• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On a Discrete Fractional Boundary Value Problem with Nonlocal Fractional Boundary Conditions

    2014-07-19 11:47:56HUANGZhongminXIEZuoshiHOUChengmin

    HUANG Zhong-min,XIE Zuo-shi,HOU Cheng-min

    (1.Department of Mathematics,Yanbian University,Yanji 133002,China;2.The School of Economics and International Trade,Zhejiang University of Finance and Economics,Hangzhou 310018,China)

    On a Discrete Fractional Boundary Value Problem with Nonlocal Fractional Boundary Conditions

    HUANG Zhong-min1,XIE Zuo-shi2,HOU Cheng-min1

    (1.Department of Mathematics,Yanbian University,Yanji 133002,China;2.The School of Economics and International Trade,Zhejiang University of Finance and Economics,Hangzhou 310018,China)

    In this paper,we investigate the nonlinear fractional dif f erence equation with nonlocal fractional boundary conditions.We derive the Green’s function for this problem and show that it satisf i es certain properties.Some existence results are obtained by means of nonlinear alternative of Leray-Schauder type theorem and Krasnosel-skii’s f i xed point theorem.

    discrete fractional calculus;green’s function;nonlocal fractional boundary conditions;existence of solution;f i xed point

    §1.Introduction

    In this paper,we consider a discrete fractional boundary value problem(FBVP)

    subject to the boundary conditions

    where f(t+ν?1,·,·):[ν?1,ν+b]Nν-1×R×R?→[0,+∞)is a continuous function and g∈C([ν?2,ν+b+1]Nν-2,[0,+∞)),ξ∈[0,b]N0,ν∈(1,2],α,a∈[0,1],with ν,α,a∈R,satisfy both ν?α?1≥0 and a(ν+ξ?α)ν?α?1≤(ν?α?1)(ν+b?α)ν?α?2.Fractional calculus is an emerging fi eld recently drawing attention from both theoretical and applied disciplines. During he last two decades it has been successfully applied to problems in computational biology,medical sciences,economics,physics and several fi elds in engineering[1-8].In 1989, a pioneering work has been done by Miller and Ross[9].In particular,Atici and Eloe[10]have already analyzed the conjugate discrete FBVP with delta derivative.Somewhat earlier Atici and Eloe[11]considered a discrete fractional IVP.On the other hand,the present author considered in[12]a discrete fractional right-focal BVP,whereas in[13]he considered continuity properties of discrete fractional IVP.Other recent work has concerned discrete FBVPs with a variety of boundary conditions as well as discrete fractional variational problems and modeling-see[14-20]. A recent paper by C S Goodrich[18]discussed a discrete FBVPs with nonlocal conditions(i.e.,△νy(t)=f(t+ν?1,y(t+ν?1))subject to y(ν?2)=g(y),y(ν+b)=0 with 1<ν≤2).Because these problems have been extensively studied in the classical case,it seems mathematically interesting to investigate these sort of problem in the fractional case.Motivated by the above discussions,the main aim of this paper is to study the existence of solutions for the FBVP (1)~(3).

    The plan of this paper is as follows.In section 2,we recall some useful preliminaries. In section 3,we give the corresponding Green’s function and some properties of the Green’s function.Finally,by the properties of the Green’s function and f i xed point theorem on cones, some sufficient conditions for the existence of at least one positive solutions for the FBVP are established.

    §2.Preliminaries

    We f i rst collect some basic lemmas for manipulating discrete fractional operators.These and other related results can be found in the references[10,14].

    First,for any integer β,we let Nβ={β,β+1,β+2,···}.We def i ne,for any t and α for which the right-hand side is de fi ned.We also appeal to the convention that if t+1?α is a pole of the Gamma function and t+1 is not a pole,then tα=0.

    Def i nition 1.1The αth fractional sum of f for α>0 is def i ned by△?αaf(t)=(s),for t∈Na+α.We also def i ne the αth fractional dif f erence for α>0 by△αf(t):=△MΔα?Mf(t)where t∈Na+αand M∈N is chosen so that 0≤M?1<α≤M.

    Lemma 1Let t and ν be any numbers for which tνand tν?1are de fi ned.Then△tν= νtν?1.Moreover,tνis increasing in t whenever ν∈(0,1)and decreasing whenever ν∈(?1,0).

    Lemma 2Let 0≤M?1<ν≤M.Then△?ν△νy(t)=y(t)+C1tν?1+C2tν?2+···+for some Ci∈R,with 1≤i≤M.

    Lemma 3For β>0 and allμ∈? for which the following is def i ned,we f i nd that

    Lemma 4Let B be a Banach space and let K?B be a cone.Assume that ?1and?2are open sets contained in B such that 0∈?1and ?1??2.Assume,further,that T: K∩(?2?1)?→K is a completely continuous operator.If either

    1.||Ty||≤||y||for y∈K∩??1and||Ty||≥||y||for y∈K∩??2

    or

    2.||Ty||≥||y||fory∈K∩??1and||Ty||≤||y||for y∈K∩??2.

