• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions

    2022-12-28 09:53:08PingWang王平YuWang王豫ZhongmingYan嚴(yán)仲明andHongchengZhou周洪澄
    Chinese Physics B 2022年12期
    關(guān)鍵詞:王平

    Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(嚴(yán)仲明), and Hongcheng Zhou(周洪澄)

    School of Electrical Engineering,Southwest Jiaotong University,Chengdu 611756,China

    Keywords: polarization conversion,reconfigurable metasurface,Fabry–P′erot resonance

    1. Introduction

    Polarization is one of the fundamental properties of electromagnetic (EM) waves, which carries plenty of information about the scatters. Thus, the polarization modulation is significant and valuable in many aspects, such as wireless communication,[1–3]radar cross section reduction,[4,5]and imaging.[6,7]To process polarization information as much as possible,the devices which can manipulate multiple polarization are essential. Metasurfaces have provided excellent alternatives. As a two-dimensional artificial material, metasurfaces have been widely utilized to control EM waves because of their low profile,low loss,easy processing,high flexibility,and so on. For possessing tunable property and functionality,various reconfigurable metasurfaces were fabricated by integrating with RF devices[8–16]or functional materials.[17,18]

    It has always been pursued to manipulate the polarization of waves at will. To date, various reconfigurable polarization conversion metasurfaces(PCMs)with multiple functions have been proposed. However,the major of reported transmissiontype PCM can only achieve co-polarization transmission and a single polarization conversion. For example, the reconfigurable PCMs composed of periodic rings[8]or chiral structures[9]incorporated with PIN diodes were proposed,which can realize co-polarization transmission and linear-tocircular (LTC) polarization conversion. Some reconfigurable PCMs formed by split rings achieved co-polarization transmission and linear-to-linear (LTL) polarization conversion.[10,11]However, the dynamic switching among LTC and LTL polarization conversions is still rare for the transmission-type PCM. In Ref. [16], the bi-layer PCM incorporated with varactor diodes was proposed, it could convert the incident LP waves into multiple polarization, but it could only operate in narrow frequency band. The integration of LTC and LTL polarization conversions has been concerned.[19–21]To solve the problem, several designs based on passive metasurfaces were reported.Unfortunately,their operational bands for each function cannot overlap,which causes the reported designs impossible to process multi-polarization signals with the same frequency. The design proposed in Refs.[22,23]can reconfigure the incident linear polarization to multiple linear and circular polarization by rotating the metasurfaces,but the slow mechanical adjustment may be limited in applications.

    In this paper,we design a novel transmission-type reconfigurable PCM based on Fabry–P′erot(F–P)resonate cavity for LTC and LTL polarization conversions. The proposed PCM consists of a layer of grating, a polarization conversion surface and a reconfigurable polarization selective surface. The switching of functions is realized by changing states of the PIN diodes. To verify the design,the prototype has been fabricated and tested. As demonstrated by the measurement results,the PCM can convert linear polarized(LP)waves to CP waves from 3.31 GHz to 3.56 GHz with the axial ratio (AR)less than 3 dB when the PIN diodes are switched off. Instead,when the diodes are switched on, the PCM can rotate the LP waves to cross-polarized waves from 2.76 GHz to 4.24 GHz with the polarization conversion ratio(PCR)higher than 0.95.The operational bandwidths are 7.3%and 42.3%for the LTC and LTL polarization conversions. The thickness of proposed PCM is 0.2λ0(λ0is the wavelength corresponding to the central frequency). Moreover, the F–P resonance excited in the PCM is discussed in this paper, and the conditions for realizing LTC polarization conversion are also derived. Before our work,a lot of LTL polarization converters combining F–P resonate cavity have been proposed.[24–26]Nevertheless, to the best of our knowledge, the transmission-type LTC polarization converter based on F–P cavity-like metasurface has not been reported. Our proposed design provides a new method for converting incident linear polarized wave into circular polarized and cross-polarized wave,which may promote the development of transmission-type metasurface toward arbitrary polarization manipulations.

    2. Analysis and design

    2.1. Operational principles of the PCM

    For achieving dynamically switching among LTC and LTL polarization conversions, we propose an approach for constructing the PCM whose schematic diagram is depicted in Fig. 1. Layer A is a polarization selector which only permits they-polarized wave to pass through. Layer B is a polarization conversion surface composed of periodic anisotropic structures, which can partially converts the incidenty-polarized wave intoxpolarization. The reconfigurable layer C which integrates PIN diodes has two functions, including co-polarization transmission and polarization selection. The three layers form an F–P resonate cavity. The corresponding relationships between the states of PIN diodes and the PCM are illustrated in Table 1.

    Table 1. Working states of PIN diodes and functions of PCM.

