• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Substrate-Target Distance and Si Co-Doping on the Properties of Al-Doped ZnO Films Deposited by Magnetron Sputtering

    2014-10-14 03:44:04XUHaoLUFangFUZhengWen
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:磁控濺射遷移率載流子

    XU Hao LU Fang FU Zheng-Wen

    (1Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials,Surface Physics Laboratory&Department of Physics,Fudan University,Shanghai 200433,P.R.China;2Department of Chemistry&Laser Chemistry Institute,Fudan University,Shanghai 200433,P.R.China)

    Effects of Substrate-Target Distance and Si Co-Doping on the Properties of Al-Doped ZnO Films Deposited by Magnetron Sputtering

    XU Hao1,2LU Fang1FU Zheng-Wen2,*

    (1Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials,Surface Physics Laboratory&Department of Physics,Fudan University,Shanghai 200433,P.R.China;2Department of Chemistry&Laser Chemistry Institute,Fudan University,Shanghai 200433,P.R.China)

    Abstract: Transparent conductive Al-doped ZnO(AZO)and Si-codoped AZO(AZO:Si)films were deposited on square quartz substrates by radio frequency(RF)magnetron sputtering.The effect of distance between the substrate and target(Dst)and the effect of co-doping Si on the electrical and optical properties of theAZO films were systematically investigated.The resistivity,carrier concentration,and mobility were found to be strongly dependent on theDstvalues.With a decrease inDst,the carrier concentration and mobility increased significantly,which resulted in improved conductivity.The lowest resistivity of 4.94×10-4Ω·cm was obtained at aDstof 4.5 cm,and this was associated with a carrier concentration of 3.75×1020cm-3and a mobility of 33.7 cm2·V-1·s-1.X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD)spectroscopy,and grain boundary scattering models were used to analyze the relationship between the carrier concentration and the mobility at different deposition(Dst)values.Transmittance spectra showed an average transmittance of>93%in the visible-near infrared range for all the samples and a blue shift of the absorption edge with a decrease inDst.AZO:Si films had high-conductance and high-transmittance optical properties compared with AZO films,and they had better resistivity stability than the AZO films when exposed to a hot and damp atmosphere,which is practically meaningful.

    Key Words:AZO;AZO:Si;Substrate-target distance;Radio frequency magnetron sputtering

    1 Introduction

    Aluminum-doped zinc oxide(AZO)is a promising transparent conductive oxide material for application as transparent electrode in thin film solar cells,flat panel display,and optoelectronic devices.Besides high conductivity and optical transmittance in visible region,AZO film has a lot of advantages,such as non-toxicity,low cost,material abundance,relatively low deposition temperature,and high stability against hydrogen plasma compared to ITO and SnO2films.1For the fabrication of AZO thin films,there are many deposition techniques currently in use,for example,magnetron sputtering,2-5pulsed laser deposition,6,7metal organic chemical vapor deposition,8and sol-gel process.9Among all these methods,conventional RF magnetron sputtering has become widely recognized as a promising versatile technique for the fabrication of metal oxides.Its advantages over other deposition methods are its ability to obtain high quality films even at low substrate temperature with the low cost,high deposition efficiency,and large deposition area.Previous results showed that the electrical and optical properties of AZO films were strongly dependent on the growth parameters,such as work pressure,2,10RF power,5,11impurity percent,2,6substrate temperature,3,10,11and annealing.4,12In fact,the distance between the target and substrate(Dst)is also one of important parameters for depositing high quality films during sputtering process.However,up to now,there were only a few papers concerning on the relationship between the properties of AZO films and Dst.Jeong et al.13suggested that the resistivity of AZO films was related to the Dstand increased rapidly with the increase of Dst,using Al(OH)3doped ZnO targets,they got the lowest resistivity of 9.8×10-2Ω·cm at 4.5 cm.Recently,Yang et al.14reported the lowest resistivity of 4.62×10-4Ω·cm and the highest Hall mobility of 15.6 cm2·V-1·s-1obtained at the Dstof 7 cm.Apparently,the relationship between the electrical properties of AZO films and Dstis complicated and data is still scarce.More work must be done to elucidate the electrical and physical intrinsic of AZO films associated with growth condition of Dst.In addition,it has been expected that the co-doping Si into AZO is effective in improving its chemical stability and resistivity stability,15,16but do not significantly influence the high-conductance and high-transmittance properties ofAZO films.

    Here,AZO and AZO:Si films were deposited by RF magnetron sputtering.The structural,chemical composition,optical transmittance,electrical properties,and resistivity stability of deposited films were examined by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),UV-Vis spectrophotometer,Hall measurements,and hot humidity environment test(air at relative humidity of 90%and temperature of 60°C).Our purpose is to clarify the effect of Dstand Si addition on the properties of Al-doped ZnO films prepared by magnetron sputtering.

    2 Experimental

    The sputtering targetsused in thisexperimentwere home-made with high purity ZnO(99.9%,Alfa Aesar),Al2O3(99.9%,Alfa Aesar),and SiO2(99.9%,Alfa Aesar)powders.Three ceramic targets with different mass fractions of Al2O3(1%,2%,3%)were prepared for the deposition of AZO films.In addition,two mixtures of ZnO,Al2O3,and SiO2powder targets were also prepared for the deposition of AZO:Si films,which contents are(1%Al2O3,1%SiO2)and(2%Al2O3,0.5%SiO2),respectively.All targets have a common diameter of 5 cm.Thin films were all deposited on flat quartz substrates(1 cm×1 cm×1 mm),which had been ultrasonically cleaned in de-ionized water,acetone,alcohol,and de-ionized water,sequentially,and finally dried with argon flow.