    Then T has at least one fi xed point in K∩(?2?1).

    Lemma 5Let B be a Banach space with C?B closed and convex.Assume that U is a relatively open subset of C with 0∈U and T:U?→C is completely continuous.Then either

    1.T has a fi xed point inU

    or

    2.There exist u∈?U and γ∈(0,1)with u=γTu.

    §3.Derivation of a Green’s Function

    For convenience,we introduce the following notations.

    Theorem 2.1Let h:[ν?1,ν+b]Nν-1?→R and g:Rb+4?→R be given.The unique solution of the FBVP

    andis the Green’s function for the problem.

    ProofUsing Lemma 2,we get that y(t)=?△?νh(t+ν?1)+[ν?2,ν+b+1]Nν-2.By boundary condition(2.2),we have y(ν?2)=C2Γ(ν?1)=g(y),On the other hand,by applying boundary condition(2.3)and△αy(t)=

    Consequently,we can deduce that y(t)has the form

    Theorem 2.2The function ?(t)is given in Theorem 2.1 satisf i es 0<?(t)≤1 when

    ProofFor any t∈[ν?2,ν+b+1]Nν-2,since

    then it follows that

    and

    1.G(t,s)≤G(s+ν?1,s).

    2.There exists positive functions γ(s)and β(s)such that

    and

    Therefore,we have that g2(t,s)is decreasing with respect to t on[s+ν?1,b+ν]Ns+ν-1.Similarly, we can verify that g1(t,s)is also decreasing with respect to t on[s+ν?1,b+ν]Ns+ν-1.

    We can conclude from above that G(t,s)is increasing with respect to t on[ν?1,s+ν?1]Nν-1and G(t,s)is decreasing with respect to t on[s+ν?1,b+ν]Ns+ν-1.Hence G(t,s)≤G(s+ν?1,s). On the other hand,we know that

    where λ(s)=min{g2(t,s),g4(t,s)}.Let

    where

    Hence,(2.5)has been verif i ed.By Lemma 1,we have Then,(2.6)has been verif i ed.

    where G is the Green’s function from Theorem 2.1.This observation is of principal importance in what follows.

    Corollary 2.1Let y be a f i xed point of operator T.If g is nonnegative,then there exist a constant~γ∈(0,1),such that

    ProofObserve Lemma 6,we f i nd that there exist constants γ,β∈(0,1)such that

    and

    From Theorem 2.2,we know that there is a real number 0<γ0<1 such thatmin ?(t)=?(ν+b)=γ0and henc

    Now we denote~γ by

    since

    evidently,~γ∈(0,1),moreover,we can deduce that

    and

    Hence,mint∈[ν+ξ,ν+b]Nν+ξy(t)≥~γ(‖y‖0+‖△y‖0)≥~γ‖y‖.Then the proof is completed.

    §4.Existence of Positive Solutions

    Denote by K the cone on Banach space B,

    where~γ is def i ned by(2.10).

    We will use the known properties of G(t,s)to obtain the necessary estimates of‖Ty‖so that Lemma 4 may be invoked.Moreover,we need not then deduce a separate Green’s function for each possible manifestation of g(y).

    Lemma 7Let T be the operator def i ned as(2.9)and K as(3.1).Assume in addition that both f and g are nonnegative.Then T:K?→K. ProofNote that

    and

    Now,for convenience in what follows,let

    Now,we introduce some conditions that will helpful in the sequel,these conditions place some control on the growth of the nonlinearity f(t,y,△y),as well as the functional g(y)appearing in(1)~(3).

    (H1)There exist a number r>0 such that f(t,y,△y)≤r whenever 0≤y≤r;

    (H2)There exist a number r>0 such that f(t,y,△y)≥λr whenever~γr≤y≤r;

    (G1)There exist a number r>0 such that g(y)≤η?r whenever 0≤‖y‖≤r.

    Theorem 4.1Suppose that there exist two distinct number r1and r2,with r1,r2>0, such that conditions(H1),(H2)and(G1)hold at r1and conditions(H2)hold at r2.Furthermore, assume that each of f and g is nonnegative.Then problem(1)~(3)has a positive solution, whose norm lies between r1and r2.

    ProofLet T be the operator de fi ned as(2.9).Note that T is a summation operator on discrete fi nite set,hence,T is trivially completely continuous and T:K?→K.Without loss of generality,suppose that 0<r1<r2,put ?1={y∈C([ν?2,ν+b+1]Nν-2,R):‖y‖<r1}.

    Then we have that for y∈K∩??,

    and

    Thus‖Ty‖≥max{‖Ty‖0,‖△Ty‖0}≥‖y‖,i.e.,‖Ty‖≥‖y‖for y∈K∩??2.

    Applying by Lemma 4,we can deduce that T has a f i xed point y0∈K,this function y0(t)is a positive solution to problem(1)~(3),and y0satisf i es r1<‖y‖<r2.The proof is completed.