    Fig.1. Schematic diagram of proposed PCM for polarization conversion.

    Fig.2. The schematic diagram of the propagation of waves in PCM,as the state of PIN diode is switched(a)off and(b)on.

    For describing the operational principle, we have established an F–P resonate model based on the PCM as shown in Fig. 2. They-polarized waves illuminate PCM along?zaxis,and the transmission directions of waves in PCM are indicated by the arrows. They-andx-polarized components are denoted by solid and dashed lines,respectively. First,the incidenty-polarized waves pass through layer A and interact with layer B, then the reflected and transmitted waves which includey- andx-polarized components are excited by layer B.They-polarized backward wave penetrates into layer A,thexpolarized one is reflected by layer A and interacts with layer B once again. In contrast, the propagation processes of forward waves depend on states of layer C.If layer C is in state 1, as shown in Fig. 2(a), they- andx-polarized components can pass through it. When layer C is in state 2, as shown in Fig.2(b),only thex-polarized component can pass through it.They-polarized component will be reflected by layer C and undergoes the multiple reflections. It should be noted that the above descriptions of wave propagation in state 1 ignore the reflection of layer C,in fact,a few ofy-andx-polarized components will be reflected by it and participate in the round trips within the PCM.

    Based on the analysis of the interactions between waves and metasurface (see Appendix for details), we derived the condition for the PCM achieving LTC polarization conversion as follows:

    Fig.3. Schematic diagram of the x–y and u–v coordinate systems.

    2.2. Design of geometric configuration for each layer

    The unit cells of layer A and B are shown in Fig. 4.The dielectric substrates are FR4 with relative permittivityεr=4.3. Several metal stripes alongx-axis are etched on front side of layer A, which form a grating. For filtering out thex-polarized incident waves, the geometry parameters of layer A are chosen asw1=2.5 mm,g1=3.5 mm,the thickness of substrate in layer A ist1=0.5 mm. The metal stripes and successive lines are orthogonal,they are etched on the front side of layer B.The thickness of substrate in layer B ist2=1.6 mm.The equivalent circuits of layer B atu-andv-polarization are illustrated in Fig.5,whereLuandLvdenote the inductance introduced by the metal strips alongu-andv-axis,Cvdenotes the capacitance of the gap between two strips aligned withvaxis.Zsubrepresents the equivalent impedance of the substrate.TheABCDmatrix of layer B can be expressed as[29]

    Fig.4. The geometric configuration of unit cell: (a)layer A,(b)layer B.

    whereMpandMsrepresent the transmission matrix of metal patterns and substrate of layer B.Zidenotes the impedance of metal patterns withi=uori=vdepending on the polarization direction. The impedance can be derived asZu= jωLuandZv= j(2ωLv ?2/ωCv). The circuit parameters can be obtained as follows:[14,30]

    Then,the co-polarized transmission and reflection coefficients of layer B can be calculated by

    Via adjusting thew2andg2, the co-polarization transmission and reflection coefficients aligned withu- andv-axis can be independently tuned. The value selections ofw2andg2according to performance of layer B will be described in the following section.

    Fig.5. The equivalent circuit model of layer B.The incident wave is(a)u-polarized(b)v-polarized.

    The periodic structure of layer C is presented in Figs.6(a)and 6(b), the rectangular metal patches are arranged on the front side. The PIN diodes are embedded into the gaps between adjacent patches. The orthogonal metal lines are etched on the back side of layer C. The PIN diode is Skyworks SMP1345-079LF. For the on state, it can be equivalent to a resistor of 2 ? in series with an inductor of 0.7 nH. For the off state, it can be equivalent to a capacitor of 0.15 pF in series with an inductor of 0.7 nH. The dielectric substrate employed in layer C is same as in layer B.The geometric parameters of layer C are taken asl2=5.13 mm,g3=2.19 mm,w4=3.14 mm,w5=0.5 mm,w6=0.8 mm,w7=0.4 mm,andp1=16 mm. For describing the operational principle of layer C, the lumped circuit elements introduced by the metal patterns are illustrating in Fig. 6(a). HereL1andL3denote the equivalent inductance of the metal patch atyandxdirections, respectively,C1is the capacitor introduced by the gap between patches alongx-axis. The inductances of metal wires on back side are denoted byL2andL4,respectively. When the PIN diodes are switched off, the front-side structures exhibit capacitive responses alongxandydirections,after cascading with the inductive branches on the backside, layer C will exhibit band-pass response for incident waves. While the PIN diodes are switched on, layer C can be equivalent to a metal grating parallel toy-axis for blocking they-polarized waves.The simulated results of layer C are shown in Fig.6(c). With the changing of PIN states,there is obvious discrepancy for the transmission ofy-polarized wave. For the off state,the|tyy|is consistent with|txx|,which are higher than?1 dB within 2.42–3.80 GHz,for the on state,the|tyy|is less than?20.3 dB below 3.80 GHz.

