• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions

    2022-12-28 09:53:08PingWang王平YuWang王豫ZhongmingYan嚴(yán)仲明andHongchengZhou周洪澄
    Chinese Physics B 2022年12期
    關(guān)鍵詞:王平

    Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(嚴(yán)仲明), and Hongcheng Zhou(周洪澄)

    School of Electrical Engineering,Southwest Jiaotong University,Chengdu 611756,China

    Keywords: polarization conversion,reconfigurable metasurface,Fabry–P′erot resonance

    1. Introduction

    Polarization is one of the fundamental properties of electromagnetic (EM) waves, which carries plenty of information about the scatters. Thus, the polarization modulation is significant and valuable in many aspects, such as wireless communication,[1–3]radar cross section reduction,[4,5]and imaging.[6,7]To process polarization information as much as possible,the devices which can manipulate multiple polarization are essential. Metasurfaces have provided excellent alternatives. As a two-dimensional artificial material, metasurfaces have been widely utilized to control EM waves because of their low profile,low loss,easy processing,high flexibility,and so on. For possessing tunable property and functionality,various reconfigurable metasurfaces were fabricated by integrating with RF devices[8–16]or functional materials.[17,18]

    It has always been pursued to manipulate the polarization of waves at will. To date, various reconfigurable polarization conversion metasurfaces(PCMs)with multiple functions have been proposed. However,the major of reported transmissiontype PCM can only achieve co-polarization transmission and a single polarization conversion. For example, the reconfigurable PCMs composed of periodic rings[8]or chiral structures[9]incorporated with PIN diodes were proposed,which can realize co-polarization transmission and linear-tocircular (LTC) polarization conversion. Some reconfigurable PCMs formed by split rings achieved co-polarization transmission and linear-to-linear (LTL) polarization conversion.[10,11]However, the dynamic switching among LTC and LTL polarization conversions is still rare for the transmission-type PCM. In Ref. [16], the bi-layer PCM incorporated with varactor diodes was proposed, it could convert the incident LP waves into multiple polarization, but it could only operate in narrow frequency band. The integration of LTC and LTL polarization conversions has been concerned.[19–21]To solve the problem, several designs based on passive metasurfaces were reported.Unfortunately,their operational bands for each function cannot overlap,which causes the reported designs impossible to process multi-polarization signals with the same frequency. The design proposed in Refs.[22,23]can reconfigure the incident linear polarization to multiple linear and circular polarization by rotating the metasurfaces,but the slow mechanical adjustment may be limited in applications.

    In this paper,we design a novel transmission-type reconfigurable PCM based on Fabry–P′erot(F–P)resonate cavity for LTC and LTL polarization conversions. The proposed PCM consists of a layer of grating, a polarization conversion surface and a reconfigurable polarization selective surface. The switching of functions is realized by changing states of the PIN diodes. To verify the design,the prototype has been fabricated and tested. As demonstrated by the measurement results,the PCM can convert linear polarized(LP)waves to CP waves from 3.31 GHz to 3.56 GHz with the axial ratio (AR)less than 3 dB when the PIN diodes are switched off. Instead,when the diodes are switched on, the PCM can rotate the LP waves to cross-polarized waves from 2.76 GHz to 4.24 GHz with the polarization conversion ratio(PCR)higher than 0.95.The operational bandwidths are 7.3%and 42.3%for the LTC and LTL polarization conversions. The thickness of proposed PCM is 0.2λ0(λ0is the wavelength corresponding to the central frequency). Moreover, the F–P resonance excited in the PCM is discussed in this paper, and the conditions for realizing LTC polarization conversion are also derived. Before our work,a lot of LTL polarization converters combining F–P resonate cavity have been proposed.[24–26]Nevertheless, to the best of our knowledge, the transmission-type LTC polarization converter based on F–P cavity-like metasurface has not been reported. Our proposed design provides a new method for converting incident linear polarized wave into circular polarized and cross-polarized wave,which may promote the development of transmission-type metasurface toward arbitrary polarization manipulations.

    2. Analysis and design

    2.1. Operational principles of the PCM

    For achieving dynamically switching among LTC and LTL polarization conversions, we propose an approach for constructing the PCM whose schematic diagram is depicted in Fig. 1. Layer A is a polarization selector which only permits they-polarized wave to pass through. Layer B is a polarization conversion surface composed of periodic anisotropic structures, which can partially converts the incidenty-polarized wave intoxpolarization. The reconfigurable layer C which integrates PIN diodes has two functions, including co-polarization transmission and polarization selection. The three layers form an F–P resonate cavity. The corresponding relationships between the states of PIN diodes and the PCM are illustrated in Table 1.

    Table 1. Working states of PIN diodes and functions of PCM.

    Fig.1. Schematic diagram of proposed PCM for polarization conversion.

