• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Substrate-Target Distance and Si Co-Doping on the Properties of Al-Doped ZnO Films Deposited by Magnetron Sputtering

    2014-10-14 03:44:04XUHaoLUFangFUZhengWen
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:磁控濺射遷移率載流子

    XU Hao LU Fang FU Zheng-Wen

    (1Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials,Surface Physics Laboratory&Department of Physics,Fudan University,Shanghai 200433,P.R.China;2Department of Chemistry&Laser Chemistry Institute,Fudan University,Shanghai 200433,P.R.China)

    Effects of Substrate-Target Distance and Si Co-Doping on the Properties of Al-Doped ZnO Films Deposited by Magnetron Sputtering

    XU Hao1,2LU Fang1FU Zheng-Wen2,*

    (1Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials,Surface Physics Laboratory&Department of Physics,Fudan University,Shanghai 200433,P.R.China;2Department of Chemistry&Laser Chemistry Institute,Fudan University,Shanghai 200433,P.R.China)

    Abstract: Transparent conductive Al-doped ZnO(AZO)and Si-codoped AZO(AZO:Si)films were deposited on square quartz substrates by radio frequency(RF)magnetron sputtering.The effect of distance between the substrate and target(Dst)and the effect of co-doping Si on the electrical and optical properties of theAZO films were systematically investigated.The resistivity,carrier concentration,and mobility were found to be strongly dependent on theDstvalues.With a decrease inDst,the carrier concentration and mobility increased significantly,which resulted in improved conductivity.The lowest resistivity of 4.94×10-4Ω·cm was obtained at aDstof 4.5 cm,and this was associated with a carrier concentration of 3.75×1020cm-3and a mobility of 33.7 cm2·V-1·s-1.X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD)spectroscopy,and grain boundary scattering models were used to analyze the relationship between the carrier concentration and the mobility at different deposition(Dst)values.Transmittance spectra showed an average transmittance of>93%in the visible-near infrared range for all the samples and a blue shift of the absorption edge with a decrease inDst.AZO:Si films had high-conductance and high-transmittance optical properties compared with AZO films,and they had better resistivity stability than the AZO films when exposed to a hot and damp atmosphere,which is practically meaningful.

    Key Words:AZO;AZO:Si;Substrate-target distance;Radio frequency magnetron sputtering

    1 Introduction

    Aluminum-doped zinc oxide(AZO)is a promising transparent conductive oxide material for application as transparent electrode in thin film solar cells,flat panel display,and optoelectronic devices.Besides high conductivity and optical transmittance in visible region,AZO film has a lot of advantages,such as non-toxicity,low cost,material abundance,relatively low deposition temperature,and high stability against hydrogen plasma compared to ITO and SnO2films.1For the fabrication of AZO thin films,there are many deposition techniques currently in use,for example,magnetron sputtering,2-5pulsed laser deposition,6,7metal organic chemical vapor deposition,8and sol-gel process.9Among all these methods,conventional RF magnetron sputtering has become widely recognized as a promising versatile technique for the fabrication of metal oxides.Its advantages over other deposition methods are its ability to obtain high quality films even at low substrate temperature with the low cost,high deposition efficiency,and large deposition area.Previous results showed that the electrical and optical properties of AZO films were strongly dependent on the growth parameters,such as work pressure,2,10RF power,5,11impurity percent,2,6substrate temperature,3,10,11and annealing.4,12In fact,the distance between the target and substrate(Dst)is also one of important parameters for depositing high quality films during sputtering process.However,up to now,there were only a few papers concerning on the relationship between the properties of AZO films and Dst.Jeong et al.13suggested that the resistivity of AZO films was related to the Dstand increased rapidly with the increase of Dst,using Al(OH)3doped ZnO targets,they got the lowest resistivity of 9.8×10-2Ω·cm at 4.5 cm.Recently,Yang et al.14reported the lowest resistivity of 4.62×10-4Ω·cm and the highest Hall mobility of 15.6 cm2·V-1·s-1obtained at the Dstof 7 cm.Apparently,the relationship between the electrical properties of AZO films and Dstis complicated and data is still scarce.More work must be done to elucidate the electrical and physical intrinsic of AZO films associated with growth condition of Dst.In addition,it has been expected that the co-doping Si into AZO is effective in improving its chemical stability and resistivity stability,15,16but do not significantly influence the high-conductance and high-transmittance properties ofAZO films.

    Here,AZO and AZO:Si films were deposited by RF magnetron sputtering.The structural,chemical composition,optical transmittance,electrical properties,and resistivity stability of deposited films were examined by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),UV-Vis spectrophotometer,Hall measurements,and hot humidity environment test(air at relative humidity of 90%and temperature of 60°C).Our purpose is to clarify the effect of Dstand Si addition on the properties of Al-doped ZnO films prepared by magnetron sputtering.

    2 Experimental

    The sputtering targetsused in thisexperimentwere home-made with high purity ZnO(99.9%,Alfa Aesar),Al2O3(99.9%,Alfa Aesar),and SiO2(99.9%,Alfa Aesar)powders.Three ceramic targets with different mass fractions of Al2O3(1%,2%,3%)were prepared for the deposition of AZO films.In addition,two mixtures of ZnO,Al2O3,and SiO2powder targets were also prepared for the deposition of AZO:Si films,which contents are(1%Al2O3,1%SiO2)and(2%Al2O3,0.5%SiO2),respectively.All targets have a common diameter of 5 cm.Thin films were all deposited on flat quartz substrates(1 cm×1 cm×1 mm),which had been ultrasonically cleaned in de-ionized water,acetone,alcohol,and de-ionized water,sequentially,and finally dried with argon flow.