    Fig.6. The geometric configuration of periodic structures in layer C:(a)front side, (b)back side. (c)Simulated transmission coefficients of layer C.

    2.3. Integrated design of the PCM

    By cascading the proposed three layers, as shown in Fig. 7, the PCM is constructed. Then, several geometric parameters need to be determined according to performance of the PCM, including the configuration of the layer B and the distances between adjacent layers. The optimization target for the PCM is to realize LTC and LTL polarization conversions within S-band,and the performances of LTC conversion are set as priority. Based on Eq. (1) and related discussions,the optimizations can follow the principles mentioned below.First, the periodic dimensionpand line widthw2should be determined,which mainly depend on the predetermined transmittance and operational frequency. The increase ofpand the decrease ofw2are conducive to improve the transmittancetBuubecause the equivalent inductances of successive metal lines are raised. However,pshould not exceed half a wavelength in order to suppress the gating lobes.[30]Next, we can optimize the performances of LTC conversion by adjustingg2andd.The frequency responses of the AR with differentg2anddare shown in Fig.8 withp=48 mm andw2=0.1 mm. The AR of PCM is obtained as follows:

    It can be found that the minimal value of AR is mainly determined byg2, and the operational frequency is mainly determined byd. We can select the value ofg2first to guarantee the LTC polarization conversion, and then optimize the overlapping bandwidth and conversion coefficients of LTC and LTL polarization conversions by adjustingd. Finally, the performances of PCM can be finely tuned by adjustingd1.The optimized geometric parameters are taken asp=48 mm,w2=1.5 mm,g2=9 mm,d=7 mm,d1=7 mm.

    Fig.7. Configuration of unit cell of the proposed PCM.

    Fig.8. The comparison of AR with different g2 and d: (a)d=5 mm,(b)d=7 mm,(c)d=9 mm.

    3. Simulation and measurement results

    The model of proposed PCM is simulated by the CST Microwave Studio, and the prototype of PCM is fabricated and measured. The experimental setups are illustrated in Fig. 9,two horn antennas are placed on different sides of prototype,which are connected to the Keysight N5227B vector network analyzer (VNA) through RF cables. The size of prototype is 330 mm×330 mm×17.7 mm,and the thickness is 0.2λ0(λ0is wavelength corresponding to the central frequency). The simulation and measurement results are shown in Fig. 10, wheret?yandt+ydenote the transmission fromy-polarized to lifthanded and right-handed circular polarizations, respectively.They can be obtained as follows:

    The PCR at LTC and LTL mode is defined as|t?y|2/(|t?y|2+|t+y|2) and|txy|2/(|txy|2+|tyy|2).[10,30]As shown in the measurement results, when the PIN diodes are switched off, the PCM can achieve LTC polarization conversion with the AR less than 3 dB from 3.31 GHz to 3.56 GHz. Meanwhile, the PCR of LTC polarization conversion is higher than 0.95.

    Fig.9. The measurement setup and prototype.

    When the PIN diodes are switched on, the PCM can rotatey-polarized wave tox-polarization with the PCR higher than 0.95 within 2.76–4.24 GHz. The fractional bandwidths at LTC and LTL modes are 7.3%and 42.3%,respectively. In the overlapping frequency band, the magnitudes of transmissions of both functions are higher than?1.84 dB.In Fig.10,the measurement results show agreement with the simulation ones, there are some discrepancies which may be caused by the deviations in fabrication of prototype and instrument alignment. Moreover, we obtain the analytic transmission coefficients of PCM according to the discussions in Appendix,which are basically consistent with the simulation and measurement results. Even if there are deviations,the comparison in Fig.10 indicates that the proposed expressions in Appendix can effectively represent the transmission coefficient of PCM.In Appendix,it is assumed that the magnitude of transmittance of layer A toy-polarized wave (the same as the magnitude of reflectivity tox-polarized wave)is 1,whereas the transmittance of layer A in fact will be slightly smaller, which may cause the deviations of the analytic results.

    Fig.10. The measurement and simulation results of the PCM:(a)magnitude of transmission and AR for LTC polarization conversion,(b)magnitude of transmission for LTL polarization conversion,(c)PCR for LTC and LTL polarization conversions.

    The transmission coefficients of layer B are shown in Fig. 11, where the shadow area indicates the operational frequency band of LTC polarization conversion. It can be found that the magnitude oftBvvrapidly declines with frequency increasing in the operational band. Although the condition of polarization conversion can be satisfied near 3.43 GHz, the sharp change of parameters will limit the functionality to a narrow band. If a metasurface with stable response against frequency is used as layer B, the frequency band will be expanded, such as the multi-resonant structures[31]and multilayer surface,[32]while the profile or insertion loss may be higher than the proposed design. Moreover, if the proposed layer B is replaced by a reconfigurable metasurface with appropriate configuration, the PCM may integrate more functions,such as co-polarized transmission and linear-to-elliptical polarization conversions.