    Theorem 4.2Assume that f:[ν?1,ν+b]Nν-1×R×R?→[0,+∞)satisf i es the follow conditions

    1.f(t,y,△y)is continuous with respect to y and△y on R2.

    2.There exist three real-valued functions n,m,l∈C[ν?1,ν+b]Nν-1such that f(t+ν?1,y(t+ν?1),△y(t+ν?1))≤n(t+ν?1)+m(t+ν?1)y(t+ν?1)+l(t+ν?1)△y(t+ν?1) for all t∈[ν?1,ν+b]Nν-1and y∈R,△y∈R.Ifwhere Z(t+ν?1){|m(t+ν?1)|,|l(t+ν?1)|}.Then the FBVP(1)~(3)has at least one positive solution.

    ProofLet U={y∈K,‖y‖<ε,‖g(y)‖<ω},where

    A be denoted in Theorem 2.And T:1),△y(s+ν?1))+?(t)g(y).Firstly,T is obviously completely continuous.Then assume that there exist y∈K and δ∈(0,1)such that y=δTy,we claim that‖y‖/=ε.In fact,we have that

    and

    Therefore,we get that Applying by Lemma 5 we get that y∈/?U,then T has a fi xed point y∈U.Hence,FBVP (1)~(3)has at least a positive solution.

    We now provide another result that yields the existence of at least one positive solution.In what follows,we shall assume that f(t,y,△y)has the special form f(t,y,△y)≡F1(t)F2(y,△y). To facilitate this result,we introduce the following additional conditions on F2and g.

    Theorem 4.3Suppose that conditions(H3),(H4)and(G2)hold.Moreover,assume that each of F1,F2and g is nonnegative.The problem(1)~(3)has at least one positive solution.

    ProofBy(H3),we know that there is a number α1>0 sufficiently small such that F2(y,△y)≤η′1y and F2(y,△y)≤η′2△y hold for all 0<y≤α1and 0<△y≤α1.

    And where we choose η1and η2sufficiently small so that which η1=max{η′1,η′2}and

    Similarly,condition(G2)implies that we may f i nd a number α2>0 such that

    holds whenever 0<‖y‖≤α2and where η2is chosen so that

    Now,pu∩tα?=min{α1,α2}and set ?3={y∈K,‖y‖<α?},then it follows that for all y∈??3K,inequalities(3.4)~(3.8)implies that

    and

    On the other hand,condition(H4)implies that there exists a number α3>0 such that F2(y,△y)≥‖y‖0,F2(y,△y)≥‖△y‖0hold for all y,△y>α3.Let η3=min{},

    whenever y≥α3.Furthermore,we can choose η3sufficiently large such that

    Observe that by putting

    we f i nd that for‖y‖=α??,

    Now,set ?4={y∈K,‖y‖<α??},recall that 0<?(t)≤1 for each t∈[ν?2∩,ν+b+1]Nν-2, from which follows that ?(t)g(y)≥0,then we can fi nd that for y∈??4K.Inequalities (3.9)~(3.10),(3.12)and equality(3.11)imply that Tyν,s)F1(s+ν?1)≥‖y‖,hence‖Ty‖≥max{‖Ty‖0,‖△Ty‖0}≥‖y‖whenever y∈??4K.

    Consequently,we can deduce that T has a fi xed point in the set K∩??.But this mean43that(1)~(3)has a positive solution.And this completes the proof.

    NoteIn this paper,we have shown by way of an explicit Green’s function that(1)~((3) continuously generalizes the conjugate FBVP considered in[10]and provided some analysis of Green’s function.As an application of our analysis,we also have shown that under standard assumptions on nonlinearity f(y1,y2,y3),problem(1)~(3)may admit a positive solution.The conclusions in this paper generalize and extended certain of the results presented in[10,12,18]. It might be interesting to generalize certain of the results here to delta-nabla problems as well as by allowing f to depend upon one or two of the fractional di ff erence△py,△qy.

    [1]BASSUKAS I D.Comparative Gompertzian analysis of alterations of tumor growth patterns[J].Cancer Res, 1994,54:4385-4392.

    [2]BASSUKAS I D,MAURER Schultze B.The recursion formula of the Gompertz function:A simple method for the estimation and comparison of tumor growth curves[J].Growth Dev Aging,1988,52:113-122.

    [3]COUSSOT C,KALYANAM S,YAPP R,et al.Fractional derivative models for ultrasonic characterization of polymer and breast tissue viscoelasticity[J].IEEE Trans Ultrason Ferroeletrc Freq Control Apr,2009, 56(4):715-726.

    [4]JUMARIE G.Stock exchange fractional dynamics def i ned as fractional exponential growth driven by(usual) Gaussian white noise:Application to frac-tional Black-Scholes equations[J].Insurance Math Econom,2008, 42:271-287.

    [5]MAGIN R L.Fractional calculus in bioengineering[J].Crit Rev Biomed Eng,2004,32(1):1-104.