    Before deposition,chamber was evacuated to an ultimate background pressure of 10-4Pa using a turbo molecular pump.Then high-purity(99.99%)Ar gas was introduced into the chamber at a fixed flow rate of 28 cm3·min-1,working pressure was maintained on 1.2 Pa.Then 5 min pre-sputtering with the quartz substrate covered by a closely mounted shutter was employed to clean contamination on the target surface,followed by true sputtering.During deposition,RF power is fixed at 100 W,and substrate temperature was maintained at ca 150°C.Dstis varied from 4.5 to 7 cm,so sputtering time was different(from 6 to 15 min)for different Dst(different deposition rates),which makes sure that all films have thickness of 380-400 nm.Atlast,allfilmswereannealedinvacuumat500°Cfor 2h.

    The thicknesses of films were measured by a conventional surface-roughness detector with stylus(Vecoo Dektak 150),and the crystal structure was examined by XRD using a Bruker D8 advance diffractometer equipped with Cu Kαradiation(λ=0.1540562 nm).XPS experiment,which was carried out on a PHI-5000C ESCA system(Perkin Elmer)with Al Kαradiation(hν=1486.6 eV),was utilized to analyze the composition and the chemical states of the AZO films.Electrical properties,such as resistivity,carrier concentration,and mobility,were measured by Hall-measurement system(ECOPIA HMS-5000),4 Au pins were pressed on 4 corners of films after 4 indium points were added to make sure ohmic contact,then constant current of 10 mA and magnetron field of 0.55 T were applied.The optical transmittance of films was measured by ultravioletvisible(UV-Vis)spectrophotometer,and the transmittance wascalibrated against a bare quartz glass as reference sample.Resistivity stability tests were carried out in a hot humidity environment,in which relative humidity of air was 90%and temperature was fixed at 60°C.

    3 Results and discussion

    Fig.1(a)shows typical XRD patterns of AZO(2%Al2O3)films deposited at different Dst.All measurements were taken on the central region of the films.Only strong(002)peak is observed at 2θ ≈34.47°,which indicates a hexagonal wurtzite structure and an oriented film growth with c-axis perpendicular to the substrate surface.As shown in Fig.1(b),the full width at half maximum(FWHM)decreases from 0.323°to 0.264°with the decrease of Dst.The observed increase in the XRD intensity and decrease in FWHM with the decrease of Dstreveals that the crystallinity is improved with decreasing Dst.AZO films of other mass percents(1%Al2O3,3%Al2O3)have also shown similar characteristic.Using FWHM value,the grain size(g)can also be estimated by Scherrer formula17

    where λ=0.1540562 nm,is the wavelength of the X-ray,θ is the Bragg diffraction angle at the peak position,and Δ(2θ)is the FWHM in radian.An estimated grain size in the range of 26-33 nm can be obtained with the corresponding FWHM value in Fig.1(b).

    Fig.2(a)shows the relationship between resistivity and Dstin three different Al contents obtained by Hall measurement.All films were deposited in a small area of 1 cm×1 cm,in order to avoid the spatial resistivity distribution.5It is clear that,film resistivity decreases significantly with the decrease of Dstfrom 1.63×10-3to 4.94×10-4Ω·cm(2%Al2O3).Fig.2(b,c)show the relationship of free electron carrier concentration and mobility versus Dst.Obviously,it is the larger carrier concentration and mobility at closer deposition distance that produced lower resistivity of film observed in Fig.2(a).With 2%as a case,carrier concentration and mobility at Dst=4.5 cm are 3.75×1020cm-3and 33.7 cm2·V-1·s-1respectively,but they drop to 2.35 × 1020cm-3and 16.3 cm2·V-1·s-1in Dst=7 cm.Yang et al.14reported similar results,as the decrease of Dst,the resistivity decreased to the lowest point,while further decrease of Dstgave negative effects on resistivity.In our experiments,the minimum and optimal Dstis 4.5 cm,which is limited by the position of pre-sputtering shutter,maybe further closed Dstwill show the same phenomenon as that of Yang.In addition,the highest concentration in our films is only 3.75×1020cm-3,which is less than ~8×1020cm-3in other literature.2,3,11,12This may be due to part of powder loss in target-made process and improper Al2O3content,the optimal impurity percent may be between 2%and 2.5%.

    According to the data from Fig.1,closer distance means relatively higher energy of the sputtered particles,which lead to an improvement of crystallinity and lattice structure,thus producing higher lattice limited mobility,and closer Dst(smaller FWHM value)yielded larger grain size.According to a classical model suggested by Seto18in ploycrystalline,depending on the charge carrier trap density at the boundary(Qt)and carrier density(N),the trap can be partly or completely filled,leading to variation barrier heights Eb.Electrons can surmount these barriers by thermionic emission.In the case of AZO(L×N>Qt),the grain boundary limited mobility(μs)is given by

    μs=μ0·exp(-Eb/kT)

    whereμ0can be defined as the mobility inside a grain,εε0is the static dielectric constant,eiselementary charge,kis Boltzmann constant,m*is effective mass in ZnO,Tis Kelvin temperature,Nis the carrier density in the bulk of the grain andLis the grain size,which had already been estimated by Scherrer formula using FWHM value.Since AZO films in closerDsthave relatively larger grain size,less scattering frequency and relatively larger grain boundary limited mobility will be obtained.Since lattice structure and grain boundary scattering are two important factors in determining the mobility of AZO films,thus,the AZO films grown at closerDstwill have higher mobility than that gown at longerDst,which is consistent with what we observed in Fig.2.However,Yanget al.14reported that,over higher energy(further closerDst)may cause degradation of crystallinity and lattice structure,which can be supported by their XRD patterns,thus producing lower mobility.This was also not observed in present case because of limited distance between target and pre-sputtering shutter.