    Fig.11. The simulated magnitude and phase of transmission for layer B.

    4. Conclusion

    In summary, we have proposed a transmission-type reconfigurable PCM as well as detailed procedure,which has the reconfigurable functions of LTC and LTL polarization conversions. The reconfigurable functions are obtained by changing the states of PIN diodes embedded on the PCM. The operation of PCM is based on F–P resonances which have been illustrated. Moreover, to guide the design, the conditions for achieving LTC polarization conversion have been derived.From the measurement results of prototype, the overlapping frequency band of two functions is from 3.31 GHz to 3.56 GHz with the transmission higher than?1.84 dB.The thickness of the proposed PCM is 0.2λ0. Because the transmission-type metasurfaces can be loaded on aperture of the feeding antenna, the proposed design is more suitable for compact system than reflector arrays. It can also quickly switch states due to its electronic adjustment. These advantages make the proposed PCM have the application prospects in S-band radar and satellite communication,meanwhile it also has the potential to merge more functionalities of EM wave manipulation.

    Appendix A

    To analyze the propagation of incident waves in the PCM,we divide PCM into two parts at first. As shown in Fig. A1,layer A is named as part I,the layers B and C are regarded as a whole and indicated as part II.Thex-andy-polarized electric field components are denoted byEt/rxnorEt/ryn, wherenin the subscript indicates the component experiencedntimes roundtrips within the space between adjacent layers.We assume that the Jones matrixes describing layer A satisfy

    In this paper,the near-field coupling excited between layers is not considered in the analysis of wave transmissions. Next,we present the propagation of waves in part II.The schematic diagram is given in Fig. A1(b). For simplifying analysis, the transmission coefficients in theu–vcoordinate system is discussed first. As mentioned above, the responses of layer B aligned withuandvaxes are independent of each other.Therefore,u-polarized transmitted components can calculated as

    Substituting Eqs.(A8)–(A11)into Eq.(A18),the condition for achieving LTC polarization conversion based on coefficients of each layer can be derived as follows:

    Acknowledgement

    Project supported by the Fundamental Research Funds for Central Universities(Grant No. 2682020GF03).