    Fig.2. The schematic diagram of the propagation of waves in PCM,as the state of PIN diode is switched(a)off and(b)on.

    For describing the operational principle, we have established an F–P resonate model based on the PCM as shown in Fig. 2. They-polarized waves illuminate PCM along?zaxis,and the transmission directions of waves in PCM are indicated by the arrows. They-andx-polarized components are denoted by solid and dashed lines,respectively. First,the incidenty-polarized waves pass through layer A and interact with layer B, then the reflected and transmitted waves which includey- andx-polarized components are excited by layer B.They-polarized backward wave penetrates into layer A,thexpolarized one is reflected by layer A and interacts with layer B once again. In contrast, the propagation processes of forward waves depend on states of layer C.If layer C is in state 1, as shown in Fig. 2(a), they- andx-polarized components can pass through it. When layer C is in state 2, as shown in Fig.2(b),only thex-polarized component can pass through it.They-polarized component will be reflected by layer C and undergoes the multiple reflections. It should be noted that the above descriptions of wave propagation in state 1 ignore the reflection of layer C,in fact,a few ofy-andx-polarized components will be reflected by it and participate in the round trips within the PCM.

    Based on the analysis of the interactions between waves and metasurface (see Appendix for details), we derived the condition for the PCM achieving LTC polarization conversion as follows:

    Fig.3. Schematic diagram of the x–y and u–v coordinate systems.

    2.2. Design of geometric configuration for each layer

    The unit cells of layer A and B are shown in Fig. 4.The dielectric substrates are FR4 with relative permittivityεr=4.3. Several metal stripes alongx-axis are etched on front side of layer A, which form a grating. For filtering out thex-polarized incident waves, the geometry parameters of layer A are chosen asw1=2.5 mm,g1=3.5 mm,the thickness of substrate in layer A ist1=0.5 mm. The metal stripes and successive lines are orthogonal,they are etched on the front side of layer B.The thickness of substrate in layer B ist2=1.6 mm.The equivalent circuits of layer B atu-andv-polarization are illustrated in Fig.5,whereLuandLvdenote the inductance introduced by the metal strips alongu-andv-axis,Cvdenotes the capacitance of the gap between two strips aligned withvaxis.Zsubrepresents the equivalent impedance of the substrate.TheABCDmatrix of layer B can be expressed as[29]

    Fig.4. The geometric configuration of unit cell: (a)layer A,(b)layer B.

    whereMpandMsrepresent the transmission matrix of metal patterns and substrate of layer B.Zidenotes the impedance of metal patterns withi=uori=vdepending on the polarization direction. The impedance can be derived asZu= jωLuandZv= j(2ωLv ?2/ωCv). The circuit parameters can be obtained as follows:[14,30]

    Then,the co-polarized transmission and reflection coefficients of layer B can be calculated by

    Via adjusting thew2andg2, the co-polarization transmission and reflection coefficients aligned withu- andv-axis can be independently tuned. The value selections ofw2andg2according to performance of layer B will be described in the following section.

    Fig.5. The equivalent circuit model of layer B.The incident wave is(a)u-polarized(b)v-polarized.

    The periodic structure of layer C is presented in Figs.6(a)and 6(b), the rectangular metal patches are arranged on the front side. The PIN diodes are embedded into the gaps between adjacent patches. The orthogonal metal lines are etched on the back side of layer C. The PIN diode is Skyworks SMP1345-079LF. For the on state, it can be equivalent to a resistor of 2 ? in series with an inductor of 0.7 nH. For the off state, it can be equivalent to a capacitor of 0.15 pF in series with an inductor of 0.7 nH. The dielectric substrate employed in layer C is same as in layer B.The geometric parameters of layer C are taken asl2=5.13 mm,g3=2.19 mm,w4=3.14 mm,w5=0.5 mm,w6=0.8 mm,w7=0.4 mm,andp1=16 mm. For describing the operational principle of layer C, the lumped circuit elements introduced by the metal patterns are illustrating in Fig. 6(a). HereL1andL3denote the equivalent inductance of the metal patch atyandxdirections, respectively,C1is the capacitor introduced by the gap between patches alongx-axis. The inductances of metal wires on back side are denoted byL2andL4,respectively. When the PIN diodes are switched off, the front-side structures exhibit capacitive responses alongxandydirections,after cascading with the inductive branches on the backside, layer C will exhibit band-pass response for incident waves. While the PIN diodes are switched on, layer C can be equivalent to a metal grating parallel toy-axis for blocking they-polarized waves.The simulated results of layer C are shown in Fig.6(c). With the changing of PIN states,there is obvious discrepancy for the transmission ofy-polarized wave. For the off state,the|tyy|is consistent with|txx|,which are higher than?1 dB within 2.42–3.80 GHz,for the on state,the|tyy|is less than?20.3 dB below 3.80 GHz.

