• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Substrate-Target Distance and Si Co-Doping on the Properties of Al-Doped ZnO Films Deposited by Magnetron Sputtering

    2014-10-14 03:44:04XUHaoLUFangFUZhengWen
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:磁控濺射遷移率載流子

    XU Hao LU Fang FU Zheng-Wen

    (1Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials,Surface Physics Laboratory&Department of Physics,Fudan University,Shanghai 200433,P.R.China;2Department of Chemistry&Laser Chemistry Institute,Fudan University,Shanghai 200433,P.R.China)

    Effects of Substrate-Target Distance and Si Co-Doping on the Properties of Al-Doped ZnO Films Deposited by Magnetron Sputtering

    XU Hao1,2LU Fang1FU Zheng-Wen2,*

    (1Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials,Surface Physics Laboratory&Department of Physics,Fudan University,Shanghai 200433,P.R.China;2Department of Chemistry&Laser Chemistry Institute,Fudan University,Shanghai 200433,P.R.China)

    Abstract: Transparent conductive Al-doped ZnO(AZO)and Si-codoped AZO(AZO:Si)films were deposited on square quartz substrates by radio frequency(RF)magnetron sputtering.The effect of distance between the substrate and target(Dst)and the effect of co-doping Si on the electrical and optical properties of theAZO films were systematically investigated.The resistivity,carrier concentration,and mobility were found to be strongly dependent on theDstvalues.With a decrease inDst,the carrier concentration and mobility increased significantly,which resulted in improved conductivity.The lowest resistivity of 4.94×10-4Ω·cm was obtained at aDstof 4.5 cm,and this was associated with a carrier concentration of 3.75×1020cm-3and a mobility of 33.7 cm2·V-1·s-1.X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD)spectroscopy,and grain boundary scattering models were used to analyze the relationship between the carrier concentration and the mobility at different deposition(Dst)values.Transmittance spectra showed an average transmittance of>93%in the visible-near infrared range for all the samples and a blue shift of the absorption edge with a decrease inDst.AZO:Si films had high-conductance and high-transmittance optical properties compared with AZO films,and they had better resistivity stability than the AZO films when exposed to a hot and damp atmosphere,which is practically meaningful.

    Key Words:AZO;AZO:Si;Substrate-target distance;Radio frequency magnetron sputtering

    1 Introduction

    Aluminum-doped zinc oxide(AZO)is a promising transparent conductive oxide material for application as transparent electrode in thin film solar cells,flat panel display,and optoelectronic devices.Besides high conductivity and optical transmittance in visible region,AZO film has a lot of advantages,such as non-toxicity,low cost,material abundance,relatively low deposition temperature,and high stability against hydrogen plasma compared to ITO and SnO2films.1For the fabrication of AZO thin films,there are many deposition techniques currently in use,for example,magnetron sputtering,2-5pulsed laser deposition,6,7metal organic chemical vapor deposition,8and sol-gel process.9Among all these methods,conventional RF magnetron sputtering has become widely recognized as a promising versatile technique for the fabrication of metal oxides.Its advantages over other deposition methods are its ability to obtain high quality films even at low substrate temperature with the low cost,high deposition efficiency,and large deposition area.Previous results showed that the electrical and optical properties of AZO films were strongly dependent on the growth parameters,such as work pressure,2,10RF power,5,11impurity percent,2,6substrate temperature,3,10,11and annealing.4,12In fact,the distance between the target and substrate(Dst)is also one of important parameters for depositing high quality films during sputtering process.However,up to now,there were only a few papers concerning on the relationship between the properties of AZO films and Dst.Jeong et al.13suggested that the resistivity of AZO films was related to the Dstand increased rapidly with the increase of Dst,using Al(OH)3doped ZnO targets,they got the lowest resistivity of 9.8×10-2Ω·cm at 4.5 cm.Recently,Yang et al.14reported the lowest resistivity of 4.62×10-4Ω·cm and the highest Hall mobility of 15.6 cm2·V-1·s-1obtained at the Dstof 7 cm.Apparently,the relationship between the electrical properties of AZO films and Dstis complicated and data is still scarce.More work must be done to elucidate the electrical and physical intrinsic of AZO films associated with growth condition of Dst.In addition,it has been expected that the co-doping Si into AZO is effective in improving its chemical stability and resistivity stability,15,16but do not significantly influence the high-conductance and high-transmittance properties ofAZO films.

    Here,AZO and AZO:Si films were deposited by RF magnetron sputtering.The structural,chemical composition,optical transmittance,electrical properties,and resistivity stability of deposited films were examined by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),UV-Vis spectrophotometer,Hall measurements,and hot humidity environment test(air at relative humidity of 90%and temperature of 60°C).Our purpose is to clarify the effect of Dstand Si addition on the properties of Al-doped ZnO films prepared by magnetron sputtering.

    2 Experimental

    The sputtering targetsused in thisexperimentwere home-made with high purity ZnO(99.9%,Alfa Aesar),Al2O3(99.9%,Alfa Aesar),and SiO2(99.9%,Alfa Aesar)powders.Three ceramic targets with different mass fractions of Al2O3(1%,2%,3%)were prepared for the deposition of AZO films.In addition,two mixtures of ZnO,Al2O3,and SiO2powder targets were also prepared for the deposition of AZO:Si films,which contents are(1%Al2O3,1%SiO2)and(2%Al2O3,0.5%SiO2),respectively.All targets have a common diameter of 5 cm.Thin films were all deposited on flat quartz substrates(1 cm×1 cm×1 mm),which had been ultrasonically cleaned in de-ionized water,acetone,alcohol,and de-ionized water,sequentially,and finally dried with argon flow.