    In order to explain the relationship between carrier concentration andDst,XPS spectra were taken to detect the content of O and Al in AZO films.As reported,2,13Al on substitutional site of Zn and O vacancy are two important donors in AZO film.Minamiet al.3,15got a electron concentration of ca 2×1020cm-3with pure ZnO target by magnetron sputtering,implying that deposited ZnO films were degenerated even without Al dopant.Kimet al.2also got concentration of ca 8.7×1019cm-3in deposited ZnO films.Briefly,we can get the conclusion that,O vacancy is also a non-ignorable donor of AZO in generating the free carriers.Figs.3-5 shows our XPS spectra of three AZO films(2%Al2O3)deposited at differentDst.Using Gaussian fitting,the observed O 1speak can be devoluted into two components.The lower binding energy peak(OI)located at(530.20±0.10)eV is attributed to stoichiometric O2-within wurzite structure of ZnO.While the higher binding energy peak(OII)at(531.83±0.10)eV can be assigned to chemisorbed oxygen atgrain boundaries and surface,such as O2.1,14The stoichiometric atomic ratio of O/Zn can be gotten by integrating the peak area divided by their sensitivity factors(O:0.733,Zn:2.768,Al:0.256).Our results show that,the O/Zn ratio in film(2%,Dst=4.5 cm)is 0.87,while the ratios are 0.92 and 1.02 in film(2%,Dst=6 cm)and film(2%,Dst=7 cm),respectively.This indicates that the AZO film grown at closer Dsthas higher oxygen vacancy than that grown at farther Dst.From XPS spectra,it can also be calculated the atomic ratio of Al/Zn is 0.0308 in the film deposited at 4.5 cm,which is almost equal to 0.0311 in the film deposited at 7 cm.Apparently,AZO film grown at shorter Dst(higher growth rate)may have higher oxygen vacancy rather than that grown at longer Dst(lower growth rate),suggesting that free electron carrier concentration in the AZO film of shorter Dstis higher than that grown at longer Dst,which is consistent with the variation of free electron concentration in Fig.2.

    Fig.6 presents all data for different Dstand different Al contents in a plot of the mobility versus carrier concentration.Thick solid line is a semi-empirical model in ZnO single crystal presented by Masetti et al.,19and the thin solid line is grain boundary scattering limited transport model(formula 2)of Seto.18Dash line is the fitting curve for combined single crystal and grain boundary scattering model,1,4yielding the grain boundary trap density Qt=2.09×1013cm-2.This is in good agreement with data reported by other scholars,for example,1.3×1013cm-2by Ellmer et al.1,4and 1.75×1013cm-2by Cornelius et al..20

    Fig.7(a)shows transmittance spectra of AZO films prepared with targets having 2%Al2O3content with different Dst.The average transmittance in the range of visible-near infrared is above 93%for all samples regardless of Dst.As the decrease of Dst,the absorption edge shifts to the shorter wavelength region,and this movement of the absorption edge is known as the Burstein-Moss shift.21,22It is known that AZO films with carrier concentration above 1020cm-3degenerate and Fermi energy level penetrates into the conduction band,thus the optical band gap Egwill increase with the increased carrier concentration.The optical band gap(Eg)and absorption coefficient(α)in direct transition semiconductor are related by following equation2,23

    where h is Planck′s constant,and ν is the frequency of the incident photon,α is the optical absorption coefficient defined by

    where I is the intensity of transmitted light,I0is the intensity of incident light,and t is the thickness of the AZO films.Fig.7(b)is the plot of α2versus hν,the extrapolation line gives Egfor samples prepared at different Dst.The absorption edge moves from 3.52 to 3.55 eV when Dstvaries from 7 to 4.5 cm,which is also consistent with the variation of free electron carrier concentration in Fig.2.

    Based on the optimal conditions for the deposition of AZO films at Dstof 4.5 cm,the same distance between target and the substrate is employed for the preparation of Si-doped ZnO films.It has been reported that Si atom in Si-doped ZnO films can act as effective donors in the same manner as Al15,16.Fig.8 shows electrical properties of AZO:Si films,in which the data from AZO films are used for comparison.It can be seen that the additional 1%SiO2cause the decrease of resistivity from 7.256×10-4to 4.977×10-4Ω·cm,while 0.5%SiO2added into the target of 2.%Al2O3cause the resistivity increasing from 4.938×10-4to 8.333×10-4Ω·cm.The variety of conductivity can be attributable to varieties in both carrier concentration andmobility as also shown in Fig.8,the carrier concentrations of two AZO:Si films are 6.121×1020and 4.813×1020cm-3,respectively,doped SiO2induces significant increase in carrier concentration,which can be attributed to an increase in additional effective donor.However,compared with AZO films,AZO:Si films have much lower mobilities 20.513 and 15.584 cm2·V-1·s-1,doped-Si may cause enhanced impurity scattering,which results in a certain decrease of mobility.

    Fig.9(a)shows transmittance spectra of AZO:Si films.It can be seen that the added Si does not significantly reduce the optical transmittance in region of 190-900 nm.Comparing with AZO films(2%),the absorption edges of AZO:Si films show slight blue-shift to shorter wavelength.As shown in Fig.9(b),this phenomenon can also be explained by the increased carrier concentration in Fig.8 with the theory of Burstein-Moss.21,22

    Fig.10 shows resistivity as a function of exposure time for AZO:Si films and AZO films.Such tests were carried out in high hot humidity environment(air at 90%relative humidity and 60°C).It is clearly that,after 1000 h exposure in atmosphere,the resistivities of all films increase to different extent,but AZO:Si films show better resistivity stability than AZO films.The resistivity of AZO:Si(1%Al2O3,1%SiO2)slightly rises from 4.977×10-4to 7.013×10-4Ω·cm.However the resistivity of AZO(2%Al2O3)films rise from 4.938×10-4to 9.689×10-4Ω·cm.This increase of resistivity,when films are exposed in atmosphere,may mainly be due to the decrease in carrier concentration,which should be attributed to the oxygen chemisorptions and oxidation of oxygen vacancy.Thus,the resistivity stability of AZO films can be improved by co-doping Si impurity,similar studies have also been reported by other scholars,such as co-doping Si by Nomoto et al.16and co-doping V by Minami et al.24The improvement in resistivity stability of AZO:Si films may mainly be related to that of carrier concentration stability.In AZO films,Al and oxygen vacancy can act as donors,but oxygen vacancy is easy to be oxidized,while in AZO:Si films,co-doped Si acting as additional effective donors increases carrier concentration and can not be oxidized.As practical requirement,transparent electrodes used in optoelectronic devices must be a stable enough when exposured in atmosphere.Co-doping silicon may be a feasible and promising method to improve stability of conductivity,and at the same time do not significantly influence the high-conductance electrical and high-transmittance optical properties of AZO films.