    Fig.6. The geometric configuration of periodic structures in layer C:(a)front side, (b)back side. (c)Simulated transmission coefficients of layer C.

    2.3. Integrated design of the PCM

    By cascading the proposed three layers, as shown in Fig. 7, the PCM is constructed. Then, several geometric parameters need to be determined according to performance of the PCM, including the configuration of the layer B and the distances between adjacent layers. The optimization target for the PCM is to realize LTC and LTL polarization conversions within S-band,and the performances of LTC conversion are set as priority. Based on Eq. (1) and related discussions,the optimizations can follow the principles mentioned below.First, the periodic dimensionpand line widthw2should be determined,which mainly depend on the predetermined transmittance and operational frequency. The increase ofpand the decrease ofw2are conducive to improve the transmittancetBuubecause the equivalent inductances of successive metal lines are raised. However,pshould not exceed half a wavelength in order to suppress the gating lobes.[30]Next, we can optimize the performances of LTC conversion by adjustingg2andd.The frequency responses of the AR with differentg2anddare shown in Fig.8 withp=48 mm andw2=0.1 mm. The AR of PCM is obtained as follows:

    It can be found that the minimal value of AR is mainly determined byg2, and the operational frequency is mainly determined byd. We can select the value ofg2first to guarantee the LTC polarization conversion, and then optimize the overlapping bandwidth and conversion coefficients of LTC and LTL polarization conversions by adjustingd. Finally, the performances of PCM can be finely tuned by adjustingd1.The optimized geometric parameters are taken asp=48 mm,w2=1.5 mm,g2=9 mm,d=7 mm,d1=7 mm.

    Fig.7. Configuration of unit cell of the proposed PCM.

    Fig.8. The comparison of AR with different g2 and d: (a)d=5 mm,(b)d=7 mm,(c)d=9 mm.

    3. Simulation and measurement results

    The model of proposed PCM is simulated by the CST Microwave Studio, and the prototype of PCM is fabricated and measured. The experimental setups are illustrated in Fig. 9,two horn antennas are placed on different sides of prototype,which are connected to the Keysight N5227B vector network analyzer (VNA) through RF cables. The size of prototype is 330 mm×330 mm×17.7 mm,and the thickness is 0.2λ0(λ0is wavelength corresponding to the central frequency). The simulation and measurement results are shown in Fig. 10, wheret?yandt+ydenote the transmission fromy-polarized to lifthanded and right-handed circular polarizations, respectively.They can be obtained as follows:

    The PCR at LTC and LTL mode is defined as|t?y|2/(|t?y|2+|t+y|2) and|txy|2/(|txy|2+|tyy|2).[10,30]As shown in the measurement results, when the PIN diodes are switched off, the PCM can achieve LTC polarization conversion with the AR less than 3 dB from 3.31 GHz to 3.56 GHz. Meanwhile, the PCR of LTC polarization conversion is higher than 0.95.

    Fig.9. The measurement setup and prototype.

    When the PIN diodes are switched on, the PCM can rotatey-polarized wave tox-polarization with the PCR higher than 0.95 within 2.76–4.24 GHz. The fractional bandwidths at LTC and LTL modes are 7.3%and 42.3%,respectively. In the overlapping frequency band, the magnitudes of transmissions of both functions are higher than?1.84 dB.In Fig.10,the measurement results show agreement with the simulation ones, there are some discrepancies which may be caused by the deviations in fabrication of prototype and instrument alignment. Moreover, we obtain the analytic transmission coefficients of PCM according to the discussions in Appendix,which are basically consistent with the simulation and measurement results. Even if there are deviations,the comparison in Fig.10 indicates that the proposed expressions in Appendix can effectively represent the transmission coefficient of PCM.In Appendix,it is assumed that the magnitude of transmittance of layer A toy-polarized wave (the same as the magnitude of reflectivity tox-polarized wave)is 1,whereas the transmittance of layer A in fact will be slightly smaller, which may cause the deviations of the analytic results.

    Fig.10. The measurement and simulation results of the PCM:(a)magnitude of transmission and AR for LTC polarization conversion,(b)magnitude of transmission for LTL polarization conversion,(c)PCR for LTC and LTL polarization conversions.

    The transmission coefficients of layer B are shown in Fig. 11, where the shadow area indicates the operational frequency band of LTC polarization conversion. It can be found that the magnitude oftBvvrapidly declines with frequency increasing in the operational band. Although the condition of polarization conversion can be satisfied near 3.43 GHz, the sharp change of parameters will limit the functionality to a narrow band. If a metasurface with stable response against frequency is used as layer B, the frequency band will be expanded, such as the multi-resonant structures[31]and multilayer surface,[32]while the profile or insertion loss may be higher than the proposed design. Moreover, if the proposed layer B is replaced by a reconfigurable metasurface with appropriate configuration, the PCM may integrate more functions,such as co-polarized transmission and linear-to-elliptical polarization conversions.