    Before deposition,chamber was evacuated to an ultimate background pressure of 10-4Pa using a turbo molecular pump.Then high-purity(99.99%)Ar gas was introduced into the chamber at a fixed flow rate of 28 cm3·min-1,working pressure was maintained on 1.2 Pa.Then 5 min pre-sputtering with the quartz substrate covered by a closely mounted shutter was employed to clean contamination on the target surface,followed by true sputtering.During deposition,RF power is fixed at 100 W,and substrate temperature was maintained at ca 150°C.Dstis varied from 4.5 to 7 cm,so sputtering time was different(from 6 to 15 min)for different Dst(different deposition rates),which makes sure that all films have thickness of 380-400 nm.Atlast,allfilmswereannealedinvacuumat500°Cfor 2h.

    The thicknesses of films were measured by a conventional surface-roughness detector with stylus(Vecoo Dektak 150),and the crystal structure was examined by XRD using a Bruker D8 advance diffractometer equipped with Cu Kαradiation(λ=0.1540562 nm).XPS experiment,which was carried out on a PHI-5000C ESCA system(Perkin Elmer)with Al Kαradiation(hν=1486.6 eV),was utilized to analyze the composition and the chemical states of the AZO films.Electrical properties,such as resistivity,carrier concentration,and mobility,were measured by Hall-measurement system(ECOPIA HMS-5000),4 Au pins were pressed on 4 corners of films after 4 indium points were added to make sure ohmic contact,then constant current of 10 mA and magnetron field of 0.55 T were applied.The optical transmittance of films was measured by ultravioletvisible(UV-Vis)spectrophotometer,and the transmittance wascalibrated against a bare quartz glass as reference sample.Resistivity stability tests were carried out in a hot humidity environment,in which relative humidity of air was 90%and temperature was fixed at 60°C.

    3 Results and discussion

    Fig.1(a)shows typical XRD patterns of AZO(2%Al2O3)films deposited at different Dst.All measurements were taken on the central region of the films.Only strong(002)peak is observed at 2θ ≈34.47°,which indicates a hexagonal wurtzite structure and an oriented film growth with c-axis perpendicular to the substrate surface.As shown in Fig.1(b),the full width at half maximum(FWHM)decreases from 0.323°to 0.264°with the decrease of Dst.The observed increase in the XRD intensity and decrease in FWHM with the decrease of Dstreveals that the crystallinity is improved with decreasing Dst.AZO films of other mass percents(1%Al2O3,3%Al2O3)have also shown similar characteristic.Using FWHM value,the grain size(g)can also be estimated by Scherrer formula17

    where λ=0.1540562 nm,is the wavelength of the X-ray,θ is the Bragg diffraction angle at the peak position,and Δ(2θ)is the FWHM in radian.An estimated grain size in the range of 26-33 nm can be obtained with the corresponding FWHM value in Fig.1(b).

    Fig.2(a)shows the relationship between resistivity and Dstin three different Al contents obtained by Hall measurement.All films were deposited in a small area of 1 cm×1 cm,in order to avoid the spatial resistivity distribution.5It is clear that,film resistivity decreases significantly with the decrease of Dstfrom 1.63×10-3to 4.94×10-4Ω·cm(2%Al2O3).Fig.2(b,c)show the relationship of free electron carrier concentration and mobility versus Dst.Obviously,it is the larger carrier concentration and mobility at closer deposition distance that produced lower resistivity of film observed in Fig.2(a).With 2%as a case,carrier concentration and mobility at Dst=4.5 cm are 3.75×1020cm-3and 33.7 cm2·V-1·s-1respectively,but they drop to 2.35 × 1020cm-3and 16.3 cm2·V-1·s-1in Dst=7 cm.Yang et al.14reported similar results,as the decrease of Dst,the resistivity decreased to the lowest point,while further decrease of Dstgave negative effects on resistivity.In our experiments,the minimum and optimal Dstis 4.5 cm,which is limited by the position of pre-sputtering shutter,maybe further closed Dstwill show the same phenomenon as that of Yang.In addition,the highest concentration in our films is only 3.75×1020cm-3,which is less than ~8×1020cm-3in other literature.2,3,11,12This may be due to part of powder loss in target-made process and improper Al2O3content,the optimal impurity percent may be between 2%and 2.5%.

    According to the data from Fig.1,closer distance means relatively higher energy of the sputtered particles,which lead to an improvement of crystallinity and lattice structure,thus producing higher lattice limited mobility,and closer Dst(smaller FWHM value)yielded larger grain size.According to a classical model suggested by Seto18in ploycrystalline,depending on the charge carrier trap density at the boundary(Qt)and carrier density(N),the trap can be partly or completely filled,leading to variation barrier heights Eb.Electrons can surmount these barriers by thermionic emission.In the case of AZO(L×N>Qt),the grain boundary limited mobility(μs)is given by

    μs=μ0·exp(-Eb/kT)

    whereμ0can be defined as the mobility inside a grain,εε0is the static dielectric constant,eiselementary charge,kis Boltzmann constant,m*is effective mass in ZnO,Tis Kelvin temperature,Nis the carrier density in the bulk of the grain andLis the grain size,which had already been estimated by Scherrer formula using FWHM value.Since AZO films in closerDsthave relatively larger grain size,less scattering frequency and relatively larger grain boundary limited mobility will be obtained.Since lattice structure and grain boundary scattering are two important factors in determining the mobility of AZO films,thus,the AZO films grown at closerDstwill have higher mobility than that gown at longerDst,which is consistent with what we observed in Fig.2.However,Yanget al.14reported that,over higher energy(further closerDst)may cause degradation of crystallinity and lattice structure,which can be supported by their XRD patterns,thus producing lower mobility.This was also not observed in present case because of limited distance between target and pre-sputtering shutter.

