• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Jacobi Elliptic Function Method for Solving Zakharov Equation

    2014-07-19 11:47:57WANGQing
    關(guān)鍵詞:步伐農(nóng)機(jī)化起點(diǎn)

    WANG Qing

    (Department of Basic Coures,Liaoning University of International Business and Economics,Dalian 116052,China)

    The Jacobi Elliptic Function Method for Solving Zakharov Equation

    WANG Qing

    (Department of Basic Coures,Liaoning University of International Business and Economics,Dalian 116052,China)

    The Zakharov equation to describe the laser plasma interaction process has very important sense,this paper gives the solitary wave solutions for Zakharov equation by using Jacobi elliptic function method.

    Zakharov equation;Jacobi elliptic function method;solitary wave solution

    §1.Introduction

    Zakharov equation is a kind of important nonlinear evolution equation,it has a very rich physical background and connotation,the research from the son body movement or nonlinear waves of high frequency are involved in how to solve the Zakharov equation[1](numerical solution and exact solution),scholars pay close attention to the problem,gives some solving methods(such as[2-3]),this paper uses the Jacobi elliptic function method for solving Zakharov equation,obtained by this equation are obtained.

    §2.Jacobi Elliptic Function Method

    Jacobi elliptic function method for the main steps are as follows.

    The f i rst step,for a given nonlinear evolution equation(Group)

    As the traveling wave transformation

    where λ is the wave speed.By ordinary dif f erential equation(Group)

    The second step,a step of ordinary dif f erential equation(Group)(2.3)as the solution

    where n is a constant,it can get by balancing the highest derivative and non-linearity[2]and A(ξ),B(ξ)is a double projection Riccati equation with non zero solution,

    Based on the above relationship and[2-3],we give the equation(2.5)~(2.6)follows the formal solution.

    When b2k20=b2l2+δ and br<0,equations(2.5)and(2.6)have the following function solutions

    When b2k20=b2l2?δ and br>0,equations(1.5)and(1.6)have the following trigonometric function solutions

    The third step,the formula(2.4)together with equation(2.5)~(2.6)substituted into equation(2.3)and the search for theAi(ξ)Bj(ξ)(i=0,1,···,n;j=0,1)coefficients,and then make the coefficient is 0,get on a variable p0,pi,qi,λ(i=1,···,n)overdetermined algebraic equations.

    The fourth step,using Wu’s method(see[4])and Maple software for solving overdetermined equations,p0,pi,qi,λ(i=1,···,n),several solutions.

    The f i fth step,the fourth step of each solution together with solutions group(2.7)~(2.9) and(2.10)into(2.4)and(2.2)type has the original equation(2.1)to the exact solution.

    §3.Application of Jacobi Elliptic Function Method for Solving Zakharov Equation

    The specif i c form of Zakharov equation as follows

    Considering v is the electric f i eld intensity variations in the amplitude,we can set it into an envelope wave solutions and the ion number density deviation u for general travelling wave solutions.

    Will(3.2)substituted into equation(3.1)to get

    Will(3.3)the f i rst equation direct integral,integral constant is zero,so

    Thus,for a real-valued function φ on c2g?c2sand u established requirements have the same sign.cg<cs(subsonic),u from a negative number,cg>cs(supersonic),u plus.

    Will(3.4)type of substitution(3.3)of the second equation

    Will(3.2)into(3.5),so

    Let

    Then(3.6)type of

    Will(3.7)type generation(3.8)type,there are

    That is

    let

    By[2],

    Constraint condition

    ψ(ξ)satisf i es the f i rst kind of elliptic equation

    When the A(ξ),B(ξ)constraints

    黨的十九大提出了“實(shí)施鄉(xiāng)村振興戰(zhàn)略”,推進(jìn)鄉(xiāng)村振興,實(shí)現(xiàn)農(nóng)業(yè)現(xiàn)代化,必須加快農(nóng)業(yè)機(jī)械化步伐。站在新的歷史起點(diǎn),農(nóng)業(yè)機(jī)械化引領(lǐng)農(nóng)業(yè)生產(chǎn)方式變革的態(tài)勢(shì)更加趨顯,河南農(nóng)機(jī)化發(fā)展又迎來(lái)了重大歷史機(jī)遇。