    Fig.11. The simulated magnitude and phase of transmission for layer B.

    4. Conclusion

    In summary, we have proposed a transmission-type reconfigurable PCM as well as detailed procedure,which has the reconfigurable functions of LTC and LTL polarization conversions. The reconfigurable functions are obtained by changing the states of PIN diodes embedded on the PCM. The operation of PCM is based on F–P resonances which have been illustrated. Moreover, to guide the design, the conditions for achieving LTC polarization conversion have been derived.From the measurement results of prototype, the overlapping frequency band of two functions is from 3.31 GHz to 3.56 GHz with the transmission higher than?1.84 dB.The thickness of the proposed PCM is 0.2λ0. Because the transmission-type metasurfaces can be loaded on aperture of the feeding antenna, the proposed design is more suitable for compact system than reflector arrays. It can also quickly switch states due to its electronic adjustment. These advantages make the proposed PCM have the application prospects in S-band radar and satellite communication,meanwhile it also has the potential to merge more functionalities of EM wave manipulation.

    Appendix A

    To analyze the propagation of incident waves in the PCM,we divide PCM into two parts at first. As shown in Fig. A1,layer A is named as part I,the layers B and C are regarded as a whole and indicated as part II.Thex-andy-polarized electric field components are denoted byEt/rxnorEt/ryn, wherenin the subscript indicates the component experiencedntimes roundtrips within the space between adjacent layers.We assume that the Jones matrixes describing layer A satisfy

    In this paper,the near-field coupling excited between layers is not considered in the analysis of wave transmissions. Next,we present the propagation of waves in part II.The schematic diagram is given in Fig. A1(b). For simplifying analysis, the transmission coefficients in theu–vcoordinate system is discussed first. As mentioned above, the responses of layer B aligned withuandvaxes are independent of each other.Therefore,u-polarized transmitted components can calculated as

    Substituting Eqs.(A8)–(A11)into Eq.(A18),the condition for achieving LTC polarization conversion based on coefficients of each layer can be derived as follows:

    Acknowledgement

    Project supported by the Fundamental Research Funds for Central Universities(Grant No. 2682020GF03).