    In order to explain the relationship between carrier concentration andDst,XPS spectra were taken to detect the content of O and Al in AZO films.As reported,2,13Al on substitutional site of Zn and O vacancy are two important donors in AZO film.Minamiet al.3,15got a electron concentration of ca 2×1020cm-3with pure ZnO target by magnetron sputtering,implying that deposited ZnO films were degenerated even without Al dopant.Kimet al.2also got concentration of ca 8.7×1019cm-3in deposited ZnO films.Briefly,we can get the conclusion that,O vacancy is also a non-ignorable donor of AZO in generating the free carriers.Figs.3-5 shows our XPS spectra of three AZO films(2%Al2O3)deposited at differentDst.Using Gaussian fitting,the observed O 1speak can be devoluted into two components.The lower binding energy peak(OI)located at(530.20±0.10)eV is attributed to stoichiometric O2-within wurzite structure of ZnO.While the higher binding energy peak(OII)at(531.83±0.10)eV can be assigned to chemisorbed oxygen atgrain boundaries and surface,such as O2.1,14The stoichiometric atomic ratio of O/Zn can be gotten by integrating the peak area divided by their sensitivity factors(O:0.733,Zn:2.768,Al:0.256).Our results show that,the O/Zn ratio in film(2%,Dst=4.5 cm)is 0.87,while the ratios are 0.92 and 1.02 in film(2%,Dst=6 cm)and film(2%,Dst=7 cm),respectively.This indicates that the AZO film grown at closer Dsthas higher oxygen vacancy than that grown at farther Dst.From XPS spectra,it can also be calculated the atomic ratio of Al/Zn is 0.0308 in the film deposited at 4.5 cm,which is almost equal to 0.0311 in the film deposited at 7 cm.Apparently,AZO film grown at shorter Dst(higher growth rate)may have higher oxygen vacancy rather than that grown at longer Dst(lower growth rate),suggesting that free electron carrier concentration in the AZO film of shorter Dstis higher than that grown at longer Dst,which is consistent with the variation of free electron concentration in Fig.2.

    Fig.6 presents all data for different Dstand different Al contents in a plot of the mobility versus carrier concentration.Thick solid line is a semi-empirical model in ZnO single crystal presented by Masetti et al.,19and the thin solid line is grain boundary scattering limited transport model(formula 2)of Seto.18Dash line is the fitting curve for combined single crystal and grain boundary scattering model,1,4yielding the grain boundary trap density Qt=2.09×1013cm-2.This is in good agreement with data reported by other scholars,for example,1.3×1013cm-2by Ellmer et al.1,4and 1.75×1013cm-2by Cornelius et al..20

    Fig.7(a)shows transmittance spectra of AZO films prepared with targets having 2%Al2O3content with different Dst.The average transmittance in the range of visible-near infrared is above 93%for all samples regardless of Dst.As the decrease of Dst,the absorption edge shifts to the shorter wavelength region,and this movement of the absorption edge is known as the Burstein-Moss shift.21,22It is known that AZO films with carrier concentration above 1020cm-3degenerate and Fermi energy level penetrates into the conduction band,thus the optical band gap Egwill increase with the increased carrier concentration.The optical band gap(Eg)and absorption coefficient(α)in direct transition semiconductor are related by following equation2,23

    where h is Planck′s constant,and ν is the frequency of the incident photon,α is the optical absorption coefficient defined by

    where I is the intensity of transmitted light,I0is the intensity of incident light,and t is the thickness of the AZO films.Fig.7(b)is the plot of α2versus hν,the extrapolation line gives Egfor samples prepared at different Dst.The absorption edge moves from 3.52 to 3.55 eV when Dstvaries from 7 to 4.5 cm,which is also consistent with the variation of free electron carrier concentration in Fig.2.

    Based on the optimal conditions for the deposition of AZO films at Dstof 4.5 cm,the same distance between target and the substrate is employed for the preparation of Si-doped ZnO films.It has been reported that Si atom in Si-doped ZnO films can act as effective donors in the same manner as Al15,16.Fig.8 shows electrical properties of AZO:Si films,in which the data from AZO films are used for comparison.It can be seen that the additional 1%SiO2cause the decrease of resistivity from 7.256×10-4to 4.977×10-4Ω·cm,while 0.5%SiO2added into the target of 2.%Al2O3cause the resistivity increasing from 4.938×10-4to 8.333×10-4Ω·cm.The variety of conductivity can be attributable to varieties in both carrier concentration andmobility as also shown in Fig.8,the carrier concentrations of two AZO:Si films are 6.121×1020and 4.813×1020cm-3,respectively,doped SiO2induces significant increase in carrier concentration,which can be attributed to an increase in additional effective donor.However,compared with AZO films,AZO:Si films have much lower mobilities 20.513 and 15.584 cm2·V-1·s-1,doped-Si may cause enhanced impurity scattering,which results in a certain decrease of mobility.

    Fig.9(a)shows transmittance spectra of AZO:Si films.It can be seen that the added Si does not significantly reduce the optical transmittance in region of 190-900 nm.Comparing with AZO films(2%),the absorption edges of AZO:Si films show slight blue-shift to shorter wavelength.As shown in Fig.9(b),this phenomenon can also be explained by the increased carrier concentration in Fig.8 with the theory of Burstein-Moss.21,22

    Fig.10 shows resistivity as a function of exposure time for AZO:Si films and AZO films.Such tests were carried out in high hot humidity environment(air at 90%relative humidity and 60°C).It is clearly that,after 1000 h exposure in atmosphere,the resistivities of all films increase to different extent,but AZO:Si films show better resistivity stability than AZO films.The resistivity of AZO:Si(1%Al2O3,1%SiO2)slightly rises from 4.977×10-4to 7.013×10-4Ω·cm.However the resistivity of AZO(2%Al2O3)films rise from 4.938×10-4to 9.689×10-4Ω·cm.This increase of resistivity,when films are exposed in atmosphere,may mainly be due to the decrease in carrier concentration,which should be attributed to the oxygen chemisorptions and oxidation of oxygen vacancy.Thus,the resistivity stability of AZO films can be improved by co-doping Si impurity,similar studies have also been reported by other scholars,such as co-doping Si by Nomoto et al.16and co-doping V by Minami et al.24The improvement in resistivity stability of AZO:Si films may mainly be related to that of carrier concentration stability.In AZO films,Al and oxygen vacancy can act as donors,but oxygen vacancy is easy to be oxidized,while in AZO:Si films,co-doped Si acting as additional effective donors increases carrier concentration and can not be oxidized.As practical requirement,transparent electrodes used in optoelectronic devices must be a stable enough when exposured in atmosphere.Co-doping silicon may be a feasible and promising method to improve stability of conductivity,and at the same time do not significantly influence the high-conductance electrical and high-transmittance optical properties of AZO films.