    猜你喜歡
    王平
    Modification of streamer-to-leader transition model based on radial thermal expansion in the sphere-plane gap discharge at high altitude
    篆刻作品欣賞
    我眼中的太陽(yáng)
    Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures:An ensemble Monte Carlo simulation
    篆刻作品欣賞
    Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure
    陰差陽(yáng)錯(cuò)
    故事林(2017年17期)2017-09-12 18:13:28
    耍臉
    咱去機(jī)場(chǎng)接個(gè)人
    咱去機(jī)場(chǎng)接個(gè)人
    小蜜桃在线观看免费完整版高清| 91久久精品国产一区二区三区| 亚洲美女视频黄频| 亚洲精品自拍成人| 纵有疾风起免费观看全集完整版 | 成人特级av手机在线观看| 搡老妇女老女人老熟妇| 男人狂女人下面高潮的视频| 黄色配什么色好看| 国产真实伦视频高清在线观看| 国产精品日韩av在线免费观看| 精品久久久久久久末码| 国产久久久一区二区三区| 十八禁网站网址无遮挡 | 亚洲成人一二三区av| 国产午夜精品一二区理论片| 午夜福利在线在线| 免费大片18禁| 国产单亲对白刺激| www.av在线官网国产| 国产精品无大码| 亚洲国产欧美人成| 国产精品国产三级国产专区5o| 可以在线观看毛片的网站| 少妇高潮的动态图| 久久久成人免费电影| 国产黄片视频在线免费观看| 晚上一个人看的免费电影| 国产成人一区二区在线| 美女主播在线视频| 大片免费播放器 马上看| 中文字幕制服av| 日韩国内少妇激情av| 2022亚洲国产成人精品| 综合色丁香网| 99久国产av精品| 伦精品一区二区三区| 国产精品国产三级专区第一集| 久久精品综合一区二区三区| 麻豆精品久久久久久蜜桃| 中文字幕av在线有码专区| 亚洲av日韩在线播放| av免费在线看不卡| 国语对白做爰xxxⅹ性视频网站| 99久久人妻综合| 少妇高潮的动态图| 丰满人妻一区二区三区视频av| 性插视频无遮挡在线免费观看| 亚洲av不卡在线观看| 亚洲国产日韩欧美精品在线观看| 久久精品人妻少妇| 中国国产av一级| 午夜激情福利司机影院| 麻豆成人av视频| 自拍偷自拍亚洲精品老妇| 我要看日韩黄色一级片| 国产单亲对白刺激| av福利片在线观看| 777米奇影视久久| 老司机影院成人| videos熟女内射| 成人亚洲精品一区在线观看 | 国产精品1区2区在线观看.| 男人舔女人下体高潮全视频| 春色校园在线视频观看| 免费少妇av软件| 亚洲av日韩在线播放| 一边亲一边摸免费视频| 人妻系列 视频| 欧美高清成人免费视频www| 男女边摸边吃奶| av一本久久久久| 国产精品国产三级国产专区5o| 国产伦在线观看视频一区| 亚洲欧美精品专区久久| 丝袜美腿在线中文| 一级爰片在线观看| 国产极品天堂在线| 久久6这里有精品| 亚洲精品国产av蜜桃| 人妻制服诱惑在线中文字幕| 亚洲av.av天堂| 亚洲欧美清纯卡通| 精品国内亚洲2022精品成人| 免费看a级黄色片| 视频中文字幕在线观看| av黄色大香蕉| 国产乱人视频| 免费看美女性在线毛片视频| 亚洲激情五月婷婷啪啪| 日日干狠狠操夜夜爽| 亚洲人成网站在线播| 一个人看的www免费观看视频| 日本wwww免费看| 国产成人a∨麻豆精品| 亚洲精品一区蜜桃| av网站免费在线观看视频 | 男女那种视频在线观看| 日韩av不卡免费在线播放| 一级a做视频免费观看| 最近2019中文字幕mv第一页| 国产伦理片在线播放av一区| 97人妻精品一区二区三区麻豆| 免费观看无遮挡的男女| 直男gayav资源| 99视频精品全部免费 在线| 美女黄网站色视频| 免费黄色在线免费观看| 免费大片黄手机在线观看| 成人国产麻豆网| 97热精品久久久久久| 高清在线视频一区二区三区| 国产永久视频网站| 国产精品女同一区二区软件| 直男gayav资源| 精品熟女少妇av免费看| 久久久久久久午夜电影| 精品久久久久久成人av| 国产免费一级a男人的天堂| 国国产精品蜜臀av免费| 国产69精品久久久久777片| 日韩,欧美,国产一区二区三区| 3wmmmm亚洲av在线观看| 大片免费播放器 马上看| 国产一区有黄有色的免费视频 | 