• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Cycle Structure of Iteration Graphs over the Unit Group

    2014-07-19 11:47:56JUTengxiaWUMeiyun

    JU Teng-xia,WU Mei-yun

    (Faculty of Science,Nantong University,Nantong 226007,China)

    On the Cycle Structure of Iteration Graphs over the Unit Group

    JU Teng-xia,WU Mei-yun

    (Faculty of Science,Nantong University,Nantong 226007,China)

    In this paper,we consider the properties of iteration graphs over the unit group Z?nof the residue ring Znassociated with the maps x→xpand compute the average values of tails and cycles of those iteration graphs.

    iteration digraph;tail;tree;cycle

    §1.Introduction

    A digraph is a f i nite set of vertices together with directed edges.The iteration digraph of a map f:S→S on a f i nite set S is a directed graph,whose vertices are elements of S and whose directed edges connect each x∈S with its image f(x)∈S.We denote such digraph by Gf.The iteration graphs of the function f(x)=xkon the residue ring S=Znprovided an interesting connection between number theory,graph theory and group theory and have been extensively discussed(see[1-5]).These digraphs ref l ect properties of Znand f.

    Denote f0(x)=x and fi(x)=f(fi?1(x))for i≥1.Since S is f i nite,for each x∈S there exists a least positive integer s=s(x)such that fs(x)∈{f0(x),f1(x),···,fs?1(x)}.Let t=t(x)be the least non-negative integer such that fs(x)=ft(x).Setting c=c(x)=s(x)?t(x), we have ft(x)=ft+c(x).We call the list of elements x,f(x),f2(x),···,ft?1(x)the tail and ft(x),···,ft+c?1(x)the cycle.See Figure 1.

    Figure 1The Tail and Cycle of an Iteration

    Many natural questions are as follows:what are the average values of t(x)and c(x)over all elements x∈S?How many distinct cycles are there?What is their average size?What is the average tail length?

    This paper extends some results given in[6]which computed the average values of t(x)and c(x)for the iteration digraph over the f i nite f i eld Zpassociated with maps f:x→x2and f:x→x2?2.We will compute the average values of tails and cycles of iteration graphs over the unit group Z?nof the residue ring Znassociated with the maps x→xp.

    §2.The Iteration g:x→xp(mod n)

    If H is a multiplicative group and x∈H,then ordHx means the least positive integer i such that xi=1.In the case that H=Z?n={1≤x≤n|(x,n)=1},the unit group of the residue ring Zn(the multiplicative group of invertible elements modulo n),we write ordnx.It is clear that Z?nis a group of order φ(n),where φ(n)is the Euler function.If p is a prime,and n is an integer,then by νp(n)we mean the exponent of the largest power of p which divides n.We def i ne νp(0)=+∞.One identity we will make use of frequently is Σd|nφ(d)=n.

    A complete α-ary tree of height h,denoted Th,is a directed graph with αinodes at depth i,for 0≤i≤h,with the property that every non-leaf node has exactly α children.The graph Thcontainsnodes in total.

    If G=(V,E)is a directed graph,then by GRwe mean the graph(V,ER),where ER:= {(x,y):(y,x)∈E}.We call GRthe reversed graph as in[6].

    Theorem 2.1Let n≥3 be an integer and let S=Z?nand g:x→xp,where x∈S and p is an odd prime number.Suppose ordnx=pel,where e,l are non-negative integers with (p,l)=1.If t(x)is the length of the tail for the element x,and c(x)is the length of the cycle for x,as def i ned above,then t(x)=e=νp(ordnx)and c(x)=ordlp.

    ProofIf gt(x)=gt+c(x),then we have xpt≡xpt+c(mod n).Hence for(x,n)=1 we have xpt(pc?1)≡1(mod n).We have pel|pt(pc?1),since ordnx=pel.By the def i nition of c and t,it follows that t=e=νp(ordnx),and that c is the least positive integer such that pc≡1(mod l),which means that c=ordlp.