    4 Conclusions

    AZO and AZO:Si films were prepared by RF magnetron sputtering with the home-made ZnO targets containing different contents of Al2O3and SiO2powders as doping source.Alltransparent conductive films were grown on 1 cm×1 cm flat quartz substrates in order to avoid the phenomenon of spatial resistivity distribution.Two parameters of substrate-target distance(Dst)and co-doping Si that can influence the property of AZO films were investigated.The structural properties,electrical properties,and optical properties of AZO films are strongly dependent on the deposited distance between substrate and target.As the decrease of Dst,carrier concentration and mobility all show a significant increase,which result an improved conductivity in AZO films.Optical experiment shows average transmittance>93%in visible-near infrared range for all samples and blue shift of absorption edge with the decrease of Dst.In addition,our experiments have demonstrated that AZO:Si films have comparable electrical and optical properties with AZO films,but better resistivity stability than AZO films in hot and damp atmosphere,which is meaningful in practical use.In summary,Dstand co-doping Si are two important but always easily neglected parameters in deposition process,proper Dstand co-doping Si may help us fabricate high-quality AZO films.

    (1) Ellmer,K.Transparent Conductive Zinc Oxide;Springer Press:Heidelberg,2008;pp 35-78.

    (2)Kim,K.H.;Park,K.C.;Ma,D.Y.J.Appl.Phys.1997,81,7764.

    (3) Minami,T.;Sato,H.;Ohashi,K.;Tomofuji,T.;Takata,S.J.Cryst.Growth 1992,117,370.

    (4) Ellmer,K.;Mientus,R.Thin Solid Films 2008,516,4620.

    (5)Song,D.Y.;Widenborg,P.;Chin,W.;Aberle,A.G.Sol.Energy Mater.Sol.Cells 2002,73,1.

    (6)Lorenz,M.;Kaidashev,E.M.;von Wenckstern,H.;Riede,V.;Bundesmann,C.;Spemann,D.;Benndorf,G.;Hochmuth,H.;Rahm,A.;Semmelhack,H.C.;Grundmann,M.Solid-State Electronics 2003,47,2205.

    (7)Singh,A.V.;Mehra,R.M.;Buthrath,N.;Wakahara,A.;Yoshida,A.J.Appl.Phys.2001,90,5661.

    (8) Hu,J.;Gordon,R.G.J.Appl.Phys.1992,71,880.

    (9)Xue,S.W.;Zu,X.T.;Zheng,W.G.;Chen,M.Y.;Xiang,X.Physica B 2006,382,201.

    (10) Lee,J.C.;Kang,K.H.;Kim,S.K.;Yoon,K.H.;Park,I.J.;Song,J.Sol.Energy Mater.Sol.Cells 2000,64,185.

    (11) Kim,Y.H.;Lee,K.S.;Lee,T.S.;Cheong,B.;Seong,T.Y.;Kim,W.M.Appl.Surf.Sci.2009,255,7251.

    (12) Ellmer,K.;Vollweiler,G.Thin Solid Films 2006,496,104.

    (13) Jeong,S.H.;Lee,J.W.;Lee,S.B.;Boo,J.H.Thin Solid Films 2003,435,78.

    (14)Yang,W.F.;Liu,Z.G.;Peng,D.L.;Zhang,F.;Huang,H.L.;Xie,Y.N.;Wu,Z.Y.Appl.Surf.Sci.2009,255,5669.

    (15) Minami,T.;Sato,H.;Nanto,H.;Takata,S.Jpn.J.Appl.Phys.1986,25,L776.

    (16) Nomoto,J.;Miyata,T.;Minami,T.J.Vac.Sci.Technol.A 2009,27,1001.

    (17)Azaroff,L.V.Elements of X-ray Crystallography;McGraw-Hill:New York,1968.

    (18) Seto,J.Y.W.J.Appl.Phys.1975,46,5247.

    (19) Masetti,G.;Severi,M.;Solmi,S.IEEE Trans.Electron Devices 1983,30,764.

    (20) Cornelius,S.;Vinnichenko,M.;Shevchenko,N.;Rogozin,A.;Kolitsch,A.;M?ller,W.Appl.Phys.Lett.2009,94,042103.

    (21) Burstein,E.Phys.Rev.1954,93,775.

    (22) Moss,T.S.Proceedings of the Physical Society of London Section B 1954,67,775.

    (23) Ziegler,E.;Heinrich,A.;Oppermann,H.;St?ver G.Phys.Status Solidi A 1981,66,635.

    (24) Minami,T.;Miyata,T.Thin Solid Films 2008,517,1474.

    磁控濺射中靶-基底距離與Si共摻對ZnO:Al薄膜性質(zhì)的影響

    徐 浩1,2陸 昉1傅正文2,*

    (1上海市分子催化和功能材料重點實驗室,表面物理實驗室和物理系,復(fù)旦大學(xué),上海200433;2化學(xué)系和激光化學(xué)研究所,復(fù)旦大學(xué),上海200433)

    使用射頻磁控濺射,在正方形石英襯底上沉積透明導(dǎo)電摻Al的ZnO(AZO)和Si共摻AZO(AZO:Si)薄膜.系統(tǒng)研究了靶-基底距離(Dst)和Si共摻對AZO薄膜電學(xué)、光學(xué)性質(zhì)的影響.電阻率、載流子濃度和遷移率都強烈地依賴于靶-基底距離,隨著靶-基底距離的減少,載流子濃度和遷移率都有顯著的增加,電導(dǎo)率也隨之提高.在靶-基底距離為4.5 cm處,得到最低電阻率4.94×10-4Ω·cm,此時的載流子濃度和遷移率分別是3.75×1020cm-3和33.7 cm2·V-1·s-1.X射線光電子能譜(XPS)、X射線衍射(XRD)和邊界散射模型被用于分析載流子濃度、遷移率和靶-基底距離的關(guān)系.透射譜顯示,在可見-近紅外范圍內(nèi)所有樣品均有大于93%的平均透射率,同時隨著靶基距離的減少,吸收邊藍移.AZO:Si表現(xiàn)出可與AZO相比擬的高電導(dǎo)和高透射光學(xué)特性,但在熱濕環(huán)境中卻有著更好的電阻穩(wěn)定性,這在實際使用中很有意義.