一区二区三区免费毛片| 久久久久久久亚洲中文字幕| 亚洲av国产av综合av卡| 卡戴珊不雅视频在线播放| 伊人久久国产一区二区| 亚洲精品日韩在线中文字幕| 少妇猛男粗大的猛烈进出视频 | 欧美三级亚洲精品| 99九九线精品视频在线观看视频| 日日啪夜夜爽| 午夜福利在线在线| 国模一区二区三区四区视频| 中文字幕av在线有码专区| 久久国产乱子免费精品| 99久国产av精品国产电影| 久久久精品免费免费高清| 国产亚洲5aaaaa淫片| 欧美激情在线99| videos熟女内射| 精品人妻偷拍中文字幕| 久久97久久精品| 老师上课跳d突然被开到最大视频| 精品一区二区三区人妻视频| 最近中文字幕高清免费大全6| 直男gayav资源| 午夜福利网站1000一区二区三区| 久久综合国产亚洲精品| 亚洲人成网站高清观看| 汤姆久久久久久久影院中文字幕 | 国产又色又爽无遮挡免| 精华霜和精华液先用哪个| 欧美成人一区二区免费高清观看| 免费看不卡的av| 精品久久久久久久久亚洲| 久久久久九九精品影院| 欧美变态另类bdsm刘玥| 久久这里只有精品中国| 国产中年淑女户外野战色| 久久精品国产亚洲av涩爱| 中文欧美无线码| 国产成人91sexporn| 成人av在线播放网站| 亚洲在久久综合| 亚洲伊人久久精品综合| 久久久久性生活片| 一级毛片黄色毛片免费观看视频| 国产综合精华液| 直男gayav资源| 男的添女的下面高潮视频| 亚洲av一区综合| 极品少妇高潮喷水抽搐| av播播在线观看一区| 91精品伊人久久大香线蕉| 国产免费又黄又爽又色| 久久精品久久久久久噜噜老黄| 国内精品宾馆在线| www.av在线官网国产| 777米奇影视久久| 干丝袜人妻中文字幕| .国产精品久久| 日本猛色少妇xxxxx猛交久久| 国产单亲对白刺激| 在线观看av片永久免费下载| 插阴视频在线观看视频| 免费看光身美女| 亚州av有码| 三级国产精品片| 免费av不卡在线播放| 国产精品三级大全| 精品人妻一区二区三区麻豆| 国产真实伦视频高清在线观看| 男插女下体视频免费在线播放| 久久久久久久久中文| 久久精品国产自在天天线| 亚洲四区av| 亚洲,欧美,日韩| 美女黄网站色视频| 午夜福利成人在线免费观看| 日韩欧美 国产精品| 一个人免费在线观看电影| 久久久a久久爽久久v久久| 国产av在哪里看| 18禁裸乳无遮挡免费网站照片| 18+在线观看网站| 热99在线观看视频| 久久精品久久久久久久性| 插逼视频在线观看| 啦啦啦中文免费视频观看日本| 精品久久久噜噜| 国产 一区精品| 高清欧美精品videossex| 国产午夜精品论理片| 亚洲一级一片aⅴ在线观看| 麻豆乱淫一区二区| 亚洲欧美一区二区三区黑人 | 久久久久久久久久人人人人人人| 校园人妻丝袜中文字幕| 人人妻人人看人人澡| 精品一区二区免费观看| 国产精品伦人一区二区| 午夜日本视频在线| 好男人在线观看高清免费视频| 国产探花极品一区二区| 亚洲18禁久久av| 99久国产av精品| 91久久精品电影网| 女人十人毛片免费观看3o分钟| 联通29元200g的流量卡| 国产成人免费观看mmmm| 亚洲一区高清亚洲精品| 国产永久视频网站| 80岁老熟妇乱子伦牲交| 国产精品一及| 中文字幕免费在线视频6| ponron亚洲| 国产av国产精品国产| 成年女人在线观看亚洲视频 | 日日干狠狠操夜夜爽| 久久精品熟女亚洲av麻豆精品 | 久99久视频精品免费| 一个人看的www免费观看视频| 搡老乐熟女国产| 真实男女啪啪啪动态图| 亚洲国产av新网站| 欧美日韩亚洲高清精品| 免费大片黄手机在线观看| 婷婷色麻豆天堂久久| 天堂√8在线中文| 毛片女人毛片| 亚洲在线自拍视频| 国产成人精品久久久久久| 亚洲av免费在线观看| 丰满少妇做爰视频| 久久精品国产鲁丝片午夜精品| 国产白丝娇喘喷水9色精品| 成人国产麻豆网| 成人午夜高清在线视频| 免费黄网站久久成人精品| 人妻一区二区av| av免费观看日本| 欧美激情在线99| 国产91av在线免费观看| h日本视频在线播放| 婷婷六月久久综合丁香| 91久久精品国产一区二区成人| 精品99又大又爽又粗少妇毛片| 亚洲经典国产精华液单| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 女人十人毛片免费观看3o分钟| 亚洲av中文字字幕乱码综合| 日韩欧美三级三区| 伊人久久国产一区二区| 热99在线观看视频| 精品久久久久久成人av| 婷婷色综合大香蕉| 婷婷色av中文字幕| 日本与韩国留学比较| 国产精品一区www在线观看| 国产老妇女一区| 免费观看性生交大片5| 小蜜桃在线观看免费完整版高清| 