    4 Conclusions

    AZO and AZO:Si films were prepared by RF magnetron sputtering with the home-made ZnO targets containing different contents of Al2O3and SiO2powders as doping source.Alltransparent conductive films were grown on 1 cm×1 cm flat quartz substrates in order to avoid the phenomenon of spatial resistivity distribution.Two parameters of substrate-target distance(Dst)and co-doping Si that can influence the property of AZO films were investigated.The structural properties,electrical properties,and optical properties of AZO films are strongly dependent on the deposited distance between substrate and target.As the decrease of Dst,carrier concentration and mobility all show a significant increase,which result an improved conductivity in AZO films.Optical experiment shows average transmittance>93%in visible-near infrared range for all samples and blue shift of absorption edge with the decrease of Dst.In addition,our experiments have demonstrated that AZO:Si films have comparable electrical and optical properties with AZO films,but better resistivity stability than AZO films in hot and damp atmosphere,which is meaningful in practical use.In summary,Dstand co-doping Si are two important but always easily neglected parameters in deposition process,proper Dstand co-doping Si may help us fabricate high-quality AZO films.

    (1) Ellmer,K.Transparent Conductive Zinc Oxide;Springer Press:Heidelberg,2008;pp 35-78.

    (2)Kim,K.H.;Park,K.C.;Ma,D.Y.J.Appl.Phys.1997,81,7764.

    (3) Minami,T.;Sato,H.;Ohashi,K.;Tomofuji,T.;Takata,S.J.Cryst.Growth 1992,117,370.

    (4) Ellmer,K.;Mientus,R.Thin Solid Films 2008,516,4620.

    (5)Song,D.Y.;Widenborg,P.;Chin,W.;Aberle,A.G.Sol.Energy Mater.Sol.Cells 2002,73,1.

    (6)Lorenz,M.;Kaidashev,E.M.;von Wenckstern,H.;Riede,V.;Bundesmann,C.;Spemann,D.;Benndorf,G.;Hochmuth,H.;Rahm,A.;Semmelhack,H.C.;Grundmann,M.Solid-State Electronics 2003,47,2205.

    (7)Singh,A.V.;Mehra,R.M.;Buthrath,N.;Wakahara,A.;Yoshida,A.J.Appl.Phys.2001,90,5661.

    (8) Hu,J.;Gordon,R.G.J.Appl.Phys.1992,71,880.

    (9)Xue,S.W.;Zu,X.T.;Zheng,W.G.;Chen,M.Y.;Xiang,X.Physica B 2006,382,201.

    (10) Lee,J.C.;Kang,K.H.;Kim,S.K.;Yoon,K.H.;Park,I.J.;Song,J.Sol.Energy Mater.Sol.Cells 2000,64,185.

    (11) Kim,Y.H.;Lee,K.S.;Lee,T.S.;Cheong,B.;Seong,T.Y.;Kim,W.M.Appl.Surf.Sci.2009,255,7251.

    (12) Ellmer,K.;Vollweiler,G.Thin Solid Films 2006,496,104.

    (13) Jeong,S.H.;Lee,J.W.;Lee,S.B.;Boo,J.H.Thin Solid Films 2003,435,78.

    (14)Yang,W.F.;Liu,Z.G.;Peng,D.L.;Zhang,F.;Huang,H.L.;Xie,Y.N.;Wu,Z.Y.Appl.Surf.Sci.2009,255,5669.

    (15) Minami,T.;Sato,H.;Nanto,H.;Takata,S.Jpn.J.Appl.Phys.1986,25,L776.

    (16) Nomoto,J.;Miyata,T.;Minami,T.J.Vac.Sci.Technol.A 2009,27,1001.

    (17)Azaroff,L.V.Elements of X-ray Crystallography;McGraw-Hill:New York,1968.

    (18) Seto,J.Y.W.J.Appl.Phys.1975,46,5247.

    (19) Masetti,G.;Severi,M.;Solmi,S.IEEE Trans.Electron Devices 1983,30,764.

    (20) Cornelius,S.;Vinnichenko,M.;Shevchenko,N.;Rogozin,A.;Kolitsch,A.;M?ller,W.Appl.Phys.Lett.2009,94,042103.

    (21) Burstein,E.Phys.Rev.1954,93,775.

    (22) Moss,T.S.Proceedings of the Physical Society of London Section B 1954,67,775.

    (23) Ziegler,E.;Heinrich,A.;Oppermann,H.;St?ver G.Phys.Status Solidi A 1981,66,635.

    (24) Minami,T.;Miyata,T.Thin Solid Films 2008,517,1474.