    We now recall the def i nition and some properties of the Carmichael λ-function λ(n)which was f i rst def i ned in[4].Let n be a positive integer.The Carmichael λ-function λ(n)is def i ned as follows:λ(1)=1=φ(1),λ(2)=1=φ(2),λ(4)=2=φ(4),λ(2k)=2k?2k≥3,λ(pk)=(p?1)pk?1=φ(pk)for any odd prime p and k≥1,

    where p1,p2,···,psare distinct primes for ki≥1,i∈{1,···,s}and[a,b]denotes the least common multiple of numbers a and b.By this def i nition,λ(n)|φ(n).Let t=ordng denote the multiplicative order of g modulo n(that means t is the least natural number such that gt≡1(mod n)).

    Lemma 2.2(Carmichael’s Theorem,See[7]and[8])Let a,n∈N.Then aλ(n)≡1(mod n)if and only if gcd(a,n)=1.Moreover,there exists an integer g such that ordng= λ(n).

    Lemma 2.3(See Proposition 4.1.3 of[9])n possesses primitive roots if and only if n is of the form 2,4,pmor 2pm,where p is an odd prime and m is a positive integer.

    We note that if n is of the form 2,4,pmor 2pm,where p is an odd prime and m is a positive integer,then λ(n)=φ(n),which means that if there exists a primitive root mod n, then λ(n)=φ(n).Next,we characterize the tails of elements in terms of primitive roots,as follows:

    Theorem 2.4Let n≥3 be an integer such that there exists a primitive root modulo n, and let γ be a primitive root modulo n.Then

    (a){a∈Z?n:t(a)=0}={γi:0≤i<λ(n)and νp(i)≥νp(λ(n))};

    (b)For 1≤m≤νp(λ(n)),we have{a∈Z?n:t(a)=m}={γi:0≤i<λ(n)and νp(i)= νp(λ(n))?m}.

    ProofSuppose a=γiand λ(n)=pτ·ω,where(p,ω)=1.

    (a)We note that t(a)=0 means that the element a is in some cycle,i.e.,there exists l>0 such that gl(a)=a and a≡apl(mod n).Then,t(a)=0 if and only if there exists l>0 such that a≡apl(mod n).Note that in the case that there exists a primitive root mod n,λ(n)=φ(n). Then,a≡apl(mod n)if fapl?1≡1(mod n),if fγi(pl?1)≡1(mod n),if fλ(n)|i(pl?1),if f pτ|i and ω|i(pl?1)(since λ(n)=pτ·ω,(p,ω)=1,and(p,pl?1)=1),if fνp(i)≥τ and ω|i(pl?1).Thus t(a)=0 if fνp(i)≥νp(λ(n))and there exists l≥1 such that ω|i(pl?1).There always exists an l≥1 satisfying ω|pl?1,since(p,ω)=1.We may take l=ordωp,the result follows.

    (b)Note that t(a)=m,1≤m≤νp(λ(n)),if fthere exists l>0 such that apm≡apm+l(mod n)and apm-1≡apm+l-1(mod n),if fγipm(pl?1)≡1(mod n)and γipm-1(pl?1)/≡1(mod n),if fλ(n)|ipm(pl?1)and λ(n)? ipm?1(pl?1),if fω|i(pl?1)and pτ|ipm,but pτ? ipm?1.We have t(a)=m if fνp(λ(n))=νp(ipm)=νp(i)+m,if fνp(i)=νp(λ(n))?m.

    Corollary 2.5Let n≥3 be an integer such that there exists a primitive root mod n and λ(n)=pτ·ω,where(p,ω)=1.For each positive divisor d of ω,Gx→xpcontains φ(d)/orddp cycles of length orddp and there are ω elements in all these cycles.Moreover

    (1)If τ=0,then all elements are in cycles;

    (2)If τ≥1,then of feach element in cycles there hang reversed complete p-ary trees of height τ?1 containing pτ?1 elements.

    ProofBy Theorem 2.4,the elements x in the cycles are precisely of the form γi,where0≤i<λ(n),νp(i)≥νp(λ(n))=τ and γ is a primitive root mod n.Set i=j·pτ,then 0≤j<ω,since 0≤i<λ(n)=ω·pτ.Hence there are ω elements in all cycles,which form a cyclic group of order ω with a generator γpτ.Hence for each divisor d of ω,there are φ(d) elements of order d,which are of the form γjpτω/d,where 0≤j<d and(j,d)=1.

    The length of the cycle for γjpτω/dis the least c such thatdj(pc?1)is an integer.Since (j,d)=1,c is the least positive number such that d|(pc?1),which means that c=orddp.It follows that there are φ(d)/orddp cycles corresponding to these elements.