    Before deposition,chamber was evacuated to an ultimate background pressure of 10-4Pa using a turbo molecular pump.Then high-purity(99.99%)Ar gas was introduced into the chamber at a fixed flow rate of 28 cm3·min-1,working pressure was maintained on 1.2 Pa.Then 5 min pre-sputtering with the quartz substrate covered by a closely mounted shutter was employed to clean contamination on the target surface,followed by true sputtering.During deposition,RF power is fixed at 100 W,and substrate temperature was maintained at ca 150°C.Dstis varied from 4.5 to 7 cm,so sputtering time was different(from 6 to 15 min)for different Dst(different deposition rates),which makes sure that all films have thickness of 380-400 nm.Atlast,allfilmswereannealedinvacuumat500°Cfor 2h.

    The thicknesses of films were measured by a conventional surface-roughness detector with stylus(Vecoo Dektak 150),and the crystal structure was examined by XRD using a Bruker D8 advance diffractometer equipped with Cu Kαradiation(λ=0.1540562 nm).XPS experiment,which was carried out on a PHI-5000C ESCA system(Perkin Elmer)with Al Kαradiation(hν=1486.6 eV),was utilized to analyze the composition and the chemical states of the AZO films.Electrical properties,such as resistivity,carrier concentration,and mobility,were measured by Hall-measurement system(ECOPIA HMS-5000),4 Au pins were pressed on 4 corners of films after 4 indium points were added to make sure ohmic contact,then constant current of 10 mA and magnetron field of 0.55 T were applied.The optical transmittance of films was measured by ultravioletvisible(UV-Vis)spectrophotometer,and the transmittance wascalibrated against a bare quartz glass as reference sample.Resistivity stability tests were carried out in a hot humidity environment,in which relative humidity of air was 90%and temperature was fixed at 60°C.

    3 Results and discussion

    Fig.1(a)shows typical XRD patterns of AZO(2%Al2O3)films deposited at different Dst.All measurements were taken on the central region of the films.Only strong(002)peak is observed at 2θ ≈34.47°,which indicates a hexagonal wurtzite structure and an oriented film growth with c-axis perpendicular to the substrate surface.As shown in Fig.1(b),the full width at half maximum(FWHM)decreases from 0.323°to 0.264°with the decrease of Dst.The observed increase in the XRD intensity and decrease in FWHM with the decrease of Dstreveals that the crystallinity is improved with decreasing Dst.AZO films of other mass percents(1%Al2O3,3%Al2O3)have also shown similar characteristic.Using FWHM value,the grain size(g)can also be estimated by Scherrer formula17

    where λ=0.1540562 nm,is the wavelength of the X-ray,θ is the Bragg diffraction angle at the peak position,and Δ(2θ)is the FWHM in radian.An estimated grain size in the range of 26-33 nm can be obtained with the corresponding FWHM value in Fig.1(b).

    Fig.2(a)shows the relationship between resistivity and Dstin three different Al contents obtained by Hall measurement.All films were deposited in a small area of 1 cm×1 cm,in order to avoid the spatial resistivity distribution.5It is clear that,film resistivity decreases significantly with the decrease of Dstfrom 1.63×10-3to 4.94×10-4Ω·cm(2%Al2O3).Fig.2(b,c)show the relationship of free electron carrier concentration and mobility versus Dst.Obviously,it is the larger carrier concentration and mobility at closer deposition distance that produced lower resistivity of film observed in Fig.2(a).With 2%as a case,carrier concentration and mobility at Dst=4.5 cm are 3.75×1020cm-3and 33.7 cm2·V-1·s-1respectively,but they drop to 2.35 × 1020cm-3and 16.3 cm2·V-1·s-1in Dst=7 cm.Yang et al.14reported similar results,as the decrease of Dst,the resistivity decreased to the lowest point,while further decrease of Dstgave negative effects on resistivity.In our experiments,the minimum and optimal Dstis 4.5 cm,which is limited by the position of pre-sputtering shutter,maybe further closed Dstwill show the same phenomenon as that of Yang.In addition,the highest concentration in our films is only 3.75×1020cm-3,which is less than ~8×1020cm-3in other literature.2,3,11,12This may be due to part of powder loss in target-made process and improper Al2O3content,the optimal impurity percent may be between 2%and 2.5%.

    According to the data from Fig.1,closer distance means relatively higher energy of the sputtered particles,which lead to an improvement of crystallinity and lattice structure,thus producing higher lattice limited mobility,and closer Dst(smaller FWHM value)yielded larger grain size.According to a classical model suggested by Seto18in ploycrystalline,depending on the charge carrier trap density at the boundary(Qt)and carrier density(N),the trap can be partly or completely filled,leading to variation barrier heights Eb.Electrons can surmount these barriers by thermionic emission.In the case of AZO(L×N>Qt),the grain boundary limited mobility(μs)is given by

    μs=μ0·exp(-Eb/kT)

    whereμ0can be defined as the mobility inside a grain,εε0is the static dielectric constant,eiselementary charge,kis Boltzmann constant,m*is effective mass in ZnO,Tis Kelvin temperature,Nis the carrier density in the bulk of the grain andLis the grain size,which had already been estimated by Scherrer formula using FWHM value.Since AZO films in closerDsthave relatively larger grain size,less scattering frequency and relatively larger grain boundary limited mobility will be obtained.Since lattice structure and grain boundary scattering are two important factors in determining the mobility of AZO films,thus,the AZO films grown at closerDstwill have higher mobility than that gown at longerDst,which is consistent with what we observed in Fig.2.However,Yanget al.14reported that,over higher energy(further closerDst)may cause degradation of crystallinity and lattice structure,which can be supported by their XRD patterns,thus producing lower mobility.This was also not observed in present case because of limited distance between target and pre-sputtering shutter.