    磁控濺射中靶-基底距離與Si共摻對ZnO:Al薄膜性質(zhì)的影響

    徐 浩1,2陸 昉1傅正文2,*

    (1上海市分子催化和功能材料重點實驗室,表面物理實驗室和物理系,復(fù)旦大學(xué),上海200433;2化學(xué)系和激光化學(xué)研究所,復(fù)旦大學(xué),上海200433)

    使用射頻磁控濺射,在正方形石英襯底上沉積透明導(dǎo)電摻Al的ZnO(AZO)和Si共摻AZO(AZO:Si)薄膜.系統(tǒng)研究了靶-基底距離(Dst)和Si共摻對AZO薄膜電學(xué)、光學(xué)性質(zhì)的影響.電阻率、載流子濃度和遷移率都強烈地依賴于靶-基底距離,隨著靶-基底距離的減少,載流子濃度和遷移率都有顯著的增加,電導(dǎo)率也隨之提高.在靶-基底距離為4.5 cm處,得到最低電阻率4.94×10-4Ω·cm,此時的載流子濃度和遷移率分別是3.75×1020cm-3和33.7 cm2·V-1·s-1.X射線光電子能譜(XPS)、X射線衍射(XRD)和邊界散射模型被用于分析載流子濃度、遷移率和靶-基底距離的關(guān)系.透射譜顯示,在可見-近紅外范圍內(nèi)所有樣品均有大于93%的平均透射率,同時隨著靶基距離的減少,吸收邊藍移.AZO:Si表現(xiàn)出可與AZO相比擬的高電導(dǎo)和高透射光學(xué)特性,但在熱濕環(huán)境中卻有著更好的電阻穩(wěn)定性,這在實際使用中很有意義.

    AZO;AZO:Si; 靶-基底距離; 射頻磁控濺射

    O649

    Received:December 20,2010;Revised:March 4,2011;Published on Web:March 10,2011.

    *Corresponding author.Email:zhengwen@sh163.net;Tel:+86-21-65642522.

    The project was supported by the Science&Technology Commission of Shanghai Municipality(08DZ2270500,09JC1401300),National Natural Science Foundation of China(20773031),National Key Basic Research Program of China(973)(2007CB209702),and National High-Tech Research and Development Program of China(863)(2007AA03Z322).

    上海科學(xué)技術(shù)委員會(08DZ2270500,09JC1401300),國家自然科學(xué)基金(20773031),國家重點基礎(chǔ)研究發(fā)展規(guī)劃(973)(2007CB209702),國家高技術(shù)研究發(fā)展計劃(863)(2007AA03Z322)資助項目