    猜你喜歡
    王平
    Modification of streamer-to-leader transition model based on radial thermal expansion in the sphere-plane gap discharge at high altitude
    篆刻作品欣賞
    我眼中的太陽(yáng)
    Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures:An ensemble Monte Carlo simulation
    篆刻作品欣賞
    Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure
    陰差陽(yáng)錯(cuò)
    故事林(2017年17期)2017-09-12 18:13:28
    耍臉
    咱去機(jī)場(chǎng)接個(gè)人
    咱去機(jī)場(chǎng)接個(gè)人
    欧美bdsm另类| 午夜精品一区二区三区免费看| 91久久精品国产一区二区成人| 精品久久国产蜜桃| 最近最新中文字幕免费大全7| 亚洲成人中文字幕在线播放| 国产免费又黄又爽又色| 久久久色成人| 亚洲一级一片aⅴ在线观看| 美女大奶头视频| 国产免费一级a男人的天堂| 一级毛片aaaaaa免费看小| 麻豆乱淫一区二区| 五月天丁香电影| 床上黄色一级片| 久久精品久久久久久噜噜老黄| 亚洲真实伦在线观看| 亚洲精品乱码久久久久久按摩| 中文字幕av在线有码专区| 一级黄片播放器| 日日干狠狠操夜夜爽| 免费电影在线观看免费观看| 国产精品综合久久久久久久免费| 国产精品不卡视频一区二区| 久久久久久久国产电影| 高清欧美精品videossex| 亚洲综合色惰| 亚洲av中文av极速乱| 日韩,欧美,国产一区二区三区| 日日啪夜夜爽| 国产黄色视频一区二区在线观看| 舔av片在线| 草草在线视频免费看| 国产一级毛片七仙女欲春2| 18+在线观看网站| 丝袜喷水一区| 国产人妻一区二区三区在| 精品久久久久久久末码| 最近中文字幕高清免费大全6| 18禁在线播放成人免费| 精品久久久久久久久av| 日韩三级伦理在线观看| 日韩av免费高清视频| 一区二区三区高清视频在线| 十八禁网站网址无遮挡 | 欧美另类一区| 日本色播在线视频| av网站免费在线观看视频 | 中文天堂在线官网| 国产精品久久久久久久电影| 国产男女超爽视频在线观看| 夫妻性生交免费视频一级片| 国产91av在线免费观看| 男人爽女人下面视频在线观看| 18禁在线播放成人免费| 亚洲一级一片aⅴ在线观看| 汤姆久久久久久久影院中文字幕 | 麻豆久久精品国产亚洲av| 色5月婷婷丁香| 久久久a久久爽久久v久久| 麻豆av噜噜一区二区三区| 免费观看的影片在线观看| 最近视频中文字幕2019在线8| 菩萨蛮人人尽说江南好唐韦庄| 日韩av在线免费看完整版不卡| 国产精品.久久久| 成人午夜精彩视频在线观看| 精品久久久久久成人av| 欧美xxxx性猛交bbbb| 大片免费播放器 马上看| 国产视频首页在线观看| 精品一区二区免费观看| 亚洲av国产av综合av卡| 一级毛片黄色毛片免费观看视频| 日日摸夜夜添夜夜添av毛片| 观看免费一级毛片| 国产精品久久久久久久久免| 久久久久精品性色| 日本av手机在线免费观看| 97在线视频观看| 狂野欧美激情性xxxx在线观看| 国产亚洲最大av| 特级一级黄色大片| 丝瓜视频免费看黄片| 成人亚洲精品av一区二区| 晚上一个人看的免费电影| 成年免费大片在线观看| 日本一二三区视频观看| 成人特级av手机在线观看| 国国产精品蜜臀av免费| 一级二级三级毛片免费看| 国产精品久久久久久精品电影| 2021天堂中文幕一二区在线观| 黄片无遮挡物在线观看| 日韩中字成人| 国产av在哪里看| 全区人妻精品视频| 成人高潮视频无遮挡免费网站| 天堂av国产一区二区熟女人妻| 亚洲图色成人| 色视频www国产| 国产视频内射| 中文乱码字字幕精品一区二区三区 | 久久久精品94久久精品| 国产精品爽爽va在线观看网站| 免费观看性生交大片5| 久久午夜福利片| 99久久精品国产国产毛片| 午夜激情欧美在线| 国模一区二区三区四区视频| 超碰av人人做人人爽久久| 免费观看无遮挡的男女| 精品久久久精品久久久| 禁无遮挡网站| 色播亚洲综合网| 美女内射精品一级片tv| 91精品伊人久久大香线蕉| 欧美日韩视频高清一区二区三区二| 中国国产av一级| 久久97久久精品| 2021少妇久久久久久久久久久| 日韩av在线大香蕉| 国产精品女同一区二区软件| 精品久久久久久久久av| 