精品久久久久久久久av| 黄色欧美视频在线观看| 五月玫瑰六月丁香| 精品亚洲乱码少妇综合久久| 久久这里只有精品中国| 内地一区二区视频在线| 国产不卡一卡二| 国产精品一二三区在线看| 永久免费av网站大全| 亚洲国产最新在线播放| 亚洲经典国产精华液单| 一个人观看的视频www高清免费观看| 日日摸夜夜添夜夜添av毛片| 综合色av麻豆| 少妇的逼水好多| 97超视频在线观看视频| 高清在线视频一区二区三区| 亚洲国产av新网站| 极品教师在线视频| 日本色播在线视频| 婷婷色av中文字幕| 亚洲国产精品sss在线观看| 国产美女午夜福利| 久久久亚洲精品成人影院| 亚洲四区av| 欧美日韩综合久久久久久| 99久久精品热视频| 中文字幕制服av| 国产精品无大码| 99热全是精品| 2022亚洲国产成人精品| 国产精品国产三级国产专区5o| 午夜福利高清视频| 中文乱码字字幕精品一区二区三区 | 亚洲不卡免费看| 久久国产乱子免费精品| a级毛色黄片| 日韩人妻高清精品专区| 国产淫片久久久久久久久| 在线天堂最新版资源| 久久午夜福利片| 精品酒店卫生间| 天美传媒精品一区二区| 亚洲最大成人中文| 综合色丁香网| 亚洲最大成人中文| 丝袜美腿在线中文| h日本视频在线播放| 久久97久久精品| 十八禁网站网址无遮挡 | av天堂中文字幕网| 97热精品久久久久久| 一个人看的www免费观看视频| 国产av国产精品国产| 99re6热这里在线精品视频| 国产精品精品国产色婷婷| 成人午夜精彩视频在线观看| 2018国产大陆天天弄谢| 亚洲av中文字字幕乱码综合| 日韩强制内射视频| 日日摸夜夜添夜夜添av毛片| 少妇裸体淫交视频免费看高清| 日韩在线高清观看一区二区三区| 男女国产视频网站| 日韩成人伦理影院| 一个人免费在线观看电影| 亚洲,欧美,日韩| 超碰av人人做人人爽久久| 亚洲精品一二三| av一本久久久久| 欧美变态另类bdsm刘玥| 听说在线观看完整版免费高清| 国产高清三级在线| 天堂√8在线中文| 中文字幕久久专区| 有码 亚洲区| av专区在线播放| 麻豆国产97在线/欧美| 精品一区二区三卡| 久久久久久久午夜电影| 日韩在线高清观看一区二区三区| 亚洲最大成人av| 日韩在线高清观看一区二区三区| 青青草视频在线视频观看| 高清视频免费观看一区二区 | 人体艺术视频欧美日本| 99久久精品国产国产毛片| 夜夜看夜夜爽夜夜摸| 婷婷色综合www| 亚洲国产高清在线一区二区三| 美女cb高潮喷水在线观看| 国产精品久久久久久久电影| 日本欧美国产在线视频| 天天躁夜夜躁狠狠久久av| 最近的中文字幕免费完整| 男女边摸边吃奶| 久久人人爽人人片av| freevideosex欧美| 国产精品伦人一区二区| 亚洲欧洲国产日韩| 中文字幕人妻熟人妻熟丝袜美| 日日撸夜夜添| 亚洲三级黄色毛片| 亚洲最大成人av| 日日摸夜夜添夜夜添av毛片| 两个人视频免费观看高清| 少妇高潮的动态图| 最后的刺客免费高清国语| 国产精品一区二区在线观看99 | 看免费成人av毛片| 久久午夜福利片| 99视频精品全部免费 在线| 免费观看的影片在线观看| 国产精品一区二区性色av| 成人性生交大片免费视频hd| 亚洲真实伦在线观看| 久久99热6这里只有精品| 亚洲国产精品sss在线观看| 18禁动态无遮挡网站| 亚洲美女视频黄频| 亚洲av成人精品一区久久| 欧美精品国产亚洲| 美女被艹到高潮喷水动态| 欧美zozozo另类| 女人久久www免费人成看片| 大片免费播放器 马上看| 99视频精品全部免费 在线| 久久国内精品自在自线图片| 精品人妻偷拍中文字幕| 国产69精品久久久久777片| 日本午夜av视频| 99热这里只有精品一区| 亚洲精品乱久久久久久| 日韩欧美一区视频在线观看 | 国产成人精品福利久久| 18禁裸乳无遮挡免费网站照片| 成年女人看的毛片在线观看| 国产精品美女特级片免费视频播放器| 久久99蜜桃精品久久| 嘟嘟电影网在线观看| 欧美bdsm另类| 国产亚洲av片在线观看秒播厂 | 国产乱人偷精品视频| 国产 亚洲一区二区三区 | 国产大屁股一区二区在线视频| 国产欧美另类精品又又久久亚洲欧美| 国产欧美日韩精品一区二区| 超碰av人人做人人爽久久| 黄色一级大片看看| 亚洲欧美清纯卡通| 国产免费福利视频在线观看| 99热6这里只有精品| 少妇人妻一区二区三区视频| 亚洲一区高清亚洲精品| 亚洲国产av新网站| 日韩电影二区| 欧美一区二区亚洲| 女人久久www免费人成看片| 亚洲综合精品二区| 在线观看av片永久免费下载| 男人狂女人下面高潮的视频| 99热网站在线观看| 精品国内亚洲2022精品成人| 久久综合国产亚洲精品| 欧美最新免费一区二区三区| 