    Finally,suppose x≡γi(mod n)is an element with tail size t where,1≤t<τ and the corresponding element y with tail size t+1 such that yp≡x(mod n).By the proof of Proposition 4.2.1 of[9],we know that if xm≡a(mod n)is solvable,there are exactly(m,φ(n))solutions. Then,there exist exactly α=(p,φ(n))distinct y.It is well-known that if there exists a primitive root mod n,then λ(n)=φ(n).Therefore,α=(p,φ(n))=(p,λ(n))=p or 1,since p is prime.

    If τ=0,then ω=λ(n)and α=1,which means that all elements of Z?nare in cycles.

    If τ≥1,then α=p.Since p?1+p(p?1)+···+pτ?1(p?1)=pτ?1,every p-nodes tree of height τ?1 contains pτ?1 elements.

    Example 2.1Table 1 and Figure 2 illustrate Theorem 2.1 and Corollary 2.5 respectively in the case where n=13,p=3.When n=13,p=3,by computation,we have t(1)=t(12)= t(5)=t(8)=0,which means the numbers 1,12,5,8 are in cycles,since the length of their tail is 0.On the other side,the distance of numbers 3,9,4,10,2,6,7,11 from the cycle to which they are connected is 1.By computation of the value of c(x),it follows that the length of each cycle,which is connected to the numbers 1,12,3,9,4,10 respectively,is 1.But the length of each cycle,which is connected to the numbers 5,8,2,6,7,11 respectively,is 2. And of feach element in cycles there hang reversed 3-ary trees containing 2 elements(except the element in cycle).

    Table 1The Structure of Gx→xpfor n=13,p=3.

    >Figure2 The Topology of Gx→xpfor n=13,p=3.Figure 3 The Topology of Gx→xpfor n=27,p=3.

    Example 2.2Table 2 and Figure 3 illustrate Theorem 2.1 and Corollary 2.5 in the case where n=27,p=3.When n=27,p=3,by computation,we have t(1)=t(26)=0,whichmeans the numbers 1,26 are in cycles,since the length of their tail is 0.On the other side, the distance of numbers 10,19,8,17 from the cycle to which they are connected is 1.While, the distance of numbers 4,7,13,16,22,25,2,5,11,14,20,23 from the cycle to which they are connected is 2.By the value of c(x),it follows that the length of each cycle,which is connected to each number respectively,is 1.And of feach element in cycles there hang reversed 3-ary trees containing 8 elements(except the element in cycle).

    Table 2 The Structure of Gx→xpfor n=27,p=3.

    >Figure2 The Topology of Gx→xpfor n=13,p=3.Figure 3 The Topology of Gx→xpfor n=27,p=3.

    There are two special cases where we can give more details about the structure and properties of Gx→xp.The f i rst is when n=22m+1,a Fermat prime.

    Remark 2.6Suppose n=22m+1 is a Fermat prime.If p is an odd prime,then (p,λ(n))=1.For any d|λ(n),it follows that(d,p)=1,which means that t=vp(d)=0,hence there only exist cycles in the digraph Gx→xpfor any Fermat prime n and odd prime p.

    Example 2.3Table 3 and Figure 4 illustrate this construction when p=3,n=17.

    Table 3The Structure of Gx→xpfor n=17,p=3.

    Figure 4 The Topology of Gx→xpfor n=17=222+1,p=3.

    The second case where we can give a more complete description is when n is a prime of the form n=pq?(p?1),where p and q are prime numbers.In this case,we call n a prime of p-type.

    Theorem 2.7When n=pq?(p?1),a prime of p-type,the digraph Gx→xpconsists of cycles whose length divides q?1.Of feach element in these cycles there hang p?1 elements with tail length 1.

    ProofSince(p,pq?1?1)=1 and n is an odd prime,it follows that λ(n)=n?1= p(pq?1?1)=pτ·ω,where τ=1 and ω=pq?1?1.Suppose d is any positive divisor of λ(n),then d must be of the form d=pf·j,where f∈{0,1},and j|pq?1?1.We have ordjp|q?1.Therefore,by Theorem 2.1,the cycle length for any element is given by ordjp for some j|pq?1?1,i.e,the cycle length for every element is a divisor of q?1.It follows that of f each element in these cycles there hang p?1 elements with tail length 1 by(2)of Corollary 2.5,since τ=1.

