚洲美女黄片视频| bbb黄色大片| 国产三级中文精品| 老司机午夜十八禁免费视频| av中文乱码字幕在线| 18禁黄网站禁片午夜丰满| 日韩人妻高清精品专区| 午夜精品久久久久久毛片777| 1000部很黄的大片| 一级作爱视频免费观看| 在线a可以看的网站| 桃红色精品国产亚洲av| 免费在线观看影片大全网站| 午夜激情欧美在线| 日韩精品青青久久久久久| 国产成人av教育| 最好的美女福利视频网| 欧美丝袜亚洲另类 | 无人区码免费观看不卡| 在线观看av片永久免费下载| 亚洲人成伊人成综合网2020| 国产男靠女视频免费网站| 夜夜夜夜夜久久久久| 18禁黄网站禁片免费观看直播| 成年女人毛片免费观看观看9| 日韩免费av在线播放| 黄片大片在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 国产精品久久视频播放| 搞女人的毛片| 欧美性猛交╳xxx乱大交人| www日本在线高清视频| 免费人成视频x8x8入口观看| 99视频精品全部免费 在线| 男人和女人高潮做爰伦理| 日韩人妻高清精品专区| 成年免费大片在线观看| 久久精品国产自在天天线| 99热这里只有精品一区| 国产精品爽爽va在线观看网站| 久久香蕉精品热| 欧美区成人在线视频| 99在线视频只有这里精品首页| 久久欧美精品欧美久久欧美| 免费看日本二区| 国产精品av视频在线免费观看| 日韩欧美国产在线观看| АⅤ资源中文在线天堂| 国产亚洲精品av在线| 久久久久久久精品吃奶| 网址你懂的国产日韩在线| 精品国产三级普通话版| 精品久久久久久久久久久久久| 亚洲精品色激情综合| 小蜜桃在线观看免费完整版高清| 色综合站精品国产| 国产成+人综合+亚洲专区| 中亚洲国语对白在线视频| 国产视频一区二区在线看| 久久九九热精品免费| 好男人电影高清在线观看| 少妇的丰满在线观看| 欧美bdsm另类| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 啦啦啦韩国在线观看视频| 久久久精品欧美日韩精品| 亚洲欧美日韩东京热| 在线观看午夜福利视频| 国产高潮美女av| 欧美中文日本在线观看视频| 男女做爰动态图高潮gif福利片| 天堂网av新在线| 国产精品精品国产色婷婷| 亚洲色图av天堂| 99在线视频只有这里精品首页| 欧美日本亚洲视频在线播放| 国产精品 欧美亚洲| 国产av不卡久久| 国产免费男女视频| 高清毛片免费观看视频网站| 久久香蕉精品热| 成人三级黄色视频| 精品国内亚洲2022精品成人|