    AZO;AZO:Si; 靶-基底距離; 射頻磁控濺射

    O649

    Received:December 20,2010;Revised:March 4,2011;Published on Web:March 10,2011.

    *Corresponding author.Email:zhengwen@sh163.net;Tel:+86-21-65642522.

    The project was supported by the Science&Technology Commission of Shanghai Municipality(08DZ2270500,09JC1401300),National Natural Science Foundation of China(20773031),National Key Basic Research Program of China(973)(2007CB209702),and National High-Tech Research and Development Program of China(863)(2007AA03Z322).

    上海科學(xué)技術(shù)委員會(08DZ2270500,09JC1401300),國家自然科學(xué)基金(20773031),國家重點基礎(chǔ)研究發(fā)展規(guī)劃(973)(2007CB209702),國家高技術(shù)研究發(fā)展計劃(863)(2007AA03Z322)資助項目

    猜你喜歡
    磁控濺射遷移率載流子
    Cd0.96Zn0.04Te 光致載流子動力學(xué)特性的太赫茲光譜研究*
    Sb2Se3 薄膜表面和界面超快載流子動力學(xué)的瞬態(tài)反射光譜分析*
    C/C復(fù)合材料表面磁控濺射ZrN薄膜
    復(fù)雜腔體件表面磁控濺射鍍膜關(guān)鍵技術(shù)的研究
    SiC/SiO2界面形貌對SiC MOS器件溝道遷移率的影響
    利用CASTEP計算載流子有效質(zhì)量的可靠性分析
    微波介質(zhì)陶瓷諧振器磁控濺射金屬化
    濾棒吸阻和濾嘴長度對卷煙煙氣中6種元素遷移率的影響
    煙草科技(2015年8期)2015-12-20 08:27:17
    高遷移率族蛋白B1對16HBE細胞血管內(nèi)皮生長因子表達和分泌的影響
    基于六普數(shù)據(jù)的年齡—遷移率模型研究
    法律面前人人平等表现在哪些方面| 久久久久久大精品| 麻豆一二三区av精品| 欧美中文综合在线视频| 亚洲五月天丁香| 99国产综合亚洲精品| 一进一出好大好爽视频| 91精品国产国语对白视频| 欧美中文日本在线观看视频| 高清毛片免费观看视频网站 | 国产一区二区激情短视频| 在线观看一区二区三区| 日韩欧美国产一区二区入口| 久久香蕉精品热| 美女国产高潮福利片在线看| 国产成人av激情在线播放| 在线观看日韩欧美| 日韩大码丰满熟妇| 日韩视频一区二区在线观看| 他把我摸到了高潮在线观看| 免费少妇av软件| 婷婷精品国产亚洲av在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲人成网站在线播放欧美日韩| 精品久久久精品久久久| 99国产精品99久久久久| 人人澡人人妻人| 在线播放国产精品三级| 热99re8久久精品国产| а√天堂www在线а√下载| 久久久久久久午夜电影 | 欧美精品啪啪一区二区三区| 99热只有精品国产| 热re99久久精品国产66热6| 色综合欧美亚洲国产小说| 在线av久久热| 99久久综合精品五月天人人| 色婷婷av一区二区三区视频| 黄频高清免费视频| 精品国产国语对白av| www.精华液| 69精品国产乱码久久久| 久久精品国产亚洲av高清一级| 岛国视频午夜一区免费看| 亚洲国产毛片av蜜桃av| 动漫黄色视频在线观看| 日韩免费高清中文字幕av| 欧美大码av| 国产精品亚洲av一区麻豆| 高清毛片免费观看视频网站 | 亚洲av美国av| 久久国产乱子伦精品免费另类| 精品国产亚洲在线| 好看av亚洲va欧美ⅴa在| 国产在线精品亚洲第一网站| 性欧美人与动物交配| 久99久视频精品免费| 国产黄色免费在线视频| 黄片大片在线免费观看| 十八禁人妻一区二区| 在线观看午夜福利视频| 久久精品91无色码中文字幕| 啪啪无遮挡十八禁网站| 人成视频在线观看免费观看| 久久久久久久精品吃奶| 日韩大码丰满熟妇| 国产成人欧美在线观看| 黄色a级毛片大全视频| 国产成+人综合+亚洲专区| 黄色成人免费大全| 亚洲精品中文字幕在线视频| 天天影视国产精品| 精品人妻在线不人妻| av欧美777| 久久久久亚洲av毛片大全| 成人特级黄色片久久久久久久| 变态另类成人亚洲欧美熟女 | 真人做人爱边吃奶动态| 精品卡一卡二卡四卡免费| 日韩三级视频一区二区三区| 99国产极品粉嫩在线观看| 黄色视频,在线免费观看| 久久人妻福利社区极品人妻图片| 身体一侧抽搐| a级毛片黄视频| 国产熟女xx| 