    Figure 5 illustrates Theorem 2.7 in the case,where q=2,p=3,n=7.

    Figure 5 The Topology of Gx→xpfor n=7=32?2,p=3.

    We now compute the average value of the tail and cycle lengths for a given number n. Denote tn(x)for the length of the tail in the orbit of x under this iteration,and cn(x)for the length of the cycle in the orbit of x.

    Def i nition 2.1With respect to the iteration x→xp(mod n),we def i ne

    ?TC(n,p):=total number of cycles;

    ?T0(n,p):=total number of elements in all cycles,i.e.,the number of a∈Z?nwith t(a)=0;

    ?AC(n,p):=average length of a cycle;

    ?C(n,p):=average value of cn(a)over all a∈Z?n;

    ?T(n,p):=average value of tn(a)over all a∈Z?n.

    Theorem 2.8Let λ(n)=pτ·ω,where(p,ω)=1.With respect to the iteration x→xp(mod n),we have

    ProofParts(a)~(d)follow directly from Corollary 2.5.From Corollary 2.5,we know that for each positive divisor d of ω,Gx→xpcontains φ(d)/orddp cycles of length orddp,and that there exist ω elements in all these cycles and of feach element in these cycles there hang reversed complete α-ary trees of height τ?1 containing ατ?1 elements,where α=(p,λ(n)). Thus we can obtain

    As for part(e),we have

    Example 2.4We consider the digraph Gx→x3for n=27.It is clear that λ(27)=18=

    32×2,τ=2,ω=2,α=3.By computation,we have

    From Figure 3,we see that TC(27,3)=2,T0(27,3)=2,AC(27,3)=1,C(27,3)=1 and T(27,3)=14/9.

    Similarly,we can compute out that C(7,3)=1,C(11,3)=,and C(13,3)=respectively, with respect to(λ,ω,τ,p)=(6,2,1,3),(10,10,0,3)and(12,4,1,3)respectively.

    AcknowledgementThe authors are grateful to the referees for their careful reading of the original version of this paper,their detailed comments and suggestions that much improved the quality of this paper.

    [1]SKOWRONEK-KAZIOW J.Some digraphs arising from number theory and remarks on the zero-divisor graph of the ring Zn[J].Information Processing Letters,2008,108:165-169.

    [2]WILSON B.Power digraph modulo n[J].Fibonacci Q,1998,36:229-239.

    [3]SOMER L,KRIZEK M.On a connection of number theory with graph theory[J].Czechoslovak Math J, 2004,54:465-485.

    [4]SOMER L,KRIZEK M.Stucture of digraphs associated with quadratic congruences with composite moduli[J].Discrete Math,2006,306:2174-2185.

    [5]SOMER L,KRIZEK M.The structure of digraphs associated with the congruences xk≡y(mod n)[J]. Czechoslovak Math J,2011,61:337-375.

    [6]VASIGA T,SHALLIT J.On the iteration of certain quadratic maps over GF(p)[J].Discrete Math,2004, 277:219-240.

    [7]CARMICHAEL R D.Note on a new number theory function[J].Bull Amer Math Soc,1910,16:232-238.

    [8]KRIZEK M,LUCA F,SOMER L.17 Lectures on the Fermat Numbers:From Number Theory to Geometry[M].New York:Springer-Verlag,2001.

    [9]IRELAND K,ROSEN M.A Classical Introduction to Modern Number Theory[M].New York:Springer-Verlag,1990.

    tion:11A07,05C20

    1002–0462(2014)04–0565–08

    date:2013-03-03

    Supported by the National Natural Science Foundation of China(11271208)

    Biographies:JU Teng-xia(1972-),female,native of Yangzhou,Jiangsu,an associate professor of Nantong University,Ph.D.,engages in ring;WU Mei-yun(1971-),female,native of Nantong,Jiangsu,an associate professor of Nantong University,M.S.D.,engages in ring.