    In order to explain the relationship between carrier concentration andDst,XPS spectra were taken to detect the content of O and Al in AZO films.As reported,2,13Al on substitutional site of Zn and O vacancy are two important donors in AZO film.Minamiet al.3,15got a electron concentration of ca 2×1020cm-3with pure ZnO target by magnetron sputtering,implying that deposited ZnO films were degenerated even without Al dopant.Kimet al.2also got concentration of ca 8.7×1019cm-3in deposited ZnO films.Briefly,we can get the conclusion that,O vacancy is also a non-ignorable donor of AZO in generating the free carriers.Figs.3-5 shows our XPS spectra of three AZO films(2%Al2O3)deposited at differentDst.Using Gaussian fitting,the observed O 1speak can be devoluted into two components.The lower binding energy peak(OI)located at(530.20±0.10)eV is attributed to stoichiometric O2-within wurzite structure of ZnO.While the higher binding energy peak(OII)at(531.83±0.10)eV can be assigned to chemisorbed oxygen atgrain boundaries and surface,such as O2.1,14The stoichiometric atomic ratio of O/Zn can be gotten by integrating the peak area divided by their sensitivity factors(O:0.733,Zn:2.768,Al:0.256).Our results show that,the O/Zn ratio in film(2%,Dst=4.5 cm)is 0.87,while the ratios are 0.92 and 1.02 in film(2%,Dst=6 cm)and film(2%,Dst=7 cm),respectively.This indicates that the AZO film grown at closer Dsthas higher oxygen vacancy than that grown at farther Dst.From XPS spectra,it can also be calculated the atomic ratio of Al/Zn is 0.0308 in the film deposited at 4.5 cm,which is almost equal to 0.0311 in the film deposited at 7 cm.Apparently,AZO film grown at shorter Dst(higher growth rate)may have higher oxygen vacancy rather than that grown at longer Dst(lower growth rate),suggesting that free electron carrier concentration in the AZO film of shorter Dstis higher than that grown at longer Dst,which is consistent with the variation of free electron concentration in Fig.2.

    Fig.6 presents all data for different Dstand different Al contents in a plot of the mobility versus carrier concentration.Thick solid line is a semi-empirical model in ZnO single crystal presented by Masetti et al.,19and the thin solid line is grain boundary scattering limited transport model(formula 2)of Seto.18Dash line is the fitting curve for combined single crystal and grain boundary scattering model,1,4yielding the grain boundary trap density Qt=2.09×1013cm-2.This is in good agreement with data reported by other scholars,for example,1.3×1013cm-2by Ellmer et al.1,4and 1.75×1013cm-2by Cornelius et al..20

    Fig.7(a)shows transmittance spectra of AZO films prepared with targets having 2%Al2O3content with different Dst.The average transmittance in the range of visible-near infrared is above 93%for all samples regardless of Dst.As the decrease of Dst,the absorption edge shifts to the shorter wavelength region,and this movement of the absorption edge is known as the Burstein-Moss shift.21,22It is known that AZO films with carrier concentration above 1020cm-3degenerate and Fermi energy level penetrates into the conduction band,thus the optical band gap Egwill increase with the increased carrier concentration.The optical band gap(Eg)and absorption coefficient(α)in direct transition semiconductor are related by following equation2,23

    where h is Planck′s constant,and ν is the frequency of the incident photon,α is the optical absorption coefficient defined by

    where I is the intensity of transmitted light,I0is the intensity of incident light,and t is the thickness of the AZO films.Fig.7(b)is the plot of α2versus hν,the extrapolation line gives Egfor samples prepared at different Dst.The absorption edge moves from 3.52 to 3.55 eV when Dstvaries from 7 to 4.5 cm,which is also consistent with the variation of free electron carrier concentration in Fig.2.

    Based on the optimal conditions for the deposition of AZO films at Dstof 4.5 cm,the same distance between target and the substrate is employed for the preparation of Si-doped ZnO films.It has been reported that Si atom in Si-doped ZnO films can act as effective donors in the same manner as Al15,16.Fig.8 shows electrical properties of AZO:Si films,in which the data from AZO films are used for comparison.It can be seen that the additional 1%SiO2cause the decrease of resistivity from 7.256×10-4to 4.977×10-4Ω·cm,while 0.5%SiO2added into the target of 2.%Al2O3cause the resistivity increasing from 4.938×10-4to 8.333×10-4Ω·cm.The variety of conductivity can be attributable to varieties in both carrier concentration andmobility as also shown in Fig.8,the carrier concentrations of two AZO:Si films are 6.121×1020and 4.813×1020cm-3,respectively,doped SiO2induces significant increase in carrier concentration,which can be attributed to an increase in additional effective donor.However,compared with AZO films,AZO:Si films have much lower mobilities 20.513 and 15.584 cm2·V-1·s-1,doped-Si may cause enhanced impurity scattering,which results in a certain decrease of mobility.

    Fig.9(a)shows transmittance spectra of AZO:Si films.It can be seen that the added Si does not significantly reduce the optical transmittance in region of 190-900 nm.Comparing with AZO films(2%),the absorption edges of AZO:Si films show slight blue-shift to shorter wavelength.As shown in Fig.9(b),this phenomenon can also be explained by the increased carrier concentration in Fig.8 with the theory of Burstein-Moss.21,22

    Fig.10 shows resistivity as a function of exposure time for AZO:Si films and AZO films.Such tests were carried out in high hot humidity environment(air at 90%relative humidity and 60°C).It is clearly that,after 1000 h exposure in atmosphere,the resistivities of all films increase to different extent,but AZO:Si films show better resistivity stability than AZO films.The resistivity of AZO:Si(1%Al2O3,1%SiO2)slightly rises from 4.977×10-4to 7.013×10-4Ω·cm.However the resistivity of AZO(2%Al2O3)films rise from 4.938×10-4to 9.689×10-4Ω·cm.This increase of resistivity,when films are exposed in atmosphere,may mainly be due to the decrease in carrier concentration,which should be attributed to the oxygen chemisorptions and oxidation of oxygen vacancy.Thus,the resistivity stability of AZO films can be improved by co-doping Si impurity,similar studies have also been reported by other scholars,such as co-doping Si by Nomoto et al.16and co-doping V by Minami et al.24The improvement in resistivity stability of AZO:Si films may mainly be related to that of carrier concentration stability.In AZO films,Al and oxygen vacancy can act as donors,but oxygen vacancy is easy to be oxidized,while in AZO:Si films,co-doped Si acting as additional effective donors increases carrier concentration and can not be oxidized.As practical requirement,transparent electrodes used in optoelectronic devices must be a stable enough when exposured in atmosphere.Co-doping silicon may be a feasible and promising method to improve stability of conductivity,and at the same time do not significantly influence the high-conductance electrical and high-transmittance optical properties of AZO films.