    猜你喜歡
    磁控濺射遷移率載流子
    Cd0.96Zn0.04Te 光致載流子動力學(xué)特性的太赫茲光譜研究*
    Sb2Se3 薄膜表面和界面超快載流子動力學(xué)的瞬態(tài)反射光譜分析*
    C/C復(fù)合材料表面磁控濺射ZrN薄膜
    復(fù)雜腔體件表面磁控濺射鍍膜關(guān)鍵技術(shù)的研究
    SiC/SiO2界面形貌對SiC MOS器件溝道遷移率的影響
    利用CASTEP計算載流子有效質(zhì)量的可靠性分析
    微波介質(zhì)陶瓷諧振器磁控濺射金屬化
    濾棒吸阻和濾嘴長度對卷煙煙氣中6種元素遷移率的影響
    煙草科技(2015年8期)2015-12-20 08:27:17
    高遷移率族蛋白B1對16HBE細胞血管內(nèi)皮生長因子表達和分泌的影響
    基于六普數(shù)據(jù)的年齡—遷移率模型研究
    三上悠亚av全集在线观看| 国产av码专区亚洲av| 22中文网久久字幕| 免费久久久久久久精品成人欧美视频 | 9191精品国产免费久久| 国产亚洲一区二区精品| 午夜免费男女啪啪视频观看| 天天操日日干夜夜撸| 少妇人妻久久综合中文| 亚洲精品av麻豆狂野| 国产黄色视频一区二区在线观看| 两个人免费观看高清视频| 免费观看在线日韩| 极品人妻少妇av视频| 日日爽夜夜爽网站| 18禁动态无遮挡网站| 国产成人一区二区在线| 国产精品国产三级专区第一集| 大片电影免费在线观看免费| 欧美精品亚洲一区二区| 国产成人午夜福利电影在线观看| 一区二区三区精品91| 国国产精品蜜臀av免费| 久久人人爽人人片av| 成年女人在线观看亚洲视频| 一级片免费观看大全| 在线观看三级黄色| 国产片特级美女逼逼视频| 91成人精品电影| 亚洲经典国产精华液单| 精品久久久久久电影网| 亚洲欧美清纯卡通| 日韩精品免费视频一区二区三区 | av国产精品久久久久影院| 久久人人爽人人片av| 久久这里有精品视频免费| 永久网站在线| 久久久久久伊人网av| 美女福利国产在线| 中文字幕免费在线视频6| 日本黄色日本黄色录像| 99热国产这里只有精品6| 国产综合精华液| 麻豆乱淫一区二区| 亚洲久久久国产精品| 2022亚洲国产成人精品| 亚洲av电影在线观看一区二区三区| 久久久久网色| 午夜影院在线不卡| 91午夜精品亚洲一区二区三区| 中文精品一卡2卡3卡4更新| 最近手机中文字幕大全| 亚洲欧美色中文字幕在线| 九九在线视频观看精品| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美清纯卡通| 在线观看免费视频网站a站| 国产免费福利视频在线观看| 午夜久久久在线观看| 免费日韩欧美在线观看| 精品国产一区二区三区四区第35| 天天操日日干夜夜撸| 午夜激情久久久久久久| 在线免费观看不下载黄p国产| 久热这里只有精品99| 男女免费视频国产| 91久久精品国产一区二区三区| 9热在线视频观看99| 久久久久久久亚洲中文字幕| 伊人亚洲综合成人网| 日韩av免费高清视频| 女性被躁到高潮视频| 日韩视频在线欧美| 日韩av在线免费看完整版不卡| 高清av免费在线| 美女国产高潮福利片在线看| a级片在线免费高清观看视频| 性高湖久久久久久久久免费观看| 免费人妻精品一区二区三区视频| 中文字幕最新亚洲高清| 又黄又粗又硬又大视频| 久久狼人影院| 免费高清在线观看视频在线观看| 天美传媒精品一区二区| 丝瓜视频免费看黄片| 女人久久www免费人成看片| 最黄视频免费看| 黄色毛片三级朝国网站| 韩国精品一区二区三区 | av女优亚洲男人天堂| 欧美97在线视频| 国产免费一级a男人的天堂| 高清av免费在线| 丝袜脚勾引网站| 日韩电影二区| 欧美日韩成人在线一区二区| 免费观看性生交大片5| 三上悠亚av全集在线观看| 色94色欧美一区二区| 久久久久久伊人网av| 美国免费a级毛片| 久久久a久久爽久久v久久| 国产熟女欧美一区二区| 日韩三级伦理在线观看| 国产精品一区www在线观看| 亚洲丝袜综合中文字幕| 国产一区二区三区av在线| 视频中文字幕在线观看| 内地一区二区视频在线| 欧美xxⅹ黑人| av免费观看日本| 日日摸夜夜添夜夜爱| 国产爽快片一区二区三区| 国产免费现黄频在线看| 777米奇影视久久| 成年人午夜在线观看视频| 国产色婷婷99| 久久99蜜桃精品久久| 青青草视频在线视频观看| 999精品在线视频| 亚洲国产日韩一区二区| 亚洲国产精品专区欧美| 51国产日韩欧美| 宅男免费午夜| 国产一区二区在线观看av| 久久精品国产综合久久久 | www.熟女人妻精品国产 | 美女国产视频在线观看| a 毛片基地| 久久毛片免费看一区二区三区| 大香蕉久久成人网| 18禁在线无遮挡免费观看视频| 成年av动漫网址| 国产av精品麻豆| 久久久久视频综合| 一边摸一边做爽爽视频免费| 看免费成人av毛片| 中文精品一卡2卡3卡4更新| 九色亚洲精品在线播放| 国产欧美亚洲国产| 国产精品免费大片| 欧美 日韩 精品 国产| 老司机影院毛片| 免费不卡的大黄色大毛片视频在线观看| 热99国产精品久久久久久7| 成年女人在线观看亚洲视频| 精品国产乱码久久久久久小说| 王馨瑶露胸无遮挡在线观看| 亚洲国产毛片av蜜桃av| 亚洲激情五月婷婷啪啪| 男男h啪啪无遮挡| av在线老鸭窝| 成人手机av| 啦啦啦视频在线资源免费观看| 极品少妇高潮喷水抽搐| 国产精品国产三级专区第一集| 免费观看性生交大片5| 高清在线视频一区二区三区| freevideosex欧美| 久久韩国三级中文字幕| 久久精品熟女亚洲av麻豆精品| 男女边摸边吃奶| 精品少妇久久久久久888优播| 亚洲美女搞黄在线观看| 日韩av在线免费看完整版不卡| 看免费av毛片| 国产日韩欧美在线精品| 如日韩欧美国产精品一区二区三区| 卡戴珊不雅视频在线播放| 午夜福利视频在线观看免费| 日产精品乱码卡一卡2卡三| 精品少妇久久久久久888优播| 亚洲精品一区蜜桃| 男的添女的下面高潮视频| 青青草视频在线视频观看| 久久精品国产亚洲av天美| 亚洲欧美精品自产自拍| 精品少妇久久久久久888优播| 十八禁高潮呻吟视频| 寂寞人妻少妇视频99o| 男女国产视频网站| videos熟女内射| 