    [6]MARONSKI R.Optimal strategy in chemotheraphy for a Gompertzian model of cancer growth[J].Acta Bioeng Biomech,2008,10(2):81-84.

    [7]NORTON L A.Gompertzian model of human breast cancer growth[J].Cancer Res,1988,48:7067-7071.

    [8]SABATIER J,AGRAWAL O P,TENREIRO Machado J A.Advances in Fractional Calculus:Theoretical Developments and Applications in Physics and Engineering[M].Springer:Springer-Verlag New York Inc, 2007:7.

    [9]MILLER K S,ROSS B.Fractional Dif f erence Calculus,Proceedings of the International Symposium on Univalent Functions,Fractional Calculus and Their Applications[D].Koriyama,Japan:Nihon University, 1988:139-152.

    [10]ATICI F M,ELOE P W.Two-point boundary value problems for f i nite fractional dif f erence equations[J].J Dif f erence Equ Appl,2011,17(4):445-456.

    [11]ATICI F M,ELOE P W.Initial value problems in discrete fractional calculus[J].Proc Amer Math Soc, 2009,137(3):981-989.

    [12]COODRICH C S.Solutions to a discrete right-focal fractional boundary value problem[J].Int J Dif f erence Equ,2010,5(2):195-216.

    [13]GOODRICH C S.Continuity of solutions to discrete fractional initial value problems[J].Comput Math Appl,2010,59(11):3489-3499.

    [14]FERHAN M,ATICI,SEVGI Seng¨ul.Modeling with fractional dif f erence equations[J].J Math Anal Appl, 2010,369(1):1-9.

    [15]BASTOS N R O,RUI A C Ferreira,DELFIM F M Torres.Necessary optimality conditions for fractional dif f erence problems of the calculus of variations[J].Discrete Contin Dyn Syst,2011,29(2):417-437.

    [16]GOODRICH C S.On a discrete fractional three-point boundary value problem[J].J Dif f erence Equ Appl, 2012,18(3):397-415.

    [17]GOODRICH C S.Some new existence results for fractional dif f erence equations[J].Int J Dyn Syst Dif f er Equ,2011,3(1):145-162.

    [18]GOODRICH C S.Existence and uniqueness of solutions to a fractional dif f erence equation with nonlocal conditions[J].Comput Math Appl,2011,61(2):191-202.

    [19]GOODRICH C S.Existence of a positive solution to a system of discrete fractional boundary value problems[J].Appl Math Comput,2011,217(9):4740-4753.

    [20]GOODRICH C S.On positive solutions to nonlocal fractional and integer-order dif f erence equations[J].Appl Anal Discrete Math,2011,5(1):122-132.

    [21]ATICI F M,ELOE P W.A transform method in discrete fractional calculus[J].Int J Dif f erence Equ,2007, 2(2):165-176.

    tion:39A12,44A25,26A33

    1002–0462(2014)04–0539–14

    date:2013–02–19

    Supported by the National Natural Science Foundation of China(11161049)

    Biography:HOU Cheng-min(1963-),female,native of Yanji,Jilin,a professor of Yanbian University,M.S.D., engages in discrete dynamical system.