国产一区亚洲一区在线观看| 日本午夜av视频| 免费高清在线观看视频在线观看| 两个人的视频大全免费| 一级毛片黄色毛片免费观看视频| 国产毛片a区久久久久| 欧美+日韩+精品| 国产又色又爽无遮挡免| 美女被艹到高潮喷水动态| 国产精品麻豆人妻色哟哟久久 | 永久免费av网站大全| 国产av码专区亚洲av| 伦理电影大哥的女人| 国产黄片美女视频| 岛国毛片在线播放| 国产毛片a区久久久久| 高清午夜精品一区二区三区| 日韩人妻高清精品专区| 日韩中字成人| 亚洲内射少妇av| 国产黄片视频在线免费观看| 欧美激情在线99| 在线观看美女被高潮喷水网站| 久久久久久久午夜电影| 听说在线观看完整版免费高清| 日本av手机在线免费观看| 亚洲高清免费不卡视频| 91精品伊人久久大香线蕉| 国产成人a∨麻豆精品| 亚洲av一区综合| 亚洲av一区综合| 日日摸夜夜添夜夜爱| 精品久久久精品久久久| 男人和女人高潮做爰伦理| 毛片一级片免费看久久久久| 最近视频中文字幕2019在线8| 国产精品爽爽va在线观看网站| 色综合站精品国产| 成人特级av手机在线观看| 久久精品综合一区二区三区| 亚洲自偷自拍三级| 欧美精品国产亚洲| 亚洲欧洲日产国产| 欧美精品国产亚洲| 日韩强制内射视频| av卡一久久| 能在线免费观看的黄片| 亚洲精品国产av蜜桃| 真实男女啪啪啪动态图| 国产探花极品一区二区| 91精品一卡2卡3卡4卡| 91精品一卡2卡3卡4卡| 欧美人与善性xxx| 国产有黄有色有爽视频| 美女大奶头视频| 亚洲综合色惰| 免费不卡的大黄色大毛片视频在线观看 | 草草在线视频免费看| 色综合亚洲欧美另类图片| 欧美精品国产亚洲| 国产av国产精品国产| 国产淫片久久久久久久久| 日韩人妻高清精品专区| 26uuu在线亚洲综合色| or卡值多少钱| 99九九线精品视频在线观看视频| 免费看美女性在线毛片视频| 一夜夜www| 国产精品久久久久久av不卡| 97热精品久久久久久| 高清欧美精品videossex| 麻豆成人午夜福利视频| 男人爽女人下面视频在线观看| 能在线免费观看的黄片| 国产中年淑女户外野战色| 欧美3d第一页| 日本黄大片高清| 三级经典国产精品| 国产老妇女一区| 国产一级毛片七仙女欲春2| 男的添女的下面高潮视频| 亚洲av中文av极速乱| 亚洲乱码一区二区免费版| 国产一区二区在线观看日韩| 亚洲怡红院男人天堂| 日韩三级伦理在线观看| 少妇的逼好多水| 少妇猛男粗大的猛烈进出视频 | 国产成人91sexporn| 男女国产视频网站| 免费观看的影片在线观看| 亚洲成人一二三区av| 亚洲在线观看片| 免费大片黄手机在线观看| 国产高潮美女av| 久久99热这里只有精品18| 国产一区亚洲一区在线观看| 国产一区二区亚洲精品在线观看| 久久韩国三级中文字幕| 97精品久久久久久久久久精品| 国产久久久一区二区三区| 国产一区有黄有色的免费视频 | 免费看不卡的av| 99久久九九国产精品国产免费| 精品一区二区三区人妻视频| 少妇人妻一区二区三区视频| 亚洲熟妇中文字幕五十中出| 亚洲最大成人av| 观看美女的网站| 午夜福利在线观看吧| 能在线免费观看的黄片| 久热久热在线精品观看| 又爽又黄a免费视频| 80岁老熟妇乱子伦牲交| 国产探花极品一区二区| 插逼视频在线观看| 中文字幕av成人在线电影| 日产精品乱码卡一卡2卡三| 久久精品夜夜夜夜夜久久蜜豆| 777米奇影视久久| 成人漫画全彩无遮挡| 国模一区二区三区四区视频| 熟女人妻精品中文字幕| 蜜桃亚洲精品一区二区三区| 观看免费一级毛片| 亚洲精品一二三| 老司机影院毛片| 纵有疾风起免费观看全集完整版 | 国产成人精品婷婷| 观看美女的网站| 婷婷色综合www| 国产亚洲一区二区精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲,欧美,日韩| 夫妻性生交免费视频一级片| 神马国产精品三级电影在线观看| 亚洲欧美成人综合另类久久久| 91久久精品国产一区二区三区| 午夜福利视频1000在线观看| 亚洲人成网站在线播| 久久这里有精品视频免费| 寂寞人妻少妇视频99o| 国产精品无大码| 日本猛色少妇xxxxx猛交久久| 欧美成人a在线观看| 国产精品蜜桃在线观看| 亚洲,欧美,日韩| 人妻夜夜爽99麻豆av| 最新中文字幕久久久久| av在线天堂中文字幕| 国产麻豆成人av免费视频| 精品久久久久久成人av| 欧美人与善性xxx| 国产一区二区三区av在线| 亚洲av成人av| 午夜老司机福利剧场| 欧美成人午夜免费资源| 成人高潮视频无遮挡免费网站| 国产成人精品久久久久久| 亚洲欧美日韩无卡精品| 日韩三级伦理在线观看| 69人妻影院| 国产成人aa在线观看| 色尼玛亚洲综合影院| 国产精品人妻久久久久久| 国产精品1区2区在线观看.