久久国产亚洲av麻豆专区| 精品高清国产在线一区| 亚洲av成人一区二区三| av国产精品久久久久影院| 午夜精品久久久久久毛片777| 国产xxxxx性猛交| 国产一区在线观看成人免费| 不卡一级毛片| a级毛片黄视频| 精品国内亚洲2022精品成人| 亚洲第一欧美日韩一区二区三区| 一进一出抽搐动态| 国产男靠女视频免费网站| 久9热在线精品视频| 久久香蕉国产精品| 露出奶头的视频| 97碰自拍视频| 18禁裸乳无遮挡免费网站照片 | 成人亚洲精品av一区二区 | 日本wwww免费看| 伊人久久大香线蕉亚洲五| 亚洲精品一区av在线观看| 欧美日韩瑟瑟在线播放| 久久久国产成人免费| 18禁美女被吸乳视频| 亚洲成a人片在线一区二区| 国产精品98久久久久久宅男小说| 久久久久久久久中文| 国产伦人伦偷精品视频| av超薄肉色丝袜交足视频| 国产精品成人在线| 亚洲欧美日韩无卡精品| 亚洲熟女毛片儿| 日本黄色视频三级网站网址| 男男h啪啪无遮挡| 50天的宝宝边吃奶边哭怎么回事| e午夜精品久久久久久久| 欧美丝袜亚洲另类 | 九色亚洲精品在线播放| 国产精品久久久人人做人人爽| 国产蜜桃级精品一区二区三区| 91麻豆精品激情在线观看国产 | 亚洲中文日韩欧美视频| 国产成人av激情在线播放| 国产精品成人在线| 亚洲精品成人av观看孕妇| 在线观看免费视频网站a站| 窝窝影院91人妻| 99精国产麻豆久久婷婷| 精品一区二区三区视频在线观看免费 | 夜夜爽天天搞| 在线视频色国产色| 9191精品国产免费久久| 国产一卡二卡三卡精品| 久久人妻av系列| 男女下面插进去视频免费观看| 亚洲一区中文字幕在线| 三级毛片av免费| 一区二区三区激情视频| 91麻豆av在线| 日本免费a在线| 国产不卡一卡二| 熟女少妇亚洲综合色aaa.| 国产成人av教育| 激情在线观看视频在线高清| 嫁个100分男人电影在线观看| 长腿黑丝高跟| 中文亚洲av片在线观看爽| 日韩中文字幕欧美一区二区| 欧美精品啪啪一区二区三区| 亚洲国产精品sss在线观看 | 精品国内亚洲2022精品成人| 免费搜索国产男女视频| а√天堂www在线а√下载| 精品国产美女av久久久久小说| 91成人精品电影| 国产免费男女视频| 精品国产乱码久久久久久男人| 国产一卡二卡三卡精品| 亚洲专区字幕在线| 精品一区二区三卡| 免费看a级黄色片| 日韩国内少妇激情av| 50天的宝宝边吃奶边哭怎么回事| 中文字幕人妻丝袜制服| 国产又色又爽无遮挡免费看| 真人做人爱边吃奶动态| 国产亚洲av高清不卡| 丰满人妻熟妇乱又伦精品不卡| 他把我摸到了高潮在线观看| 欧美日韩一级在线毛片| 日本免费a在线| 身体一侧抽搐| 国产成人精品久久二区二区免费| 中国美女看黄片| 国产不卡一卡二| 久久精品国产综合久久久| 性色av乱码一区二区三区2| 欧美黑人精品巨大| 成人亚洲精品av一区二区 | 在线国产一区二区在线| 亚洲精品中文字幕一二三四区| 巨乳人妻的诱惑在线观看| 精品卡一卡二卡四卡免费| 宅男免费午夜| ponron亚洲| 村上凉子中文字幕在线| 女人被躁到高潮嗷嗷叫费观| av国产精品久久久久影院| 久久人人精品亚洲av| 欧美乱码精品一区二区三区| 91九色精品人成在线观看| 国产亚洲欧美98| 又黄又粗又硬又大视频| 美女扒开内裤让男人捅视频| 国产精品永久免费网站| 母亲3免费完整高清在线观看| 亚洲精品美女久久久久99蜜臀| 欧美另类亚洲清纯唯美| 欧美日韩视频精品一区| 久久精品国产清高在天天线| 国产精品1区2区在线观看.| 无遮挡黄片免费观看| 在线天堂中文资源库| 亚洲色图 男人天堂 中文字幕| 久久国产精品人妻蜜桃| 又紧又爽又黄一区二区| avwww免费| 日本a在线网址| www国产在线视频色| 91在线观看av| 亚洲av成人不卡在线观看播放网| 亚洲精品美女久久av网站| 欧美精品一区二区免费开放| 国产高清国产精品国产三级| 欧美日韩av久久| 男人舔女人下体高潮全视频| 国产成人精品无人区| 少妇的丰满在线观看| 超碰成人久久| 久久人人精品亚洲av| 成在线人永久免费视频| 日本wwww免费看| 亚洲中文日韩欧美视频| 日韩精品青青久久久久久| 亚洲av电影在线进入| 人人妻人人澡人人看| 日日夜夜操网爽| 一区二区三区激情视频| 国产蜜桃级精品一区二区三区| 高清黄色对白视频在线免费看| 婷婷丁香在线五月| 亚洲色图综合在线观看| 国产精品国产高清国产av| 身体一侧抽搐| 一区福利在线观看| 精品久久久久久久毛片微露脸| 色精品久久人妻99蜜桃| av片东京热男人的天堂| 精品一区二区三区av网在线观看| 热99国产精品久久久久久7| 动漫黄色视频在线观看| 午夜福利欧美成人| 欧美日本中文国产一区发布| 一级,二级,三级黄色视频| 久久这里只有精品19| 制服人妻中文乱码| 免费在线观看视频国产中文字幕亚洲| 精品国产亚洲在线| 韩国精品一区二区三区| 免费在线观看完整版高清| 18禁美女被吸乳视频| 免费在线观看黄色视频的| svipshipincom国产片| 色播在线永久视频| 一区二区三区激情视频| 午夜福利欧美成人| 丝袜美腿诱惑在线| 男人的好看免费观看在线视频 | 乱人伦中国视频| 日韩欧美一区视频在线观看| 天天添夜夜摸| 久9热在线精品视频| www.