    CLC number:O153.3Document code:A

    国产精品一二三区在线看| 精品熟女少妇av免费看| av在线蜜桃| 免费观看a级毛片全部| 亚洲精品日韩av片在线观看| 国产亚洲最大av| 十八禁网站网址无遮挡 | 国产精品国产三级国产专区5o| 在线 av 中文字幕| 六月丁香七月| 舔av片在线| 18禁裸乳无遮挡动漫免费视频| 色吧在线观看| 亚洲欧洲国产日韩| 男女下面进入的视频免费午夜| 日日啪夜夜撸| 精品国产乱码久久久久久小说| 日韩中文字幕视频在线看片 | 1000部很黄的大片| 日韩欧美 国产精品| 一个人看的www免费观看视频| 亚洲精品日韩av片在线观看| 午夜免费鲁丝| 欧美日韩国产mv在线观看视频 | 免费少妇av软件| 精品99又大又爽又粗少妇毛片| 青春草国产在线视频| 性色av一级| 蜜桃久久精品国产亚洲av| 又黄又爽又刺激的免费视频.| tube8黄色片| 少妇的逼水好多| 中文天堂在线官网| 男女国产视频网站| 国产精品国产三级国产专区5o| 日韩欧美一区视频在线观看 | 亚洲自偷自拍三级| 能在线免费看毛片的网站| 免费黄网站久久成人精品| 日本黄色日本黄色录像| 国产精品成人在线| 欧美zozozo另类| 国产一级毛片在线| 亚洲欧美日韩东京热| 亚洲欧美精品专区久久| 久久久久久久精品精品| 嘟嘟电影网在线观看| 亚洲精华国产精华液的使用体验| 成人亚洲精品一区在线观看 | 美女国产视频在线观看| 高清日韩中文字幕在线| 久久99热这里只有精品18| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲欧美精品永久| 国产精品嫩草影院av在线观看| 丝袜喷水一区| 人妻夜夜爽99麻豆av| 一本—道久久a久久精品蜜桃钙片| 成人无遮挡网站| av线在线观看网站| 人人妻人人爽人人添夜夜欢视频 | 丰满人妻一区二区三区视频av| 日日撸夜夜添| 免费久久久久久久精品成人欧美视频 | 免费观看性生交大片5| 人人妻人人看人人澡| 久久久久久久久久久丰满| 久久久久久久国产电影| tube8黄色片| 国产在线男女| 波野结衣二区三区在线| 亚洲av成人精品一二三区| 欧美zozozo另类| 久久久久久人妻| 亚洲经典国产精华液单| 日日撸夜夜添| 51国产日韩欧美| 80岁老熟妇乱子伦牲交| av免费观看日本| 久久6这里有精品| 欧美 日韩 精品 国产| 久久av网站| 欧美亚洲 丝袜 人妻 在线| 18禁在线播放成人免费| 久久精品国产a三级三级三级| 国产高清不卡午夜福利| 国产成人精品婷婷| 日本黄色片子视频| 夫妻性生交免费视频一级片| 久久久久视频综合| 亚洲国产色片| 国产av一区二区精品久久 | 国产亚洲午夜精品一区二区久久| 久久精品久久久久久久性| 久久久久久久久久成人| 高清日韩中文字幕在线| 最近2019中文字幕mv第一页| 色5月婷婷丁香| 免费观看a级毛片全部| 毛片一级片免费看久久久久| 又爽又黄a免费视频| 国产精品久久久久久久电影| 久久ye,这里只有精品| 日本黄色片子视频| 人体艺术视频欧美日本| 国产高清国产精品国产三级 | 亚洲av成人精品一二三区| 插阴视频在线观看视频| 国产精品人妻久久久久久| 日本与韩国留学比较| 日韩成人av中文字幕在线观看| 中文字幕亚洲精品专区| 身体一侧抽搐| 日韩成人av中文字幕在线观看| 国产爽快片一区二区三区| 十八禁网站网址无遮挡 | 亚洲中文av在线| 国产精品一区www在线观看| 国产 精品1| 久久久久网色| 久久久久久久久久久丰满| .