    4 Conclusions

    AZO and AZO:Si films were prepared by RF magnetron sputtering with the home-made ZnO targets containing different contents of Al2O3and SiO2powders as doping source.Alltransparent conductive films were grown on 1 cm×1 cm flat quartz substrates in order to avoid the phenomenon of spatial resistivity distribution.Two parameters of substrate-target distance(Dst)and co-doping Si that can influence the property of AZO films were investigated.The structural properties,electrical properties,and optical properties of AZO films are strongly dependent on the deposited distance between substrate and target.As the decrease of Dst,carrier concentration and mobility all show a significant increase,which result an improved conductivity in AZO films.Optical experiment shows average transmittance>93%in visible-near infrared range for all samples and blue shift of absorption edge with the decrease of Dst.In addition,our experiments have demonstrated that AZO:Si films have comparable electrical and optical properties with AZO films,but better resistivity stability than AZO films in hot and damp atmosphere,which is meaningful in practical use.In summary,Dstand co-doping Si are two important but always easily neglected parameters in deposition process,proper Dstand co-doping Si may help us fabricate high-quality AZO films.

    (1) Ellmer,K.Transparent Conductive Zinc Oxide;Springer Press:Heidelberg,2008;pp 35-78.

    (2)Kim,K.H.;Park,K.C.;Ma,D.Y.J.Appl.Phys.1997,81,7764.

    (3) Minami,T.;Sato,H.;Ohashi,K.;Tomofuji,T.;Takata,S.J.Cryst.Growth 1992,117,370.

    (4) Ellmer,K.;Mientus,R.Thin Solid Films 2008,516,4620.

    (5)Song,D.Y.;Widenborg,P.;Chin,W.;Aberle,A.G.Sol.Energy Mater.Sol.Cells 2002,73,1.

    (6)Lorenz,M.;Kaidashev,E.M.;von Wenckstern,H.;Riede,V.;Bundesmann,C.;Spemann,D.;Benndorf,G.;Hochmuth,H.;Rahm,A.;Semmelhack,H.C.;Grundmann,M.Solid-State Electronics 2003,47,2205.

    (7)Singh,A.V.;Mehra,R.M.;Buthrath,N.;Wakahara,A.;Yoshida,A.J.Appl.Phys.2001,90,5661.

    (8) Hu,J.;Gordon,R.G.J.Appl.Phys.1992,71,880.

    (9)Xue,S.W.;Zu,X.T.;Zheng,W.G.;Chen,M.Y.;Xiang,X.Physica B 2006,382,201.

    (10) Lee,J.C.;Kang,K.H.;Kim,S.K.;Yoon,K.H.;Park,I.J.;Song,J.Sol.Energy Mater.Sol.Cells 2000,64,185.

    (11) Kim,Y.H.;Lee,K.S.;Lee,T.S.;Cheong,B.;Seong,T.Y.;Kim,W.M.Appl.Surf.Sci.2009,255,7251.

    (12) Ellmer,K.;Vollweiler,G.Thin Solid Films 2006,496,104.

    (13) Jeong,S.H.;Lee,J.W.;Lee,S.B.;Boo,J.H.Thin Solid Films 2003,435,78.

    (14)Yang,W.F.;Liu,Z.G.;Peng,D.L.;Zhang,F.;Huang,H.L.;Xie,Y.N.;Wu,Z.Y.Appl.Surf.Sci.2009,255,5669.

    (15) Minami,T.;Sato,H.;Nanto,H.;Takata,S.Jpn.J.Appl.Phys.1986,25,L776.

    (16) Nomoto,J.;Miyata,T.;Minami,T.J.Vac.Sci.Technol.A 2009,27,1001.

    (17)Azaroff,L.V.Elements of X-ray Crystallography;McGraw-Hill:New York,1968.

    (18) Seto,J.Y.W.J.Appl.Phys.1975,46,5247.

    (19) Masetti,G.;Severi,M.;Solmi,S.IEEE Trans.Electron Devices 1983,30,764.

    (20) Cornelius,S.;Vinnichenko,M.;Shevchenko,N.;Rogozin,A.;Kolitsch,A.;M?ller,W.Appl.Phys.Lett.2009,94,042103.

    (21) Burstein,E.Phys.Rev.1954,93,775.

    (22) Moss,T.S.Proceedings of the Physical Society of London Section B 1954,67,775.

    (23) Ziegler,E.;Heinrich,A.;Oppermann,H.;St?ver G.Phys.Status Solidi A 1981,66,635.

    (24) Minami,T.;Miyata,T.Thin Solid Films 2008,517,1474.