日韩人妻精品一区2区三区| 国产综合精华液| 男女午夜视频在线观看 | 九九爱精品视频在线观看| 精品熟女少妇av免费看| 最近中文字幕高清免费大全6| 久久精品国产亚洲av天美| 精品福利永久在线观看| 99久久综合免费| 久久精品熟女亚洲av麻豆精品| 两性夫妻黄色片 | 国产欧美亚洲国产| 男女国产视频网站| 一级爰片在线观看| 国产黄频视频在线观看| 午夜福利影视在线免费观看| 99国产精品免费福利视频| 亚洲av男天堂| 国产无遮挡羞羞视频在线观看| 亚洲成人av在线免费| 男女边吃奶边做爰视频| 亚洲国产精品国产精品| 国产黄频视频在线观看| 国产精品熟女久久久久浪| 伦精品一区二区三区| 各种免费的搞黄视频| 人妻系列 视频| 久久精品人人爽人人爽视色| 国产高清国产精品国产三级| 久久久a久久爽久久v久久| 国产黄频视频在线观看| 五月天丁香电影| 精品人妻熟女毛片av久久网站| 中国三级夫妇交换| 婷婷成人精品国产| 精品福利永久在线观看| 午夜91福利影院| 午夜视频国产福利| 亚洲av男天堂| 欧美 日韩 精品 国产| 大话2 男鬼变身卡| 亚洲成人手机| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人国产av品久久久| 亚洲精品av麻豆狂野| 欧美97在线视频| 99香蕉大伊视频| 精品一区二区三区视频在线| 久久久国产精品麻豆| 国产激情久久老熟女| 三上悠亚av全集在线观看| 男的添女的下面高潮视频| 国产免费视频播放在线视频| 亚洲国产精品999| 最近最新中文字幕免费大全7| 麻豆乱淫一区二区| 亚洲国产精品一区二区三区在线| 91在线精品国自产拍蜜月| 日本欧美视频一区| 亚洲精品日韩在线中文字幕| 久久国内精品自在自线图片| 亚洲成色77777| 中国国产av一级| 乱码一卡2卡4卡精品| 在线观看免费日韩欧美大片| 9热在线视频观看99| 性高湖久久久久久久久免费观看| 黑人欧美特级aaaaaa片| 久久精品aⅴ一区二区三区四区 | 男女高潮啪啪啪动态图| 夜夜爽夜夜爽视频| 国产成人免费观看mmmm| 女的被弄到高潮叫床怎么办| 久久99精品国语久久久| 在线 av 中文字幕| 在线天堂最新版资源| 色视频在线一区二区三区| av在线播放精品| 在线观看免费视频网站a站| 亚洲欧美成人综合另类久久久| 国产精品99久久99久久久不卡 | 18+在线观看网站| www.色视频.com| 丰满饥渴人妻一区二区三| 狠狠婷婷综合久久久久久88av| 观看美女的网站| 久久婷婷青草| 少妇人妻久久综合中文| 在线亚洲精品国产二区图片欧美| 欧美精品一区二区免费开放| 久久精品夜色国产| 永久免费av网站大全| 大片免费播放器 马上看| 国产精品不卡视频一区二区| 国产精品三级大全| 亚洲第一av免费看| 美女主播在线视频| 99热这里只有是精品在线观看| 中文字幕人妻丝袜制服| av卡一久久| 国产伦理片在线播放av一区| 一级a做视频免费观看| 伊人久久国产一区二区| 欧美日韩精品成人综合77777| 97人妻天天添夜夜摸| 欧美最新免费一区二区三区| 观看美女的网站| h视频一区二区三区| 国产一区二区在线观看av| 热re99久久精品国产66热6| 成人毛片60女人毛片免费| 热re99久久国产66热| 午夜福利,免费看| 2018国产大陆天天弄谢| 在线观看人妻少妇| 日本wwww免费看| 激情视频va一区二区三区| 男女免费视频国产| 中文字幕精品免费在线观看视频 | 久久久久网色| 制服丝袜香蕉在线| 又黄又粗又硬又大视频| 99国产综合亚洲精品| 天美传媒精品一区二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产视频首页在线观看| 日韩欧美一区视频在线观看| 午夜激情久久久久久久| 精品国产一区二区三区四区第35| 久久久久视频综合| 免费黄频网站在线观看国产| 极品人妻少妇av视频| 美女视频免费永久观看网站| 91国产中文字幕| 久久精品夜色国产| 22中文网久久字幕| 黄色视频在线播放观看不卡| 国产精品久久久久久久电影| videossex国产| 国产探花极品一区二区| 人人妻人人添人人爽欧美一区卜| a级片在线免费高清观看视频| 日韩av免费高清视频| 久久久国产欧美日韩av| av免费在线看不卡| 十八禁高潮呻吟视频| 日韩精品有码人妻一区| 天天躁夜夜躁狠狠躁躁| 日韩伦理黄色片| 亚洲精品456在线播放app| 日韩av在线免费看完整版不卡| 色婷婷久久久亚洲欧美| 肉色欧美久久久久久久蜜桃| 丰满少妇做爰视频| 性高湖久久久久久久久免费观看| 一二三四中文在线观看免费高清| 五月开心婷婷网| 日韩成人av中文字幕在线观看| 18+在线观看网站| 国产精品免费大片| 亚洲精品久久成人aⅴ小说| 久久久久视频综合| 免费少妇av软件| 18禁裸乳无遮挡动漫免费视频| 亚洲伊人色综图| 午夜av观看不卡| 少妇熟女欧美另类| 国产精品 国内视频| 五月天丁香电影| 永久网站在线| 美女国产高潮福利片在线看| 亚洲av欧美aⅴ国产| 我要看黄色一级片免费的| 久久久国产精品麻豆| 一区二区三区四区激情视频| 免费看光身美女| 青青草视频在线视频观看| 久久亚洲国产成人精品v| 色哟哟·www| 亚洲国产看品久久| 亚洲内射少妇av| 亚洲丝袜综合中文字幕| av一本久久久久| 人妻 亚洲 视频| 少妇的逼好多水| 国产色婷婷99| 多毛熟女@视频| 人妻 亚洲 视频| 男女边吃奶边做爰视频| 日韩一区二区视频免费看| 九色成人免费人妻av| 免费少妇av软件| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久av美女十八| 精品午夜福利在线看| 午夜影院在线不卡| 久久久国产一区二区| 亚洲第一av免费看| 亚洲欧洲日产国产| 另类亚洲欧美激情| 两个人看的免费小视频| 亚洲在久久综合| 天美传媒精品一区二区| 大香蕉久久网| 精品国产国语对白av| videosex国产| 欧美国产精品一级二级三级| 熟妇人妻不卡中文字幕| 国产免费福利视频在线观看| 人人澡人人妻人| 久久精品国产鲁丝片午夜精品| 日韩一本色道免费dvd| 精品国产国语对白av| 国产午夜精品一二区理论片| av免费观看日本| 