    CLC number:O175.8Document code:A

    精品国产一区二区久久| 99国产极品粉嫩在线观看| 国产精品免费一区二区三区在线 | 丁香六月欧美| 老熟妇仑乱视频hdxx| 国产av一区二区精品久久| 黄频高清免费视频| 久久久国产成人精品二区 | 日韩免费av在线播放| a级片在线免费高清观看视频| 人成视频在线观看免费观看| 午夜成年电影在线免费观看| 老熟妇乱子伦视频在线观看| 国产不卡一卡二| 国产不卡一卡二| 久久精品人人爽人人爽视色| 一级,二级,三级黄色视频| 欧美日韩一级在线毛片| 午夜日韩欧美国产| 丝瓜视频免费看黄片| 亚洲精品国产精品久久久不卡| 久久性视频一级片| xxxhd国产人妻xxx| 丝瓜视频免费看黄片| 久久香蕉国产精品| 国产精品美女特级片免费视频播放器 | 欧美激情高清一区二区三区| 国产精品亚洲av一区麻豆| 精品高清国产在线一区| 国产日韩欧美亚洲二区| 99精国产麻豆久久婷婷| 可以免费在线观看a视频的电影网站| av在线播放免费不卡| 国产野战对白在线观看| 丁香六月欧美| 超碰成人久久| 亚洲精品中文字幕在线视频| 婷婷精品国产亚洲av在线 | 成人黄色视频免费在线看| 国产单亲对白刺激| 黄片播放在线免费| 欧美国产精品va在线观看不卡| 国产亚洲精品久久久久久毛片 | 成人黄色视频免费在线看| 欧美日韩一级在线毛片| 在线观看免费午夜福利视频| 高清av免费在线| 色尼玛亚洲综合影院| 黑人猛操日本美女一级片| 人人妻人人添人人爽欧美一区卜| 免费在线观看日本一区| 日韩免费高清中文字幕av| 免费在线观看视频国产中文字幕亚洲| av电影中文网址| a级毛片黄视频| 亚洲精品一卡2卡三卡4卡5卡| 麻豆成人av在线观看| 老汉色∧v一级毛片| 亚洲专区中文字幕在线| 国产精品久久久av美女十八| 高清视频免费观看一区二区| 男女之事视频高清在线观看| 中文欧美无线码| 大片电影免费在线观看免费| 亚洲精品一二三| 久久国产精品影院| 国产99白浆流出| 亚洲欧美激情在线| 久久久久久久国产电影| 极品少妇高潮喷水抽搐| 一a级毛片在线观看| 中文字幕人妻丝袜一区二区| 高清黄色对白视频在线免费看| 久久精品亚洲av国产电影网| 亚洲第一欧美日韩一区二区三区| 久久久国产成人精品二区 | tocl精华| 免费久久久久久久精品成人欧美视频| 精品少妇久久久久久888优播| 亚洲专区字幕在线| www.自偷自拍.com| 欧美+亚洲+日韩+国产| 一区二区日韩欧美中文字幕| 亚洲国产精品一区二区三区在线| 久久精品亚洲av国产电影网| 国产成人啪精品午夜网站| 美女福利国产在线| 欧美日韩国产mv在线观看视频| 久久香蕉精品热| 涩涩av久久男人的天堂| 国产不卡av网站在线观看| 成在线人永久免费视频| 欧美色视频一区免费| 91麻豆av在线| 91精品国产国语对白视频| 国产成+人综合+亚洲专区| 女人被躁到高潮嗷嗷叫费观| 日韩欧美三级三区| 国产成人精品在线电影| 中文欧美无线码| 欧美国产精品一级二级三级| 国产精品一区二区免费欧美| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看影片大全网站| 国产主播在线观看一区二区| av有码第一页| 国产成人av教育| 成人影院久久| 成人永久免费在线观看视频| 亚洲熟女毛片儿| 午夜福利视频在线观看免费| 99热只有精品国产| 国产精品.久久久| 最近最新中文字幕大全免费视频| 国产欧美日韩一区二区精品| av网站在线播放免费| 高潮久久久久久久久久久不卡| 欧美国产精品va在线观看不卡| 999精品在线视频| 精品一区二区三卡| 亚洲久久久国产精品| 亚洲av熟女| 亚洲成a人片在线一区二区| 免费观看精品视频网站| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩黄片免| 亚洲精品久久成人aⅴ小说| 国产成人精品久久二区二区91| 极品人妻少妇av视频| 50天的宝宝边吃奶边哭怎么回事| 成人精品一区二区免费| 麻豆成人av在线观看| 免费在线观看影片大全网站| 一区二区日韩欧美中文字幕| 国内毛片毛片毛片毛片毛片| 国产精品偷伦视频观看了| 成人黄色视频免费在线看| 国产成人免费观看mmmm| www.