    磁控濺射中靶-基底距離與Si共摻對ZnO:Al薄膜性質(zhì)的影響

    徐 浩1,2陸 昉1傅正文2,*

    (1上海市分子催化和功能材料重點實驗室,表面物理實驗室和物理系,復(fù)旦大學(xué),上海200433;2化學(xué)系和激光化學(xué)研究所,復(fù)旦大學(xué),上海200433)

    使用射頻磁控濺射,在正方形石英襯底上沉積透明導(dǎo)電摻Al的ZnO(AZO)和Si共摻AZO(AZO:Si)薄膜.系統(tǒng)研究了靶-基底距離(Dst)和Si共摻對AZO薄膜電學(xué)、光學(xué)性質(zhì)的影響.電阻率、載流子濃度和遷移率都強烈地依賴于靶-基底距離,隨著靶-基底距離的減少,載流子濃度和遷移率都有顯著的增加,電導(dǎo)率也隨之提高.在靶-基底距離為4.5 cm處,得到最低電阻率4.94×10-4Ω·cm,此時的載流子濃度和遷移率分別是3.75×1020cm-3和33.7 cm2·V-1·s-1.X射線光電子能譜(XPS)、X射線衍射(XRD)和邊界散射模型被用于分析載流子濃度、遷移率和靶-基底距離的關(guān)系.透射譜顯示,在可見-近紅外范圍內(nèi)所有樣品均有大于93%的平均透射率,同時隨著靶基距離的減少,吸收邊藍移.AZO:Si表現(xiàn)出可與AZO相比擬的高電導(dǎo)和高透射光學(xué)特性,但在熱濕環(huán)境中卻有著更好的電阻穩(wěn)定性,這在實際使用中很有意義.

    AZO;AZO:Si; 靶-基底距離; 射頻磁控濺射

    O649

    Received:December 20,2010;Revised:March 4,2011;Published on Web:March 10,2011.

    *Corresponding author.Email:zhengwen@sh163.net;Tel:+86-21-65642522.

    The project was supported by the Science&Technology Commission of Shanghai Municipality(08DZ2270500,09JC1401300),National Natural Science Foundation of China(20773031),National Key Basic Research Program of China(973)(2007CB209702),and National High-Tech Research and Development Program of China(863)(2007AA03Z322).

    上海科學(xué)技術(shù)委員會(08DZ2270500,09JC1401300),國家自然科學(xué)基金(20773031),國家重點基礎(chǔ)研究發(fā)展規(guī)劃(973)(2007CB209702),國家高技術(shù)研究發(fā)展計劃(863)(2007AA03Z322)資助項目