    Equations(3.5)and(3.6)have the following elliptic function solutions

    ψ(ξ)satisf i es the elliptic equation

    Will(3.11)type of substitution(3.19)type and the use of(3.5),(3.6)and(3.12),the A(ξ) and B(ξ)of the power coefficient is zero,so

    With Maple software solutions of the above equations,it can be

    Will(3.20)type of substitution(3.12)and(3.14)type,we get Zakharov equation of a solitary wave solution

    On the dif f erent values of r,b,s,l,ψ(ξ)correspond to dif f erent elliptic function.Will (3.11)type of substitution(3.9)type and use(3.5)~(3.6),(3.15),the A(ξ)and B(ξ)of the power coefficient is zero,so

    With Maple software solutions of the above equations,it can be

    In which

    So

    Will(3.25)type of substitution(3.2)and(3.4)type,we get Zakharov equation and a solitary wave solution

    On the dif f erent values of r,b,s,l,ψ(ξ)correspond to dif f erent elliptic function.

    §4.Summary

    We use the Jacobi elliptic function method to solving Zakharov equation into the equation and obtained Zakharov equation new solitary wave solutions of Zakharov equation and gives the solutions to elliptic equations.Other suitable methods still need further discussion.

    [1]LIU Shi-shi,LIU Shi-da.Nonlinear Equations in Physics[M].Beijing:Peking University Press,2000:157-200.

    [2]LI De-sheng,ZHANG Hong-qing.Elliptic function solutions for nonlinear evolution equation have a simple and its applications[J].Acta Physical Sin,2006,55(4):1565-1570.

    [3]ZHANG Shan-qing,LI Zhi-bin.New applications of Jacobi elliptic function expansion method[J].Acta Physical Sin,2003,52(5):1066-1069.

    [4]YONG Xue-lin,ZHANG Hong-qing.Extended projective Riccati equations method and its application[J]. Acta Physical Sin,2005,54(6):2514-2519.

    [5]WU W T.Polynomial Equation-solving and Its Application,Algorithms and Computation[M].Berlin: Springer-Verlage,1994:55-98.

    tion:05A30

    1002–0462(2014)04–0627–06

    date:2013-11-11

    Supported by the GHZD(13010)

    Biography:WANG Qing(1974-),male,native of Liaoning,Dalian,an associate professor of Liaoning University of International Business and Economics,M.S.D.,engages in the numerical approximation.

    CLC number:O155Document code:A

    猜你喜歡
    步伐農(nóng)機(jī)化起點(diǎn)
    成長(zhǎng)的步伐
    《貴州農(nóng)機(jī)化》征稿啟事
    《貴州農(nóng)機(jī)化》征稿啟事
    輕快漫舞
    弄清楚“起點(diǎn)”前面有多少
    《貴州農(nóng)機(jī)化》2018年征稿啟事
    起點(diǎn)
    我的“新”起點(diǎn)
    Ускорение темпов китайско- казахстанского торгово- экономического сотрудничества
    中亞信息(2015年5期)2015-12-07 06:43:28
    新年的起點(diǎn)
    梅河口市| 睢宁县| 武强县| 吴川市| 九江市| 稻城县| 若尔盖县| 开封县| 昭通市| 正阳县| 论坛| 上林县| 灵丘县| 江安县| 抚远县| 扶绥县| 赤水市| 峨眉山市| 山东| 肇州县| 施甸县| 墨玉县| 泸西县| 巩留县| 新兴县| 萍乡市| 故城县| 施秉县| 大关县| 城步| 霞浦县| 顺昌县| 读书| 祁门县| 乌拉特前旗| 雅安市| 宁晋县| 鹤壁市| 沧源| 玉门市| 从江县|