精华液| 9191精品国产免费久久| 久久久精品区二区三区| 999久久久国产精品视频| 在线观看免费视频网站a站| 99re6热这里在线精品视频| 满18在线观看网站| 亚洲色图 男人天堂 中文字幕| 久久久久国产一级毛片高清牌| 在线观看舔阴道视频| 激情视频va一区二区三区| 黄色视频不卡| 大片电影免费在线观看免费| 日韩免费av在线播放| 少妇裸体淫交视频免费看高清 | 精品久久久久久久久久免费视频 | 精品一区二区三卡| 日韩有码中文字幕| 97人妻天天添夜夜摸| www.999成人在线观看| 精品久久久久久电影网| 97人妻天天添夜夜摸| 国产一区二区三区综合在线观看| 大片电影免费在线观看免费| 日韩制服丝袜自拍偷拍| 日韩大码丰满熟妇| 精品久久久精品久久久| 一二三四社区在线视频社区8| 亚洲欧美激情综合另类| 一区二区三区激情视频| 在线看a的网站| 91大片在线观看| av线在线观看网站| 男人的好看免费观看在线视频 | videos熟女内射| 亚洲国产欧美一区二区综合| 欧美最黄视频在线播放免费 | 亚洲av美国av| 精品无人区乱码1区二区| 手机成人av网站| 日本精品一区二区三区蜜桃| videosex国产| 国产精品久久电影中文字幕 | 啪啪无遮挡十八禁网站| 精品卡一卡二卡四卡免费| 亚洲精品久久成人aⅴ小说| 69精品国产乱码久久久| 久热爱精品视频在线9| 欧美激情极品国产一区二区三区| 人妻久久中文字幕网| 999精品在线视频| 狠狠婷婷综合久久久久久88av| av天堂久久9| 乱人伦中国视频| a级毛片在线看网站| 国产激情欧美一区二区| 国产精品国产av在线观看| bbb黄色大片| 亚洲色图av天堂| 捣出白浆h1v1| 国内久久婷婷六月综合欲色啪| 12—13女人毛片做爰片一| 精品免费久久久久久久清纯 | 精品国产乱码久久久久久男人| 搡老乐熟女国产| 99久久人妻综合| 亚洲一区二区三区欧美精品| 老司机深夜福利视频在线观看| 深夜精品福利| 久久草成人影院| 身体一侧抽搐| 视频在线观看一区二区三区| 搡老熟女国产l中国老女人| 国产91精品成人一区二区三区| 日韩一卡2卡3卡4卡2021年| 亚洲五月色婷婷综合| 国产免费现黄频在线看| 两个人看的免费小视频| av欧美777| 黄色片一级片一级黄色片| 曰老女人黄片| 少妇裸体淫交视频免费看高清 | av不卡在线播放| 99精品欧美一区二区三区四区| 免费不卡黄色视频| 悠悠久久av| 免费人成视频x8x8入口观看| 国产亚洲精品一区二区www | 激情在线观看视频在线高清 | 一边摸一边抽搐一进一出视频| 久久久久精品人妻al黑| 国产人伦9x9x在线观看| 国产一区有黄有色的免费视频| 午夜精品在线福利| 亚洲精品一卡2卡三卡4卡5卡| 人人妻人人澡人人爽人人夜夜| svipshipincom国产片| 亚洲精品在线观看二区| 欧美日韩福利视频一区二区| 一级a爱视频在线免费观看| 国产成人精品在线电影| 免费在线观看日本一区| 精品乱码久久久久久99久播| 人妻久久中文字幕网| 91字幕亚洲| 18在线观看网站| 欧美人与性动交α欧美软件| 国产一区二区三区综合在线观看| 久久国产精品人妻蜜桃| 黄色女人牲交| 99久久综合精品五月天人人| 十八禁高潮呻吟视频| 黄片大片在线免费观看| 国产精品1区2区在线观看. | 一级毛片高清免费大全| 美女高潮喷水抽搐中文字幕| 午夜成年电影在线免费观看| 精品国产一区二区三区四区第35| 十分钟在线观看高清视频www| 动漫黄色视频在线观看| 一边摸一边抽搐一进一小说 | 99riav亚洲国产免费| 女人爽到高潮嗷嗷叫在线视频| 亚洲av美国av| 国产精品一区二区在线不卡| 美女午夜性视频免费| 国产精品美女特级片免费视频播放器 | av网站在线播放免费| 大型黄色视频在线免费观看| 国产熟女午夜一区二区三区| 一级黄色大片毛片| 亚洲av欧美aⅴ国产| 在线观看舔阴道视频| 天堂√8在线中文| 高清在线国产一区| 一区二区日韩欧美中文字幕| 熟女少妇亚洲综合色aaa.| 99国产极品粉嫩在线观看| 亚洲熟女精品中文字幕| 国产亚洲精品久久久久久毛片 | 999久久久精品免费观看国产| 人成视频在线观看免费观看| 色婷婷久久久亚洲欧美| 狠狠婷婷综合久久久久久88av| 免费一级毛片在线播放高清视频 | 久久狼人影院| 少妇的丰满在线观看| 久久人人97超碰香蕉20202| 国产精品成人在线| 麻豆乱淫一区二区| 中国美女看黄片| 欧美 亚洲 国产 日韩一| 国产一区二区激情短视频| 9色porny在线观看| 亚洲成人国产一区在线观看| 免费av中文字幕在线| 在线观看一区二区三区激情| 国产区一区二久久| 新久久久久国产一级毛片| 久久香蕉激情| 少妇粗大呻吟视频| av福利片在线| ponron亚洲| 男人的好看免费观看在线视频 | 久久中文看片网| 日韩欧美在线二视频 | xxx96com| 宅男免费午夜| 丰满迷人的少妇在线观看| 