    猜你喜歡
    磁控濺射遷移率載流子
    Cd0.96Zn0.04Te 光致載流子動力學(xué)特性的太赫茲光譜研究*
    Sb2Se3 薄膜表面和界面超快載流子動力學(xué)的瞬態(tài)反射光譜分析*
    C/C復(fù)合材料表面磁控濺射ZrN薄膜
    復(fù)雜腔體件表面磁控濺射鍍膜關(guān)鍵技術(shù)的研究
    SiC/SiO2界面形貌對SiC MOS器件溝道遷移率的影響
    利用CASTEP計算載流子有效質(zhì)量的可靠性分析
    微波介質(zhì)陶瓷諧振器磁控濺射金屬化
    濾棒吸阻和濾嘴長度對卷煙煙氣中6種元素遷移率的影響
    煙草科技(2015年8期)2015-12-20 08:27:17
    高遷移率族蛋白B1對16HBE細胞血管內(nèi)皮生長因子表達和分泌的影響
    基于六普數(shù)據(jù)的年齡—遷移率模型研究
    国产亚洲5aaaaa淫片| 国产精品三级大全| 69av精品久久久久久| 亚洲欧美中文字幕日韩二区| 日本一本二区三区精品| 日本成人三级电影网站| 亚洲欧洲国产日韩| 一区二区三区四区激情视频 | 国产精品1区2区在线观看.| 自拍偷自拍亚洲精品老妇| 亚洲精品粉嫩美女一区| 国产淫片久久久久久久久| 乱码一卡2卡4卡精品| 亚洲色图av天堂| 亚洲国产精品sss在线观看| 淫秽高清视频在线观看| 热99re8久久精品国产| 免费观看精品视频网站| 午夜福利高清视频| 91久久精品国产一区二区三区| 亚洲国产色片| 午夜精品一区二区三区免费看| 变态另类成人亚洲欧美熟女| 我的女老师完整版在线观看| 日本一二三区视频观看| 国产精品电影一区二区三区| 日日啪夜夜撸| 最近中文字幕高清免费大全6| 成年免费大片在线观看| 九草在线视频观看| 99热网站在线观看| av卡一久久| 晚上一个人看的免费电影| 亚洲性久久影院| 亚洲真实伦在线观看| 亚洲精品国产成人久久av| 国产成人aa在线观看| 啦啦啦韩国在线观看视频| 日本-黄色视频高清免费观看| 精品一区二区免费观看| 国产亚洲av嫩草精品影院| 99久久成人亚洲精品观看| 亚洲在久久综合| 日本熟妇午夜| 狂野欧美白嫩少妇大欣赏| 一级黄片播放器| 国产在视频线在精品| 99久久人妻综合| 国产色爽女视频免费观看| 国产精品电影一区二区三区| 亚洲在久久综合| 欧美高清成人免费视频www| 国产午夜精品一二区理论片| 成人一区二区视频在线观看| 亚洲av中文字字幕乱码综合| 国产伦精品一区二区三区四那| 国产在线男女| 精品久久久久久久久久免费视频| 一级毛片aaaaaa免费看小| 国产精品人妻久久久久久| 日韩在线高清观看一区二区三区| 97超碰精品成人国产| 国产欧美日韩精品一区二区| 波多野结衣巨乳人妻| 一个人看视频在线观看www免费| 亚洲精华国产精华液的使用体验 | 亚洲国产精品国产精品| 国产69精品久久久久777片| 午夜激情福利司机影院| 在线免费十八禁| 免费在线观看成人毛片| 国产精品一区www在线观看| 成人漫画全彩无遮挡| 校园人妻丝袜中文字幕| 免费搜索国产男女视频| 午夜福利成人在线免费观看| 三级男女做爰猛烈吃奶摸视频| 99久久精品热视频| 国产淫片久久久久久久久| 可以在线观看毛片的网站| 日韩欧美 国产精品| 变态另类丝袜制服| 夜夜夜夜夜久久久久| 麻豆成人av视频| 中文欧美无线码| 日本免费a在线| 国产精品久久久久久久久免| 看十八女毛片水多多多| 亚洲av成人av| 夜夜夜夜夜久久久久| 伊人久久精品亚洲午夜| 国产伦精品一区二区三区视频9| 欧美成人a在线观看| 色尼玛亚洲综合影院| 三级男女做爰猛烈吃奶摸视频| 国产精品,欧美在线| 久久久久九九精品影院| 亚洲av中文字字幕乱码综合| 久久99蜜桃精品久久| 欧美日韩乱码在线| 国产又黄又爽又无遮挡在线| 国内精品美女久久久久久| 亚洲内射少妇av| 国产中年淑女户外野战色| 免费av观看视频| 黄片无遮挡物在线观看| 国产精品久久视频播放| 99精品在免费线老司机午夜| 久久99蜜桃精品久久| 丝袜美腿在线中文| 99热精品在线国产| 国产亚洲5aaaaa淫片| 国产黄片视频在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 色哟哟哟哟哟哟| 成人特级av手机在线观看| a级毛色黄片| 久久鲁丝午夜福利片| 亚洲欧美成人综合另类久久久 | 欧美另类亚洲清纯唯美| 欧美日韩一区二区视频在线观看视频在线 | 欧美一区二区国产精品久久精品| 女的被弄到高潮叫床怎么办| 女同久久另类99精品国产91| 国产一区二区三区在线臀色熟女| 免费看av在线观看网站| 插逼视频在线观看| 最近视频中文字幕2019在线8| 国产单亲对白刺激| 九九在线视频观看精品| 91久久精品国产一区二区三区| 男人狂女人下面高潮的视频| 久久精品91蜜桃| 麻豆国产97在线/欧美| 韩国av在线不卡| 免费看光身美女| 色综合亚洲欧美另类图片| 亚洲最大成人手机在线| 欧美日韩国产亚洲二区| 国产精品国产三级国产av玫瑰| 久99久视频精品免费| 色5月婷婷丁香| avwww免费| 亚洲欧美清纯卡通| 伦精品一区二区三区| 精品国产三级普通话版| 国产精品久久久久久精品电影小说 | 伊人久久精品亚洲午夜| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av天堂中文字幕网| 欧美性猛交黑人性爽| 91精品国产九色| av福利片在线观看| 国产精品精品国产色婷婷| 亚洲人成网站在线播| 天堂中文最新版在线下载 | 中文在线观看免费www的网站| 身体一侧抽搐| 一级二级三级毛片免费看| 亚洲精品乱码久久久v下载方式| 成人亚洲欧美一区二区av| 国产亚洲91精品色在线| 99热这里只有精品一区| 大型黄色视频在线免费观看| 六月丁香七月| 在线播放无遮挡| 久久这里只有精品中国| 国产中年淑女户外野战色| 国产伦在线观看视频一区| 熟女电影av网| 午夜久久久久精精品| 亚洲性久久影院| 欧美不卡视频在线免费观看| ponron亚洲| 国产成人精品婷婷| 日本一二三区视频观看| 老司机福利观看| 欧美另类亚洲清纯唯美| 国产av一区在线观看免费| 又爽又黄a免费视频| 天天躁夜夜躁狠狠久久av| 嫩草影院新地址| 一本精品99久久精品77| 99国产极品粉嫩在线观看| 成人午夜高清在线视频| 国产精品嫩草影院av在线观看| 最后的刺客免费高清国语| 99在线人妻在线中文字幕| 中国国产av一级| 亚洲七黄色美女视频| 亚洲四区av| 校园春色视频在线观看| 少妇的逼水好多| 在线观看免费视频日本深夜| 日韩欧美精品v在线| 色综合亚洲欧美另类图片| 成人漫画全彩无遮挡| 国产高清不卡午夜福利| 日本色播在线视频| 亚洲无线在线观看| 亚洲不卡免费看| 欧美精品一区二区大全| 欧美成人a在线观看| 国产激情偷乱视频一区二区| 99热网站在线观看| 如何舔出高潮| 国内精品美女久久久久久| 日本爱情动作片www.