精品一区二区三区视频在线| 精品人妻在线不人妻| 成人国产麻豆网| 最近的中文字幕免费完整| av有码第一页| 久久久精品94久久精品| 精品亚洲乱码少妇综合久久| 99久久中文字幕三级久久日本| 日本91视频免费播放| 一本色道久久久久久精品综合| 97在线人人人人妻| 国产精品国产三级国产av玫瑰| 乱码一卡2卡4卡精品| 中国三级夫妇交换| 久久狼人影院| 在线观看国产h片| 中国美白少妇内射xxxbb| 中文字幕最新亚洲高清| 日本黄色日本黄色录像| 黄色毛片三级朝国网站| 大陆偷拍与自拍| 人妻人人澡人人爽人人| 国产免费一级a男人的天堂| 9热在线视频观看99| 1024视频免费在线观看| 国产无遮挡羞羞视频在线观看| 成人黄色视频免费在线看| 久久久久久人人人人人| 日韩制服骚丝袜av| 国产精品麻豆人妻色哟哟久久| 五月玫瑰六月丁香| 成人午夜精彩视频在线观看| 青青草视频在线视频观看| 成年人免费黄色播放视频| av卡一久久| 美女脱内裤让男人舔精品视频| 人妻人人澡人人爽人人| 边亲边吃奶的免费视频| 久久99热6这里只有精品| 如日韩欧美国产精品一区二区三区| 如何舔出高潮| 99久久中文字幕三级久久日本| 国产xxxxx性猛交| √禁漫天堂资源中文www| 少妇的逼水好多| 黑人欧美特级aaaaaa片| 久久精品人人爽人人爽视色| 国产精品熟女久久久久浪| 中文字幕另类日韩欧美亚洲嫩草| 日本欧美国产在线视频| 汤姆久久久久久久影院中文字幕| 欧美日韩亚洲高清精品| 女人精品久久久久毛片| 亚洲国产毛片av蜜桃av| 一级毛片电影观看| 欧美+日韩+精品| 亚洲欧美日韩卡通动漫| 亚洲国产日韩一区二区| 咕卡用的链子| 亚洲一码二码三码区别大吗| 秋霞在线观看毛片| av免费观看日本| 亚洲图色成人| 又粗又硬又长又爽又黄的视频| 一区二区日韩欧美中文字幕 | 国语对白做爰xxxⅹ性视频网站| 亚洲av电影在线进入| 亚洲综合精品二区| 亚洲激情五月婷婷啪啪| 久久久久久人人人人人| 久久久久视频综合| 午夜免费男女啪啪视频观看| 91在线精品国自产拍蜜月| 黑丝袜美女国产一区| 国产老妇伦熟女老妇高清| 亚洲精品久久久久久婷婷小说| 热re99久久精品国产66热6| 日韩精品有码人妻一区| 国产日韩欧美在线精品| 久久午夜综合久久蜜桃| 日韩熟女老妇一区二区性免费视频| 亚洲综合精品二区| 日韩av在线免费看完整版不卡| 黄色 视频免费看| 亚洲国产精品专区欧美| 日韩一区二区视频免费看| 视频中文字幕在线观看| 国产av精品麻豆| 欧美精品亚洲一区二区| 69精品国产乱码久久久| 免费黄频网站在线观看国产| 成人影院久久| 久久精品人人爽人人爽视色| 国产片特级美女逼逼视频| av在线观看视频网站免费| 纯流量卡能插随身wifi吗| av免费在线看不卡| 另类亚洲欧美激情| 91精品伊人久久大香线蕉| 大话2 男鬼变身卡| 啦啦啦啦在线视频资源| 精品久久久久久电影网| 亚洲精品久久成人aⅴ小说| 在线观看美女被高潮喷水网站| 国产男女超爽视频在线观看| 人妻少妇偷人精品九色| 制服诱惑二区| 国产亚洲精品第一综合不卡 | 岛国毛片在线播放| 亚洲av免费高清在线观看| 蜜臀久久99精品久久宅男| 久久久久久人人人人人| 亚洲综合色网址| 国产成人一区二区在线| 日韩免费高清中文字幕av| 一级,二级,三级黄色视频| 亚洲精品中文字幕在线视频| 色吧在线观看| 18禁国产床啪视频网站| 亚洲高清免费不卡视频| a级毛片在线看网站| 女的被弄到高潮叫床怎么办| 亚洲国产欧美在线一区| 亚洲性久久影院| 性色avwww在线观看| 母亲3免费完整高清在线观看 | 国产精品麻豆人妻色哟哟久久| 成人18禁高潮啪啪吃奶动态图| 亚洲人成77777在线视频| 黄色视频在线播放观看不卡| 精品国产乱码久久久久久小说| 亚洲欧美色中文字幕在线| 国产日韩一区二区三区精品不卡| 欧美日韩综合久久久久久| 51国产日韩欧美| 日韩精品有码人妻一区| 精品人妻在线不人妻| 久久国产亚洲av麻豆专区| 国产免费一级a男人的天堂| 丝袜在线中文字幕| 亚洲精品乱久久久久久| 国产成人一区二区在线| 日韩免费高清中文字幕av| 最新的欧美精品一区二区| 久久精品国产a三级三级三级| √禁漫天堂资源中文www| 精品酒店卫生间| 五月天丁香电影| 一区在线观看完整版| 亚洲欧美色中文字幕在线| 免费大片18禁| 亚洲第一区二区三区不卡| 韩国高清视频一区二区三区| 十分钟在线观看高清视频www| 亚洲精品一二三| 国产免费一区二区三区四区乱码| 亚洲一区二区三区欧美精品| 高清在线视频一区二区三区| 中国国产av一级| 中文字幕另类日韩欧美亚洲嫩草| 欧美3d第一页| 亚洲av福利一区| 国产欧美亚洲国产| 欧美精品亚洲一区二区| 亚洲国产av新网站| 亚洲精华国产精华液的使用体验| 美女内射精品一级片tv| 蜜臀久久99精品久久宅男| av在线app专区| 中国国产av一级| av.在线天堂| 蜜桃国产av成人99| 午夜激情久久久久久久| 大香蕉久久网| 亚洲人与动物交配视频| 国产成人91sexporn| 久久亚洲国产成人精品v| 最后的刺客免费高清国语| 1024视频免费在线观看| 日本91视频免费播放| 最近中文字幕高清免费大全6| 久久久久久久久久久久大奶| 国产乱人偷精品视频| 国产综合精华液| 纵有疾风起免费观看全集完整版| 久久人人97超碰香蕉20202| 中文字幕最新亚洲高清| 久久人妻熟女aⅴ| 在线亚洲精品国产二区图片欧美| 精品一区在线观看国产| 免费观看av网站的网址| 欧美成人精品欧美一级黄| 97在线视频观看| 国产av精品麻豆| 国产成人欧美| 多毛熟女@视频| 在线天堂最新版资源| 女的被弄到高潮叫床怎么办| 伦理电影免费视频| 肉色欧美久久久久久久蜜桃| 国产欧美日韩一区二区三区在线| 欧美国产精品一级二级三级| 国产熟女欧美一区二区| 中文字幕制服av| av一本久久久久| 午夜福利在线观看免费完整高清在| 香蕉精品网在线| 国产视频首页在线观看| 寂寞人妻少妇视频99o| 丝瓜视频免费看黄片| 在线观看美女被高潮喷水网站| 男的添女的下面高潮视频| 精品亚洲成a人片在线观看| 亚洲精品久久午夜乱码| 精品人妻偷拍中文字幕| 日本91视频免费播放| 久久国产亚洲av麻豆专区| 日本与韩国留学比较|