男人爽女人下面视频在线观看| 神马国产精品三级电影在线观看| 嘟嘟电影网在线观看| 精品久久久久久电影网| 一级毛片aaaaaa免费看小| 精品一区在线观看国产| 国产成人精品福利久久| 99久国产av精品国产电影| 亚洲激情五月婷婷啪啪| 午夜福利成人在线免费观看| 亚洲av免费在线观看| 欧美xxⅹ黑人| 亚洲人与动物交配视频| 黄片wwwwww| 久久久a久久爽久久v久久| 国产一区二区亚洲精品在线观看| 久久精品国产亚洲av涩爱| videossex国产| 午夜福利网站1000一区二区三区| 欧美3d第一页| 久久这里只有精品中国| 免费人成在线观看视频色| 欧美一区二区亚洲| 精品不卡国产一区二区三区| 最近的中文字幕免费完整| 97人妻精品一区二区三区麻豆| 极品少妇高潮喷水抽搐| 激情五月婷婷亚洲| 色综合色国产| 国产老妇伦熟女老妇高清| 免费看a级黄色片| 丝瓜视频免费看黄片| 一级片'在线观看视频| 色5月婷婷丁香| 天天躁日日操中文字幕| 国产爱豆传媒在线观看| 亚洲国产成人一精品久久久| 日韩三级伦理在线观看| 人妻一区二区av| 国模一区二区三区四区视频| 久久久亚洲精品成人影院| 欧美日韩亚洲高清精品| 777米奇影视久久| 国产午夜精品论理片| 午夜福利在线观看吧| 中文天堂在线官网| 中文字幕制服av| av又黄又爽大尺度在线免费看| 国产精品人妻久久久久久| 欧美激情在线99| 身体一侧抽搐| 一级av片app| 亚洲一级一片aⅴ在线观看| kizo精华| 丰满少妇做爰视频| 婷婷色麻豆天堂久久| 高清毛片免费看| 九色成人免费人妻av| 免费看光身美女| 国产亚洲av嫩草精品影院| 免费看a级黄色片| 精品久久久久久久久久久久久| 一级毛片电影观看| 国产白丝娇喘喷水9色精品| 麻豆成人午夜福利视频| 五月伊人婷婷丁香| 日韩视频在线欧美| 欧美日韩视频高清一区二区三区二| 在线a可以看的网站| 国产精品美女特级片免费视频播放器| 26uuu在线亚洲综合色| 夜夜爽夜夜爽视频| 免费观看性生交大片5| 寂寞人妻少妇视频99o| 成人二区视频| 亚洲av福利一区| 国产成人freesex在线| 男人和女人高潮做爰伦理| 少妇人妻一区二区三区视频| 天堂网av新在线| 校园人妻丝袜中文字幕| 身体一侧抽搐| 中文字幕制服av| 亚洲内射少妇av| 国产精品一区二区三区四区免费观看| 麻豆成人午夜福利视频| 在线观看一区二区三区| 久久这里有精品视频免费| 卡戴珊不雅视频在线播放| 国产精品综合久久久久久久免费| 蜜桃亚洲精品一区二区三区| 亚洲av福利一区| 成人高潮视频无遮挡免费网站| 成年人午夜在线观看视频 | 三级国产精品片| 七月丁香在线播放| 中国美白少妇内射xxxbb| 春色校园在线视频观看| 久久国产乱子免费精品| 欧美97在线视频| 久久99热这里只频精品6学生| 寂寞人妻少妇视频99o| 国产精品久久久久久久久免| 床上黄色一级片| 少妇高潮的动态图| 97精品久久久久久久久久精品| 国产伦精品一区二区三区视频9| 中文字幕av在线有码专区| 亚洲国产最新在线播放| 亚洲欧美精品专区久久| 精品久久久噜噜| 亚洲欧美日韩卡通动漫| 久久久久久九九精品二区国产| 99热这里只有精品一区| 综合色av麻豆| 欧美日韩一区二区视频在线观看视频在线 | 一级毛片我不卡| av播播在线观看一区| 成人美女网站在线观看视频| 久久6这里有精品| 日韩一本色道免费dvd| 高清在线视频一区二区三区| 深爱激情五月婷婷| 我的老师免费观看完整版| 国产91av在线免费观看| 国产视频首页在线观看| 免费观看av网站的网址| 国产精品蜜桃在线观看| 九色成人免费人妻av| 亚洲经典国产精华液单| 久久99热6这里只有精品| xxx大片免费视频| 99久久九九国产精品国产免费| 少妇人妻精品综合一区二区| 国产精品国产三级国产av玫瑰| 亚洲在久久综合| 国产精品一区www在线观看| 久久久成人免费电影| 国产伦一二天堂av在线观看| 精品欧美国产一区二区三| 亚洲欧美成人综合另类久久久| 国产精品人妻久久久久久| 国产亚洲av嫩草精品影院| 国产不卡一卡二| 免费av观看视频| 99久久精品国产国产毛片| 日韩伦理黄色片| 亚洲精华国产精华液的使用体验| 免费观看的影片在线观看| 男人舔女人下体高潮全视频| 97超碰精品成人国产| 毛片女人毛片| 成人国产麻豆网| 国产午夜精品论理片| 久久久久精品性色| 久久久久久伊人网av| 亚洲欧美日韩东京热| 熟女人妻精品中文字幕| 我的女老师完整版在线观看| 国产伦一二天堂av在线观看| 人妻少妇偷人精品九色| 亚洲av男天堂| 99re6热这里在线精品视频| 最近2019中文字幕mv第一页|