在线观看| 又黄又爽又刺激的免费视频.| 国产av在哪里看| 一本久久中文字幕| 国产精品.久久久| 亚洲内射少妇av| 欧美另类亚洲清纯唯美| 久久人人精品亚洲av| 美女cb高潮喷水在线观看| 中国美白少妇内射xxxbb| 99热网站在线观看| 精品日产1卡2卡| 午夜福利高清视频| 一级毛片我不卡| 天堂网av新在线| 久久热精品热| 国产 一区精品| 国内少妇人妻偷人精品xxx网站| 国产一区二区三区在线臀色熟女| 成人亚洲精品av一区二区| 白带黄色成豆腐渣| 免费看a级黄色片| 深夜精品福利| 久久午夜亚洲精品久久| 少妇的逼水好多| 国产午夜精品久久久久久一区二区三区| eeuss影院久久| 狠狠狠狠99中文字幕| 国产精品美女特级片免费视频播放器| 国产伦理片在线播放av一区 | 国内揄拍国产精品人妻在线| 精品久久久久久久久av| 亚洲成人久久爱视频| 联通29元200g的流量卡| 久久精品人妻少妇| 有码 亚洲区| 国产真实乱freesex| 赤兔流量卡办理| 欧美又色又爽又黄视频| 在线观看美女被高潮喷水网站| 国产一级毛片在线| 亚洲无线观看免费| 不卡一级毛片| 在线免费观看的www视频| 午夜福利在线观看吧| 亚洲久久久久久中文字幕| 黄色一级大片看看| 边亲边吃奶的免费视频| 国产精品久久久久久精品电影| 综合色丁香网| 色视频www国产| 波多野结衣巨乳人妻| 12—13女人毛片做爰片一| 国产黄a三级三级三级人| 中文字幕精品亚洲无线码一区| 免费观看精品视频网站| 国产精品一区二区在线观看99 | 简卡轻食公司| 91精品一卡2卡3卡4卡| 成人毛片a级毛片在线播放| 成人特级av手机在线观看| 日韩欧美国产在线观看| 少妇被粗大猛烈的视频| 麻豆av噜噜一区二区三区| 亚洲一区二区三区色噜噜| av卡一久久| 久久久久久久久久成人| 国产精品三级大全| 男女那种视频在线观看| 丰满的人妻完整版| 蜜桃久久精品国产亚洲av| 亚洲欧美精品专区久久| 精品一区二区三区视频在线| 亚洲第一区二区三区不卡| 卡戴珊不雅视频在线播放| 欧美高清成人免费视频www| 国产亚洲91精品色在线| 国产日韩欧美在线精品| 99热网站在线观看| 又爽又黄a免费视频| av国产免费在线观看| 久久精品夜色国产| 大型黄色视频在线免费观看| 成人性生交大片免费视频hd| 不卡一级毛片| 国产精品嫩草影院av在线观看| .国产精品久久| 日日干狠狠操夜夜爽| 日韩在线高清观看一区二区三区| 丰满乱子伦码专区| 国产伦精品一区二区三区四那| 在线免费观看的www视频| 九九爱精品视频在线观看| 美女大奶头视频| 少妇熟女欧美另类| 日韩精品青青久久久久久| 好男人在线观看高清免费视频| 日本成人三级电影网站| 一边摸一边抽搐一进一小说| 亚洲经典国产精华液单| 免费人成视频x8x8入口观看| 精品少妇黑人巨大在线播放 | 欧美色欧美亚洲另类二区| 边亲边吃奶的免费视频| 简卡轻食公司| 天天躁夜夜躁狠狠久久av| 一本一本综合久久| 国产极品精品免费视频能看的| 精品久久久久久久末码| 一级黄色大片毛片| 毛片一级片免费看久久久久| 亚洲经典国产精华液单| 一区二区三区四区激情视频 | 18禁裸乳无遮挡免费网站照片| 免费无遮挡裸体视频| 日本av手机在线免费观看| 久久久久久久久中文| 国产精品三级大全| 中文字幕久久专区| 精品久久久久久久久av| 亚洲人成网站高清观看| av又黄又爽大尺度在线免费看 | 直男gayav资源| 免费av不卡在线播放| 精品国内亚洲2022精品成人| 日韩人妻高清精品专区| 色综合站精品国产| 夜夜夜夜夜久久久久| 免费无遮挡裸体视频| 久久中文看片网| 麻豆国产av国片精品| 在线国产一区二区在线| 亚洲国产精品sss在线观看| 欧美激情在线99| 亚洲美女搞黄在线观看| 色哟哟哟哟哟哟| 18禁在线播放成人免费| av黄色大香蕉| 12—13女人毛片做爰片一| av在线播放精品| 中文字幕av在线有码专区| 国产一区二区激情短视频| 国产色婷婷99| 成年女人永久免费观看视频| 亚洲精华国产精华液的使用体验 | 啦啦啦韩国在线观看视频| 亚洲av成人av| 亚洲av中文字字幕乱码综合| 亚洲最大成人av| 18+在线观看网站| 久久久久久国产a免费观看| 欧美潮喷喷水| or卡值多少钱| 熟妇人妻久久中文字幕3abv| а√天堂www在线а√下载| 日韩国内少妇激情av| 一夜夜www| 亚洲欧美日韩东京热| 亚洲av一区综合| 麻豆成人av视频| 青青草视频在线视频观看| 色5月婷婷丁香| 舔av片在线| 亚洲精华国产精华液的使用体验 | 亚洲av二区三区四区| 国产成人a∨麻豆精品| h日本视频在线播放| 亚洲婷婷狠狠爱综合网| 中文亚洲av片在线观看爽| 一级毛片我不卡| 熟女电影av网| av女优亚洲男人天堂| 亚洲中文字幕一区二区三区有码在线看| 中国美女看黄片| 欧美区成人在线视频| 日韩高清综合在线| 国产免费一级a男人的天堂| 男人和女人高潮做爰伦理| 午夜福利在线观看免费完整高清在 | 久久这里有精品视频免费| 男女做爰动态图高潮gif福利片| 天美传媒精品一区二区| 亚洲精品久久国产高清桃花| 成人亚洲精品av一区二区| 国产老妇女一区| 超碰av人人做人人爽久久| 观看免费一级毛片| 两个人的视频大全免费| 少妇裸体淫交视频免费看高清| 老师上课跳d突然被开到最大视频| 国产成人精品久久久久久| 日本爱情动作片www.