| 一级爰片在线观看| 高清视频免费观看一区二区 | 国内精品宾馆在线| 欧美成人午夜免费资源| 黄色一级大片看看| 亚洲欧美成人综合另类久久久| 卡戴珊不雅视频在线播放| 中文字幕制服av| 岛国毛片在线播放| 亚洲精品成人久久久久久| 午夜亚洲福利在线播放| 亚洲精品中文字幕在线视频 | 亚洲av免费在线观看| 亚洲精品影视一区二区三区av| 欧美成人精品欧美一级黄| 国产欧美日韩精品一区二区| 三级男女做爰猛烈吃奶摸视频| 黄片无遮挡物在线观看| 欧美一区二区亚洲| 午夜免费激情av| 国产久久久一区二区三区| 国产探花极品一区二区| 精华霜和精华液先用哪个| 免费看美女性在线毛片视频| 国产亚洲一区二区精品| 国产 一区 欧美 日韩| 九草在线视频观看| 精品人妻偷拍中文字幕| 日日撸夜夜添| 嫩草影院精品99| 春色校园在线视频观看| 内地一区二区视频在线| 欧美+日韩+精品| 纵有疾风起免费观看全集完整版 | 搡女人真爽免费视频火全软件| 国产亚洲最大av| 中文乱码字字幕精品一区二区三区 | 亚洲av在线观看美女高潮| 小蜜桃在线观看免费完整版高清| 欧美日韩一区二区视频在线观看视频在线 | videossex国产| 超碰97精品在线观看| 久久久欧美国产精品| 天堂中文最新版在线下载 | 伦精品一区二区三区| 国产免费福利视频在线观看| 亚洲精品乱久久久久久| 一区二区三区免费毛片| 久久久久久久久久久丰满| 国产精品人妻久久久久久| 精品人妻偷拍中文字幕| 国产一区二区亚洲精品在线观看| 水蜜桃什么品种好| 一级爰片在线观看| av天堂中文字幕网| 最新中文字幕久久久久| 最后的刺客免费高清国语| 在线观看人妻少妇| 日韩欧美 国产精品| 国产av不卡久久| 午夜精品在线福利| 亚洲av成人精品一区久久| 成人毛片a级毛片在线播放| 精品久久久久久久久av| 老司机影院成人| 日韩一区二区视频免费看| 久久久亚洲精品成人影院| 青青草视频在线视频观看| 精品99又大又爽又粗少妇毛片| 欧美激情久久久久久爽电影| 2022亚洲国产成人精品| 久久久国产一区二区| 日韩av在线大香蕉| 午夜激情福利司机影院| 国产淫语在线视频| 麻豆久久精品国产亚洲av| 国产欧美另类精品又又久久亚洲欧美| 欧美日韩国产mv在线观看视频 | 欧美精品一区二区大全| 国产男人的电影天堂91| 在现免费观看毛片| 日韩视频在线欧美| av在线蜜桃| 一级片'在线观看视频| 一本一本综合久久| 成人美女网站在线观看视频| 国产午夜福利久久久久久| 国产精品人妻久久久影院| 国内精品宾馆在线| 成人综合一区亚洲| 国产高潮美女av| 久久久久久国产a免费观看| 亚洲国产精品国产精品| 欧美激情国产日韩精品一区| 男女下面进入的视频免费午夜| 久久久久九九精品影院| 午夜免费观看性视频| 日本色播在线视频| 亚洲综合精品二区| 秋霞伦理黄片| 日本色播在线视频| 亚洲综合精品二区| 日日摸夜夜添夜夜添av毛片| 久久久久精品久久久久真实原创| 18禁在线无遮挡免费观看视频| 亚洲av成人精品一区久久| 久久热精品热| 超碰av人人做人人爽久久| 九九爱精品视频在线观看| 永久网站在线| 有码 亚洲区| 亚洲一区高清亚洲精品| 国产黄片美女视频| 九色成人免费人妻av| 非洲黑人性xxxx精品又粗又长| 日韩在线高清观看一区二区三区| eeuss影院久久| 午夜老司机福利剧场| 国产精品99久久久久久久久| 国产欧美另类精品又又久久亚洲欧美| 青春草国产在线视频| 亚洲经典国产精华液单| 国产黄a三级三级三级人| 如何舔出高潮| 大话2 男鬼变身卡| 丰满乱子伦码专区| 又爽又黄无遮挡网站| 少妇高潮的动态图| 久久久久久伊人网av| 午夜精品在线福利| 欧美变态另类bdsm刘玥| 只有这里有精品99| 久久6这里有精品| 中文字幕人妻熟人妻熟丝袜美| 寂寞人妻少妇视频99o| 久久久精品94久久精品| 美女高潮的动态| 欧美激情久久久久久爽电影| 国产成人91sexporn| 老司机影院成人| 国产又色又爽无遮挡免| 国产 一区精品| 91精品伊人久久大香线蕉| 国产亚洲av片在线观看秒播厂 | av在线观看视频网站免费| 国产av国产精品国产| 国产亚洲av片在线观看秒播厂 | 精品久久久久久电影网| 美女cb高潮喷水在线观看| 午夜免费观看性视频| 国产真实伦视频高清在线观看| 麻豆精品久久久久久蜜桃| 黄色一级大片看看| 精品久久国产蜜桃| 亚洲精品456在线播放app| 在线a可以看的网站| 精品一区在线观看国产| 欧美高清性xxxxhd video| av网站免费在线观看视频 | 午夜激情欧美在线| 