精华液| 亚洲一区二区三区不卡视频| 天堂俺去俺来也www色官网| 精品一区二区三卡| av有码第一页| 亚洲人成电影观看| 99久久综合精品五月天人人| 50天的宝宝边吃奶边哭怎么回事| 精品福利观看| 新久久久久国产一级毛片| 男女床上黄色一级片免费看| 亚洲一区二区三区欧美精品| 亚洲avbb在线观看| 国产免费男女视频| 最好的美女福利视频网| 美女高潮到喷水免费观看| 如日韩欧美国产精品一区二区三区| 多毛熟女@视频| 欧美不卡视频在线免费观看 | 欧美激情 高清一区二区三区| av超薄肉色丝袜交足视频| 一级片'在线观看视频| 国产熟女xx| 日韩欧美国产一区二区入口| 19禁男女啪啪无遮挡网站| 男人的好看免费观看在线视频 | 免费在线观看日本一区| 一二三四在线观看免费中文在| 亚洲国产毛片av蜜桃av| 午夜亚洲福利在线播放| 日本撒尿小便嘘嘘汇集6| 国产99久久九九免费精品| 亚洲成人免费电影在线观看| 国产不卡一卡二| 国产成人精品无人区| 成年女人毛片免费观看观看9| 精品久久久精品久久久| 亚洲少妇的诱惑av| 久久中文字幕一级| 久久草成人影院| 欧美 亚洲 国产 日韩一| 91成人精品电影| 国产精品爽爽va在线观看网站 | 一边摸一边抽搐一进一出视频| 欧美在线黄色| 国产成人精品无人区| 大码成人一级视频| 国产伦一二天堂av在线观看| 久久国产乱子伦精品免费另类| 成人亚洲精品一区在线观看| 极品人妻少妇av视频| 国产成人精品久久二区二区免费| 99久久人妻综合| 一个人免费在线观看的高清视频| 日本一区二区免费在线视频| 国产成人精品久久二区二区免费| 久久久久亚洲av毛片大全| 亚洲人成77777在线视频| 国产成人av教育| 免费一级毛片在线播放高清视频 | 亚洲少妇的诱惑av| 99国产综合亚洲精品| av片东京热男人的天堂| 成人永久免费在线观看视频| 无遮挡黄片免费观看| 18禁美女被吸乳视频| 女人被狂操c到高潮| 激情在线观看视频在线高清| 男女做爰动态图高潮gif福利片 | 亚洲成人国产一区在线观看| 大香蕉久久成人网| 亚洲欧美日韩高清在线视频| 久久久久久免费高清国产稀缺| 日本精品一区二区三区蜜桃| 欧美色视频一区免费| 99精品在免费线老司机午夜| 老熟妇仑乱视频hdxx| 国产成年人精品一区二区 | 一边摸一边抽搐一进一出视频| 久久国产精品男人的天堂亚洲| 亚洲av第一区精品v没综合| 狂野欧美激情性xxxx| 老司机亚洲免费影院| avwww免费| www.www免费av| 久久久久久久久免费视频了| 一进一出抽搐gif免费好疼 | 亚洲成国产人片在线观看| e午夜精品久久久久久久| a级毛片黄视频| 岛国视频午夜一区免费看| 人人妻人人澡人人看| 一边摸一边抽搐一进一出视频| 国产一卡二卡三卡精品| 一进一出抽搐动态| 在线观看免费高清a一片| 日韩欧美国产一区二区入口| 亚洲成av片中文字幕在线观看| 国产精华一区二区三区| 精品高清国产在线一区| 日韩成人在线观看一区二区三区| 久久久久久久久久久久大奶| 天堂影院成人在线观看| 欧美亚洲日本最大视频资源| 淫秽高清视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 每晚都被弄得嗷嗷叫到高潮| 日日干狠狠操夜夜爽| 精品久久久久久久人妻蜜臀av| 亚洲片人在线观看| av女优亚洲男人天堂| 黄色日韩在线| 色综合站精品国产| 亚洲美女搞黄在线观看 | 亚洲人成伊人成综合网2020| 亚洲不卡免费看| 亚洲真实伦在线观看| 成年人黄色毛片网站| 欧美乱色亚洲激情| 少妇的逼好多水| 久久伊人香网站| 在线观看av片永久免费下载| 中国美女看黄片| 老司机深夜福利视频在线观看| 深夜精品福利| 欧美极品一区二区三区四区| 最好的美女福利视频网| 欧美激情在线99| 免费在线观看日本一区| 欧美三级亚洲精品| 午夜福利高清视频| 亚洲欧美日韩卡通动漫| 中文字幕免费在线视频6| av中文乱码字幕在线| 亚洲黑人精品在线| 亚洲av电影不卡..在线观看| 欧美日韩综合久久久久久 | 9191精品国产免费久久| 日本与韩国留学比较| 久久久久九九精品影院| 日本熟妇午夜| 日本三级黄在线观看| 国产男靠女视频免费网站| 国模一区二区三区四区视频| 内射极品少妇av片p| 亚洲 欧美 日韩 在线 免费| 欧美在线一区亚洲| 亚洲人成网站在线播| 国产野战对白在线观看| 免费看美女性在线毛片视频| 在线观看美女被高潮喷水网站 | 成年版毛片免费区| 久久国产乱子免费精品| 可以在线观看的亚洲视频| 国产探花在线观看一区二区| 欧美黑人欧美精品刺激| 欧美丝袜亚洲另类 | 窝窝影院91人妻| 亚洲美女黄片视频| av视频在线观看入口| 国产熟女xx| 少妇丰满av| 精品人妻熟女av久视频| 久久精品国产亚洲av涩爱 | 美女高潮喷水抽搐中文字幕| 日本在线视频免费播放| 国产精品国产高清国产av| 十八禁网站免费在线| 日韩高清综合在线| 成人美女网站在线观看视频| 一进一出好大好爽视频| 性欧美人与动物交配| h日本视频在线播放| 亚洲av电影在线进入| 国产日本99.