在线观看| 欧美另类亚洲清纯唯美| 身体一侧抽搐| 亚洲av熟女| 黄色欧美视频在线观看| 久久99蜜桃精品久久| 老司机影院成人| 免费无遮挡裸体视频| 一级毛片电影观看 | 女人十人毛片免费观看3o分钟| 又黄又爽又刺激的免费视频.| 中文欧美无线码| 成人av在线播放网站| 一个人看的www免费观看视频| 少妇的逼好多水| 99热这里只有是精品50| 久久精品国产亚洲av香蕉五月| 国产亚洲欧美98| 天天躁夜夜躁狠狠久久av| 久久久久九九精品影院| 波野结衣二区三区在线| 99在线人妻在线中文字幕| 国产精品,欧美在线| 久久精品夜色国产| 亚洲成人av在线免费| 成年女人永久免费观看视频| 直男gayav资源| 深夜a级毛片| 久99久视频精品免费| 美女脱内裤让男人舔精品视频 | 99久国产av精品国产电影| 国产精品99久久久久久久久| 国产成人福利小说| av黄色大香蕉| 哪个播放器可以免费观看大片| 国产麻豆成人av免费视频| 亚洲电影在线观看av| 免费搜索国产男女视频| 免费av观看视频| 国产成人精品婷婷| 天堂影院成人在线观看| 午夜a级毛片| 欧美色欧美亚洲另类二区| 2022亚洲国产成人精品| 欧美成人精品欧美一级黄| 久久精品国产亚洲av香蕉五月| 国产精品麻豆人妻色哟哟久久 | 在线免费观看的www视频| 可以在线观看毛片的网站| 青春草亚洲视频在线观看| www.av在线官网国产| 插阴视频在线观看视频| 精品人妻偷拍中文字幕| 久久久国产成人精品二区| 婷婷六月久久综合丁香| 啦啦啦韩国在线观看视频| 国产精品精品国产色婷婷| 黄色一级大片看看| 午夜精品在线福利| 日本五十路高清| 校园春色视频在线观看| 亚洲国产欧洲综合997久久,| 亚洲精华国产精华液的使用体验 | 99久久精品一区二区三区| 婷婷六月久久综合丁香| 天堂网av新在线| 激情 狠狠 欧美| 久久精品国产亚洲av涩爱 | 91久久精品电影网| 国产美女午夜福利| 99久久久亚洲精品蜜臀av| 深夜精品福利| 欧美激情在线99| 国产伦精品一区二区三区四那| 久久精品国产亚洲av香蕉五月| 久久久国产成人精品二区| 亚洲av中文av极速乱| 国产精品久久久久久精品电影小说 | 丰满人妻一区二区三区视频av| 免费看av在线观看网站| 久久欧美精品欧美久久欧美| 国产黄色视频一区二区在线观看 | 欧美精品一区二区大全| 给我免费播放毛片高清在线观看| 国产高清不卡午夜福利| 亚洲国产精品成人综合色| 在线国产一区二区在线| 色哟哟·www| 欧美最黄视频在线播放免费| 搡女人真爽免费视频火全软件| 人妻久久中文字幕网| 最好的美女福利视频网| 少妇人妻精品综合一区二区 | 啦啦啦啦在线视频资源| ponron亚洲| 大香蕉久久网| 99国产精品一区二区蜜桃av| 色综合色国产| 国产精品三级大全| 日本三级黄在线观看| 国产伦精品一区二区三区视频9| 一卡2卡三卡四卡精品乱码亚洲| 久久热精品热| 午夜精品在线福利| 国产精品一区二区三区四区免费观看| 美女xxoo啪啪120秒动态图| 小蜜桃在线观看免费完整版高清| 少妇的逼好多水| 亚洲三级黄色毛片| 九色成人免费人妻av| 日韩视频在线欧美| 中文精品一卡2卡3卡4更新| 亚洲在线观看片| 国产男人的电影天堂91| 国产成人a区在线观看| 精品一区二区免费观看| 亚洲国产精品国产精品| 日韩欧美一区二区三区在线观看| 亚洲第一电影网av| 国产精品免费一区二区三区在线| 精品久久久久久久久久久久久| 久久99热这里只有精品18| 亚洲第一电影网av| 久久久久久伊人网av| 国产精品久久电影中文字幕| 久久这里只有精品中国| 晚上一个人看的免费电影| 久久精品国产清高在天天线| 国产亚洲精品av在线| 能在线免费看毛片的网站| 亚洲精品日韩在线中文字幕 | 中文精品一卡2卡3卡4更新| 久久精品国产亚洲av涩爱 | 中文欧美无线码| 级片在线观看| 国产一区二区三区在线臀色熟女| 欧美区成人在线视频| 日韩一区二区三区影片| www.色视频.com| 少妇的逼水好多| videossex国产| 亚洲精品亚洲一区二区| 久久精品国产亚洲av天美| 国产亚洲91精品色在线| 久久鲁丝午夜福利片| 久久久色成人| 久久精品久久久久久噜噜老黄 | 国产精品一区二区性色av| 国产精品伦人一区二区| 天堂√8在线中文| 亚洲国产精品合色在线| 可以在线观看的亚洲视频| 日韩精品有码人妻一区| 看黄色毛片网站| 在线观看午夜福利视频| av天堂在线播放| 久久人妻av系列| 校园人妻丝袜中文字幕| 国产高潮美女av| 如何舔出高潮| 国产一区二区在线av高清观看| 欧美不卡视频在线免费观看| 热99re8久久精品国产| 久久精品国产亚洲av香蕉五月| 18+在线观看网站| 男人的好看免费观看在线视频| 国产极品天堂在线| 男女那种视频在线观看| av在线播放精品| 天天躁夜夜躁狠狠久久av| 国产乱人偷精品视频| 青春草亚洲视频在线观看| 久久精品91蜜桃| 特大巨黑吊av在线直播| 色综合站精品国产| 美女脱内裤让男人舔精品视频 | 男的添女的下面高潮视频| 成人亚洲精品av一区二区| 国产黄a三级三级三级人| 亚洲经典国产精华液单| 久久精品国产亚洲网站| 国产成年人精品一区二区| 岛国毛片在线播放| 久久人人爽人人片av| 爱豆传媒免费全集在线观看| 国产免费男女视频| 乱系列少妇在线播放| 国产蜜桃级精品一区二区三区| 亚洲性久久影院| 1024手机看黄色片| 久久精品夜夜夜夜夜久久蜜豆| 在线播放无遮挡| 国产精品嫩草影院av在线观看| 一区福利在线观看| 日韩欧美在线乱码| 成人无遮挡网站| 亚洲欧美精品专区久久| av在线老鸭窝| 99国产精品一区二区蜜桃av| 欧美又色又爽又黄视频| 国产日韩欧美在线精品| 欧美zozozo另类| 国产三级中文精品| 高清毛片免费看| 超碰av人人做人人爽久久| 成人毛片a级毛片在线播放| av黄色大香蕉| 一个人免费在线观看电影| 国产高潮美女av| 精品人妻一区二区三区麻豆| 免费观看人在逋| 12—13女人毛片做爰片一| av黄色大香蕉| 日韩成人av中文字幕在线观看| 男女啪啪激烈高潮av片| 国产亚洲av片在线观看秒播厂 | 精品人妻偷拍中文字幕|