99久久九九国产精品国产免费| 高清av免费在线| 丝瓜视频免费看黄片| 亚洲精品久久久久久婷婷小说| 欧美激情在线99| 十八禁国产超污无遮挡网站| 亚洲乱码一区二区免费版| 久久国内精品自在自线图片| 国产伦理片在线播放av一区| 亚洲av男天堂| 麻豆精品久久久久久蜜桃| 成人亚洲欧美一区二区av| 我要看日韩黄色一级片| 直男gayav资源| 久久久午夜欧美精品| 一二三四中文在线观看免费高清| 国产亚洲av片在线观看秒播厂 | 亚洲一级一片aⅴ在线观看| 久久久久性生活片| 熟女电影av网| 综合色丁香网| videos熟女内射| 日韩一本色道免费dvd| 久久6这里有精品| 精品一区二区三卡| 美女大奶头视频| 亚洲最大成人手机在线| av在线亚洲专区| 美女黄网站色视频| 青春草国产在线视频| 精品不卡国产一区二区三区| 国产精品日韩av在线免费观看| 久久久久久久国产电影| 男的添女的下面高潮视频| 亚洲欧美日韩卡通动漫| 青春草视频在线免费观看| 亚洲成人中文字幕在线播放| 在现免费观看毛片| 免费大片黄手机在线观看| 午夜激情久久久久久久| 女的被弄到高潮叫床怎么办| av在线蜜桃| 久久6这里有精品| 国产伦精品一区二区三区四那| 国内揄拍国产精品人妻在线| 水蜜桃什么品种好| 久久久久久久久久久免费av| 国产精品日韩av在线免费观看| 国产久久久一区二区三区| 亚洲精品亚洲一区二区| 欧美成人一区二区免费高清观看| 亚洲欧美成人精品一区二区| 色吧在线观看| 国产v大片淫在线免费观看| 麻豆久久精品国产亚洲av| 免费观看无遮挡的男女| 天堂av国产一区二区熟女人妻| 九九久久精品国产亚洲av麻豆| 一级黄片播放器| 亚洲国产高清在线一区二区三| 一个人免费在线观看电影| 夜夜爽夜夜爽视频| 看非洲黑人一级黄片| 日韩 亚洲 欧美在线| 高清午夜精品一区二区三区| 久久6这里有精品| 亚洲人成网站在线观看播放| 久久久久久久久久黄片| 精品久久久久久成人av| 亚洲乱码一区二区免费版| 日韩 亚洲 欧美在线| 永久免费av网站大全| 婷婷色综合www| 人人妻人人澡人人爽人人夜夜 | 国产黄色视频一区二区在线观看| 高清午夜精品一区二区三区| 久久韩国三级中文字幕| 国产探花极品一区二区| a级毛片免费高清观看在线播放| 在线观看人妻少妇| 草草在线视频免费看| 青春草国产在线视频| 久久久久久九九精品二区国产| 18禁裸乳无遮挡免费网站照片| 黄色一级大片看看| 国产精品女同一区二区软件| 国产伦精品一区二区三区四那| 亚洲一级一片aⅴ在线观看| 国产精品蜜桃在线观看| 国产精品福利在线免费观看| 亚洲精品日本国产第一区| 美女脱内裤让男人舔精品视频| 啦啦啦中文免费视频观看日本| 久久久欧美国产精品| 高清av免费在线| 日本一本二区三区精品| 免费av毛片视频| 直男gayav资源| 欧美极品一区二区三区四区| 边亲边吃奶的免费视频| 国产亚洲av嫩草精品影院| 人妻夜夜爽99麻豆av| 日韩 亚洲 欧美在线| 中文字幕av成人在线电影| 水蜜桃什么品种好| 免费观看av网站的网址| 天天躁日日操中文字幕| 日本熟妇午夜| 偷拍熟女少妇极品色| 国产午夜精品一二区理论片| 国产精品一区二区三区四区久久| 国产乱人偷精品视频| 久久精品久久久久久噜噜老黄| 啦啦啦啦在线视频资源| 亚洲精品视频女| 简卡轻食公司| 人妻夜夜爽99麻豆av| 午夜福利视频1000在线观看| 黄色日韩在线| 国产免费视频播放在线视频 | 亚洲精品色激情综合| 亚洲国产精品国产精品| 在线观看一区二区三区| 国产精品伦人一区二区| 自拍偷自拍亚洲精品老妇| 午夜激情欧美在线| 22中文网久久字幕| 国产片特级美女逼逼视频| 午夜福利在线观看免费完整高清在| 久久午夜福利片| 黄色日韩在线| 国产精品久久久久久av不卡| 岛国毛片在线播放| 一区二区三区四区激情视频| 一个人看视频在线观看www免费| 深爱激情五月婷婷| 中国美白少妇内射xxxbb| 久久久精品欧美日韩精品| 人人妻人人看人人澡| 97在线视频观看| 午夜视频国产福利| 久久久精品94久久精品| 亚洲av中文字字幕乱码综合| 国产一区二区亚洲精品在线观看| 国产欧美日韩精品一区二区| 亚洲内射少妇av| 亚洲丝袜综合中文字幕| 男女边吃奶边做爰视频| 国产伦精品一区二区三区四那| 亚洲欧洲日产国产| 久久久精品免费免费高清| 久久久久久久午夜电影| 日日摸夜夜添夜夜添av毛片| 日本免费a在线| 搞女人的毛片| 欧美激情在线99| av天堂中文字幕网| 亚洲欧美清纯卡通| 亚洲av日韩在线播放| 亚洲欧美中文字幕日韩二区| 22中文网久久字幕| 久久人人爽人人片av| 久久99精品国语久久久| 男人狂女人下面高潮的视频| 精品久久久久久久久亚洲|