国产精品久久| 草草在线视频免费看| 国精品久久久久久国模美| 国产精品久久久久久精品电影小说 | 国产精品一二三区在线看| 免费看日本二区| 在线亚洲精品国产二区图片欧美 | 干丝袜人妻中文字幕| 看免费成人av毛片| 国产男女内射视频| 亚洲av不卡在线观看| 久久女婷五月综合色啪小说| 国产亚洲午夜精品一区二区久久| 国产爽快片一区二区三区| 在线天堂最新版资源| 免费久久久久久久精品成人欧美视频 | 少妇的逼水好多| 亚洲精品日韩av片在线观看| 18禁在线无遮挡免费观看视频| 免费少妇av软件| 亚洲av中文av极速乱| av在线播放精品| 直男gayav资源| 男女免费视频国产| av国产精品久久久久影院| 新久久久久国产一级毛片| 边亲边吃奶的免费视频| 国产av国产精品国产| 中文字幕人妻熟人妻熟丝袜美| 大话2 男鬼变身卡| 免费观看无遮挡的男女| 免费人成在线观看视频色| 免费高清在线观看视频在线观看| 能在线免费看毛片的网站| 精品一品国产午夜福利视频| 26uuu在线亚洲综合色| 夜夜骑夜夜射夜夜干| 在线观看免费视频网站a站| 只有这里有精品99| 夜夜骑夜夜射夜夜干| 另类亚洲欧美激情| 久久99热这里只有精品18| 国产片特级美女逼逼视频| 日韩在线高清观看一区二区三区| 亚洲av.av天堂| 简卡轻食公司| 欧美最新免费一区二区三区| 搡老乐熟女国产| 国产v大片淫在线免费观看| 大陆偷拍与自拍| 欧美另类一区| 内地一区二区视频在线| 中文天堂在线官网| 亚洲av福利一区| 国产精品国产三级国产专区5o| 国产精品.久久久| 中文精品一卡2卡3卡4更新| 日韩一区二区三区影片| 高清午夜精品一区二区三区| 日韩成人av中文字幕在线观看| 亚洲av不卡在线观看| 极品少妇高潮喷水抽搐| 亚洲av电影在线观看一区二区三区| 午夜福利视频精品| 国语对白做爰xxxⅹ性视频网站| 亚洲国产色片| 如何舔出高潮| 精品一品国产午夜福利视频| 人妻夜夜爽99麻豆av| 18禁裸乳无遮挡动漫免费视频| 亚洲成色77777| 新久久久久国产一级毛片| 精品一区二区三卡| 国产精品人妻久久久久久| 黑丝袜美女国产一区| 亚洲电影在线观看av| 久久99精品国语久久久| 亚洲综合色惰| 在线观看免费高清a一片| 三级国产精品片| 久久久久久久久久人人人人人人| 亚洲国产欧美人成| 一个人免费看片子| 久久精品国产自在天天线| 国产片特级美女逼逼视频| 久久鲁丝午夜福利片| 日韩中文字幕视频在线看片 | 亚洲精品自拍成人| 毛片女人毛片| 女性生殖器流出的白浆| 国产综合精华液| av在线老鸭窝| 一区二区av电影网| 亚洲av综合色区一区| 免费观看av网站的网址| 国产精品久久久久久av不卡| 91狼人影院| 日韩中文字幕视频在线看片 | 日韩中文字幕视频在线看片 | 亚洲自偷自拍三级| 99久久人妻综合| 男的添女的下面高潮视频| 午夜福利视频精品| 一个人看视频在线观看www免费| 爱豆传媒免费全集在线观看| 晚上一个人看的免费电影| 国产女主播在线喷水免费视频网站| 欧美zozozo另类| 久久久精品免费免费高清| 成人国产麻豆网| 97精品久久久久久久久久精品| 国产精品.