日韩精品免费视频一区二区三区| 91麻豆av在线| 日韩 欧美 亚洲 中文字幕| 国产区一区二久久| 无遮挡黄片免费观看| 国产麻豆69| 一进一出抽搐gif免费好疼 | 精品高清国产在线一区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品粉嫩美女一区| 国精品久久久久久国模美| 欧美黄色片欧美黄色片| 国产人伦9x9x在线观看| 亚洲成人国产一区在线观看| 国产日韩一区二区三区精品不卡| 欧美激情 高清一区二区三区| √禁漫天堂资源中文www| 欧美精品高潮呻吟av久久| 久久这里只有精品19| 老熟妇仑乱视频hdxx| 如日韩欧美国产精品一区二区三区| 亚洲精品成人av观看孕妇| 母亲3免费完整高清在线观看| 在线十欧美十亚洲十日本专区| 成在线人永久免费视频| 91九色精品人成在线观看| 成人亚洲精品一区在线观看| 99国产精品99久久久久| 19禁男女啪啪无遮挡网站| 50天的宝宝边吃奶边哭怎么回事| 久久久久精品人妻al黑| 啦啦啦在线免费观看视频4| 国产精品久久久人人做人人爽| 亚洲avbb在线观看| 国产主播在线观看一区二区| 丰满人妻熟妇乱又伦精品不卡| 久久精品熟女亚洲av麻豆精品| 首页视频小说图片口味搜索| 午夜免费成人在线视频| 久久久久久亚洲精品国产蜜桃av| av天堂在线播放| 午夜精品久久久久久毛片777| 亚洲精品中文字幕在线视频| 99香蕉大伊视频| 不卡一级毛片| 一区在线观看完整版| 妹子高潮喷水视频| 69精品国产乱码久久久| www.自偷自拍.com| e午夜精品久久久久久久| 99国产极品粉嫩在线观看| 一区在线观看完整版| 婷婷成人精品国产| 久久香蕉激情| 韩国精品一区二区三区| 久久久久久亚洲精品国产蜜桃av| 一级a爱片免费观看的视频| 少妇的丰满在线观看| 精品亚洲成a人片在线观看| av片东京热男人的天堂| 亚洲第一av免费看| 午夜成年电影在线免费观看| 久久精品国产清高在天天线| 国产成人av激情在线播放| 中文字幕人妻丝袜一区二区| 中文字幕av电影在线播放| 黄色视频不卡| 99久久99久久久精品蜜桃| 91成年电影在线观看| 在线国产一区二区在线| 极品教师在线免费播放| 国产精品乱码一区二三区的特点 | 成在线人永久免费视频| 免费在线观看视频国产中文字幕亚洲| 欧美在线一区亚洲| 女同久久另类99精品国产91| 久久午夜亚洲精品久久| 女人被躁到高潮嗷嗷叫费观| x7x7x7水蜜桃| 天天影视国产精品| svipshipincom国产片| 热99久久久久精品小说推荐| 黄色a级毛片大全视频| 亚洲精品美女久久久久99蜜臀| 亚洲欧美日韩高清在线视频| 色94色欧美一区二区| 一级毛片精品| 久久精品人人爽人人爽视色| 亚洲专区字幕在线| 母亲3免费完整高清在线观看| 亚洲欧美精品综合一区二区三区| 久久精品亚洲av国产电影网| 日韩免费av在线播放| 国产精品秋霞免费鲁丝片| 精品人妻1区二区| 色婷婷av一区二区三区视频| 美女午夜性视频免费| 国产成人啪精品午夜网站| 他把我摸到了高潮在线观看| 国产在线精品亚洲第一网站| 国产午夜精品久久久久久| 成人精品一区二区免费| 黄频高清免费视频| 亚洲专区国产一区二区| 国产av又大| ponron亚洲| 日本撒尿小便嘘嘘汇集6| 亚洲国产毛片av蜜桃av| 美女扒开内裤让男人捅视频| 亚洲视频免费观看视频| 我的亚洲天堂| 90打野战视频偷拍视频| 国产免费男女视频| 中国美女看黄片| 妹子高潮喷水视频| 精品无人区乱码1区二区| tube8黄色片| 国产精品久久电影中文字幕 | 亚洲精品国产一区二区精华液| 国产免费av片在线观看野外av| 国产精品一区二区在线不卡| 亚洲精品国产精品久久久不卡| 亚洲av片天天在线观看| 久久久久久久国产电影| 999久久久精品免费观看国产| 中文字幕人妻丝袜制服| 国产成人精品久久二区二区免费| 欧美日本中文国产一区发布| 中文字幕高清在线视频| 狠狠狠狠99中文字幕| 一级a爱视频在线免费观看| 两性夫妻黄色片| 自线自在国产av| 亚洲成国产人片在线观看| 久久亚洲精品不卡| 精品少妇久久久久久888优播| 露出奶头的视频| 国产精品乱码一区二三区的特点 | 高清视频免费观看一区二区| 精品卡一卡二卡四卡免费| 日本a在线网址| 国产精品1区2区在线观看. | 中文亚洲av片在线观看爽 | 精品国产一区二区三区四区第35| 国产日韩一区二区三区精品不卡| 国产免费现黄频在线看| 一边摸一边抽搐一进一出视频| 欧美亚洲 丝袜 人妻 在线| 美女视频免费永久观看网站| 最新在线观看一区二区三区| 日韩欧美一区二区三区在线观看 | 宅男免费午夜| 色综合婷婷激情| 精品免费久久久久久久清纯 | 久久久精品国产亚洲av高清涩受| 久久国产精品男人的天堂亚洲| 国产片内射在线| 亚洲精品美女久久久久99蜜臀| netflix在线观看网站| 人成视频在线观看免费观看| 美女视频免费永久观看网站| 亚洲一区高清亚洲精品| 91麻豆精品激情在线观看国产 | 亚洲av成人不卡在线观看播放网| 婷婷丁香在线五月| 人妻一区二区av| 亚洲午夜理论影院| 电影成人av| 悠悠久久av| 亚洲一区高清亚洲精品| 18禁国产床啪视频网站| 一级毛片高清免费大全| 交换朋友夫妻互换小说| 12—13女人毛片做爰片一| 最新在线观看一区二区三区| 久久精品国产清高在天天线| 丝袜美足系列| 免费人成视频x8x8入口观看| 午夜视频精品福利| 人妻久久中文字幕网| 人人妻人人爽人人添夜夜欢视频| 女人爽到高潮嗷嗷叫在线视频| 最近最新免费中文字幕在线| 亚洲 国产 在线| 成熟少妇高潮喷水视频| 国产一区二区三区综合在线观看| 99国产精品一区二区三区| 黄片大片在线免费观看| 国产日韩欧美亚洲二区| 国产高清videossex| 欧美激情极品国产一区二区三区| 久久久久国产精品人妻aⅴ院 | 波多野结衣av一区二区av| 欧美精品av麻豆av| 国产男女超爽视频在线观看| 一级黄色大片毛片| 精品无人区乱码1区二区| 国产高清激情床上av| 日日爽夜夜爽网站| 交换朋友夫妻互换小说| 纯流量卡能插随身wifi吗| 色综合欧美亚洲国产小说| 亚洲熟妇中文字幕五十中出 | 美女午夜性视频免费| 黄色a级毛片大全视频| 久久人妻福利社区极品人妻图片| 精品少妇一区二区三区视频日本电影| 亚洲人成伊人成综合网2020| 两个人免费观看高清视频| 91精品国产国语对白视频| 精品福利永久在线观看| 久久久久久久国产电影| 午夜成年电影在线免费观看| 视频区欧美日本亚洲| 97人妻天天添夜夜摸| 国产极品粉嫩免费观看在线| 日韩欧美一区视频在线观看| 一区二区三区国产精品乱码| 一级,二级,三级黄色视频| 日韩制服丝袜自拍偷拍| 久久久久精品国产欧美久久久| 91成年电影在线观看| 一级a爱视频在线免费观看| 热99re8久久精品国产| 80岁老熟妇乱子伦牲交| 亚洲av片天天在线观看| 18在线观看网站| 极品少妇高潮喷水抽搐| xxx96com| 51午夜福利影视在线观看| 久久婷婷成人综合色麻豆| 91麻豆av在线| 香蕉国产在线看| 午夜福利视频在线观看免费| 人人澡人人妻人| 51午夜福利影视在线观看| 麻豆成人av在线观看| av片东京热男人的天堂| 亚洲男人天堂网一区| 久久精品亚洲精品国产色婷小说| 成年人黄色毛片网站| 免费少妇av软件| 国产99久久九九免费精品| 交换朋友夫妻互换小说| 丝瓜视频免费看黄片| 国产人伦9x9x在线观看| 精品国产乱码久久久久久男人| 妹子高潮喷水视频| 成熟少妇高潮喷水视频| 成人免费观看视频高清| 亚洲五月色婷婷综合| e午夜精品久久久久久久| 亚洲av美国av| www日本在线高清视频| 在线观看免费午夜福利视频| 国产蜜桃级精品一区二区三区 | 久久精品91无色码中文字幕| 乱人伦中国视频| 欧美久久黑人一区二区| 国产成人精品在线电影| 建设人人有责人人尽责人人享有的| 久久久国产成人精品二区 | 黄色片一级片一级黄色片| 国产精品国产av在线观看| 国产亚洲精品一区二区www | 亚洲国产精品sss在线观看 | 老司机深夜福利视频在线观看| 一区在线观看完整版| 久久精品aⅴ一区二区三区四区| 精品高清国产在线一区| 桃红色精品国产亚洲av| 亚洲国产毛片av蜜桃av| 丁香六月欧美| 99riav亚洲国产免费| 国产成人系列免费观看| av国产精品久久久久影院| 色精品久久人妻99蜜桃| videos熟女内射| 免费在线观看日本一区| 国产精品久久视频播放| 日韩成人在线观看一区二区三区| 亚洲色图综合在线观看| 久久精品91无色码中文字幕| 免费黄频网站在线观看国产| 窝窝影院91人妻| 亚洲精华国产精华精| 免费黄频网站在线观看国产| 日日爽夜夜爽网站| 麻豆av在线久日| 国产在线观看jvid| 一级毛片高清免费大全| 久久性视频一级片| 亚洲精品久久成人aⅴ小说| 亚洲av成人一区二区三| 制服诱惑二区| 80岁老熟妇乱子伦牲交| 国产免费男女视频| bbb黄色大片| 亚洲男人天堂网一区| 欧美日韩av久久| 十分钟在线观看高清视频www| 啦啦啦 在线观看视频| 黄色成人免费大全| 狂野欧美激情性xxxx| 90打野战视频偷拍视频| 国产精品久久久久久精品古装| 免费av中文字幕在线| 精品免费久久久久久久清纯 |