免费观看| 国产免费一级a男人的天堂| 88av欧美| 国产av一区在线观看免费| 亚洲欧美日韩东京热| av在线天堂中文字幕| 欧美极品一区二区三区四区| 国产精品98久久久久久宅男小说| 一区二区三区四区激情视频 | 高清在线国产一区| 亚洲成人中文字幕在线播放| 麻豆av噜噜一区二区三区| 亚洲精品在线美女| 欧美xxxx黑人xx丫x性爽| 国产精品乱码一区二三区的特点| 波多野结衣高清作品| 久久伊人香网站| 人人妻,人人澡人人爽秒播| 亚洲av成人不卡在线观看播放网| 久久久色成人| 亚洲第一区二区三区不卡| 青草久久国产| 国产精品人妻久久久久久| 真人一进一出gif抽搐免费| 国产大屁股一区二区在线视频| 高潮久久久久久久久久久不卡| av在线天堂中文字幕| 久久性视频一级片| 欧美一区二区国产精品久久精品| a级毛片免费高清观看在线播放| 99国产精品一区二区蜜桃av| 欧美丝袜亚洲另类 | 少妇人妻一区二区三区视频| 亚洲欧美清纯卡通| 观看免费一级毛片| 国产熟女xx| 国产麻豆成人av免费视频| 国产色婷婷99| 国语自产精品视频在线第100页| 最近最新中文字幕大全电影3| 一个人看视频在线观看www免费| 久久人妻av系列| 亚洲无线观看免费| 我要看日韩黄色一级片| 久久久久九九精品影院| 99热这里只有是精品在线观看 | a在线观看视频网站| 99国产精品一区二区三区| 97人妻精品一区二区三区麻豆| 色在线成人网| 午夜福利18| 国产精品野战在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区三区四区免费观看 | 国产精品乱码一区二三区的特点| 国产精品乱码一区二三区的特点| 国产一区二区三区视频了| 亚洲av电影在线进入| 国产精品电影一区二区三区| 中文字幕高清在线视频| 久久久久精品国产欧美久久久| 91麻豆av在线| 欧美最新免费一区二区三区 | 97碰自拍视频| 国产伦人伦偷精品视频| av专区在线播放| 久9热在线精品视频| 夜夜躁狠狠躁天天躁| 51国产日韩欧美| 免费观看精品视频网站| 亚洲真实伦在线观看| 97超视频在线观看视频| 色噜噜av男人的天堂激情| 亚州av有码| 国内揄拍国产精品人妻在线| 久久久精品欧美日韩精品| 精品久久久久久久久久免费视频| 婷婷亚洲欧美| 床上黄色一级片| 精品午夜福利视频在线观看一区| 久久久精品大字幕| 怎么达到女性高潮| 啪啪无遮挡十八禁网站| 麻豆国产av国片精品| 国产淫片久久久久久久久 | 久久精品国产亚洲av天美| 欧美又色又爽又黄视频| 久久99热这里只有精品18| 国内毛片毛片毛片毛片毛片| 国产v大片淫在线免费观看| 亚洲午夜理论影院| 国产精品98久久久久久宅男小说| 男人舔奶头视频| 欧美成人性av电影在线观看| 国产欧美日韩精品一区二区| 一a级毛片在线观看| 五月玫瑰六月丁香| 国内久久婷婷六月综合欲色啪| 国产主播在线观看一区二区| 无遮挡黄片免费观看| 99国产精品一区二区蜜桃av| av在线老鸭窝| 日韩欧美精品v在线| 极品教师在线视频| 波多野结衣巨乳人妻| 国产免费一级a男人的天堂| 国产男靠女视频免费网站| 欧美黑人巨大hd| 波多野结衣巨乳人妻| 久久热精品热| 亚洲五月天丁香| 亚洲人与动物交配视频| 99国产精品一区二区三区| 国产一区二区三区在线臀色熟女| 97超视频在线观看视频| 一级黄片播放器| 3wmmmm亚洲av在线观看| 美女高潮的动态| 国产精品一区二区免费欧美| 全区人妻精品视频| 精品国产亚洲在线| 久久亚洲真实| 搡老熟女国产l中国老女人| 五月玫瑰六月丁香| 夜夜爽天天搞| 国产aⅴ精品一区二区三区波| 国产精品人妻久久久久久| 亚洲成人久久性| 国产一区二区亚洲精品在线观看| 一个人免费在线观看的高清视频| 国产亚洲精品久久久com| 身体一侧抽搐| 美女高潮喷水抽搐中文字幕| 亚洲欧美激情综合另类| 直男gayav资源| 国产午夜精品论理片| 久久亚洲精品不卡| 亚洲av成人av| 亚洲精品乱码久久久v下载方式| 一区二区三区免费毛片| av福利片在线观看| 18禁在线播放成人免费| 免费人成视频x8x8入口观看| 99久久成人亚洲精品观看| 深夜a级毛片| 99久久精品国产亚洲精品| 伦理电影大哥的女人| 国内少妇人妻偷人精品xxx网站| 少妇人妻一区二区三区视频| 日本免费a在线| 成年人黄色毛片网站| 欧美潮喷喷水| 中文字幕av成人在线电影| 久久久久久国产a免费观看| 久久久色成人| 欧美激情国产日韩精品一区| 国产极品精品免费视频能看的| 亚洲自拍偷在线| 男女做爰动态图高潮gif福利片| 给我免费播放毛片高清在线观看| 国产精品一区二区三区四区免费观看 | 日本a在线网址| 深爱激情五月婷婷| а√天堂www在线а√下载| www.999成人在线观看| 午夜精品一区二区三区免费看| 久久久成人免费电影| 麻豆av噜噜一区二区三区| 欧美日韩国产亚洲二区| 亚洲成人精品中文字幕电影| 国产成人av教育| 亚洲电影在线观看av|