久久久| 国产亚洲最大av| 精品人妻一区二区三区麻豆| 婷婷色综合大香蕉| 日韩一区二区三区影片| 在线观看av片永久免费下载| 春色校园在线视频观看| 久久女婷五月综合色啪小说| 久久青草综合色| 成年女人在线观看亚洲视频| 久久精品国产自在天天线| 欧美xxxx性猛交bbbb| 99视频精品全部免费 在线| 视频中文字幕在线观看| 午夜视频国产福利| 久久人人爽人人爽人人片va| 最近最新中文字幕大全电影3| 亚洲天堂av无毛| 国产人妻一区二区三区在| 亚洲成色77777| 亚洲国产精品一区三区| a级一级毛片免费在线观看| 色婷婷av一区二区三区视频| 亚洲国产成人一精品久久久| 91aial.com中文字幕在线观看| 成年人午夜在线观看视频| h日本视频在线播放| 我要看日韩黄色一级片| 人妻 亚洲 视频| 亚洲伊人久久精品综合| 久热久热在线精品观看| 亚洲av国产av综合av卡| 简卡轻食公司| 永久免费av网站大全| 高清不卡的av网站| 国产在线视频一区二区| 少妇 在线观看| 高清视频免费观看一区二区| 一级毛片电影观看| 国产高清三级在线| 99久久精品热视频| 蜜桃久久精品国产亚洲av| 日本与韩国留学比较| 亚洲国产色片| av在线蜜桃| 国模一区二区三区四区视频| 久久鲁丝午夜福利片| 搡老乐熟女国产| 联通29元200g的流量卡| av又黄又爽大尺度在线免费看| 九九爱精品视频在线观看| 在线观看免费日韩欧美大片 | 王馨瑶露胸无遮挡在线观看| 九草在线视频观看| 欧美日韩视频高清一区二区三区二| 亚洲精品日本国产第一区| 久久亚洲国产成人精品v| 大码成人一级视频| 中文在线观看免费www的网站| 3wmmmm亚洲av在线观看| 欧美成人精品欧美一级黄| 国产乱人视频| 亚洲国产精品成人久久小说| 两个人的视频大全免费| 中文乱码字字幕精品一区二区三区| 看十八女毛片水多多多| av专区在线播放| 一本—道久久a久久精品蜜桃钙片| 国产精品一二三区在线看| 国产爱豆传媒在线观看| 国产人妻一区二区三区在| 肉色欧美久久久久久久蜜桃| 王馨瑶露胸无遮挡在线观看| 精品酒店卫生间| 一级毛片久久久久久久久女| 亚洲欧美成人精品一区二区| 狂野欧美激情性xxxx在线观看| 欧美一级a爱片免费观看看| 日本vs欧美在线观看视频 | 亚洲无线观看免费| 亚洲国产精品一区三区| 亚洲无线观看免费| 超碰av人人做人人爽久久| 国产在线男女| 麻豆国产97在线/欧美| 亚洲精品中文字幕在线视频 | 日韩电影二区| 亚洲精品亚洲一区二区| 美女xxoo啪啪120秒动态图| 亚洲国产成人一精品久久久| 黄色配什么色好看| 26uuu在线亚洲综合色| 午夜老司机福利剧场| 观看免费一级毛片| 亚洲一区二区三区欧美精品| 深爱激情五月婷婷| 午夜精品国产一区二区电影| av天堂中文字幕网| 亚洲自偷自拍三级| 国产黄色视频一区二区在线观看| 尾随美女入室| 搡女人真爽免费视频火全软件| 一区二区av电影网| 久久精品人妻少妇| 日韩三级伦理在线观看| 在线 av 中文字幕| 国产欧美日韩精品一区二区| 午夜日本视频在线| 王馨瑶露胸无遮挡在线观看| av国产免费在线观看| 亚洲国产精品一区三区| 大香蕉97超碰在线| 亚洲图色成人| 九九在线视频观看精品| 少妇被粗大猛烈的视频| 美女内射精品一级片tv| 国产在线男女| 国内揄拍国产精品人妻在线| 毛片女人毛片| 黄色欧美视频在线观看| 久久久久久久久久人人人人人人| 99久久精品热视频| 亚洲欧美清纯卡通| 国产在线男女| 汤姆久久久久久久影院中文字幕| 亚洲欧美日韩卡通动漫| 亚洲国产精品国产精品| 高清黄色对白视频在线免费看 | 国产成人免费观看mmmm| 中文乱码字字幕精品一区二区三区| 亚洲无线观看免费| 免费人妻精品一区二区三区视频| 亚洲色图综合在线观看| 亚洲第一av免费看| 观看av在线不卡| 国产精品久久久久久精品电影小说 | 美女主播在线视频| 免费黄网站久久成人精品| 又大又黄又爽视频免费| 亚洲av在线观看美女高潮| 搡女人真爽免费视频火全软件| 欧美高清性xxxxhd video| 草草在线视频免费看| 国产在线一区二区三区精| 亚洲国产av新网站| 少妇精品久久久久久久| 中文精品一卡2卡3卡4更新| 精品一区二区三卡| 91久久精品国产一区二区三区| 80岁老熟妇乱子伦牲交| 欧美性感艳星| 国产成人精品福利久久| 亚洲婷婷狠狠爱综合网| 亚洲国产高清在线一区二区三| 久久国内精品自在自线图片| 午夜福利网站1000一区二区三区| 国产精品一区www在线观看| 日韩人妻高清精品专区| 美女高潮的动态| 亚洲天堂av无毛| 久久久久久久大尺度免费视频| 婷婷色综合大香蕉| 精品亚洲乱码少妇综合久久| 国产精品一及| 久久精品熟女亚洲av麻豆精品| 精品久久久久久久久av| 91狼人影院| av国产精品久久久久影院| 国产精品.久久久| 王馨瑶露胸无遮挡在线观看| 亚洲欧美一区二区三区黑人 | 国产午夜精品一二区理论片| 亚洲国产精品一区三区| 黄色一级大片看看| 最近手机中文字幕大全| 亚洲av欧美aⅴ国产| 99热6这里只有精品| 国产精品国产三级专区第一集| 久久精品久久久久久久性| 精品久久久精品久久久| 国产探花极品一区二区| 啦啦啦视频在线资源免费观看| 国产黄片美女视频| 卡戴珊不雅视频在线播放| 亚洲av二区三区四区| 国产在视频线精品| 久久久久久九九精品二区国产| 狂野欧美白嫩少妇大欣赏| 国产亚洲5aaaaa淫片| 免费看日本二区| 精品国产三级普通话版| 国产一区有黄有色的免费视频| 自拍欧美九色日韩亚洲蝌蚪91 | 久久精品人妻少妇| 国产一级毛片在线| 99热网站在线观看| 日韩电影二区| 精品一区在线观看国产| 亚洲性久久影院| 欧美一区二区亚洲| 九草在线视频观看| 我要看黄色一级片免费的| 熟女电影av网| 女性被躁到高潮视频| 三级国产精品欧美在线观看| 国产视频内射| 草草在线视频免费看| 亚洲人成网站高清观看| 噜噜噜噜噜久久久久久91| 国产伦理片在线播放av一区| 美女福利国产在线 | 卡戴珊不雅视频在线播放| 国产av码专区亚洲av| 男人爽女人下面视频在线观看| 国产乱人视频| 欧美日韩亚洲高清精品| 18禁裸乳无遮挡动漫免费视频| 精品一品国产午夜福利视频| 人人妻人人添人人爽欧美一区卜 | 久久久久久久精品精品| 人体艺术视频欧美日本| 狂野欧美激情性bbbbbb| 最黄视频免费看| 国产日韩欧美亚洲二区| 国产精品免费大片| 99re6热这里在线精品视频| 亚洲高清免费不卡视频| 中文天堂在线官网| 嘟嘟电影网在线观看| 欧美+日韩+精品| 精品久久久久久久久av| 日韩国内少妇激情av| 欧美成人a在线观看| 夜夜看夜夜爽夜夜摸| 国产精品一区www在线观看| av播播在线观看一区| 丝瓜视频免费看黄片| 亚洲自偷自拍三级| 色5月婷婷丁香| 六月丁香七月| 22中文网久久字幕| 蜜桃亚洲精品一区二区三区| 中国三级夫妇交换| 免费看不卡的av| 亚洲aⅴ乱码一区二区在线播放| 美女脱内裤让男人舔精品视频| 简卡轻食公司| 久久久久久九九精品二区国产| 在现免费观看毛片| 中文字幕人妻熟人妻熟丝袜美| 欧美激情极品国产一区二区三区 | 欧美性感艳星| 免费看不卡的av| 国产精品三级大全| 久久精品国产鲁丝片午夜精品| 精华霜和精华液先用哪个| 亚洲精品成人av观看孕妇| 国产有黄有色有爽视频| 少妇猛男粗大的猛烈进出视频| 国产伦在线观看视频一区| 国国产精品蜜臀av免费| 亚洲人成网站高清观看| 少妇人妻 视频| 国产v大片淫在线免费观看| 欧美日韩在线观看h| 少妇 在线观看| 亚洲av日韩在线播放| 天天躁日日操中文字幕| 日本黄色日本黄色录像| 国产精品爽爽va在线观看网站| 午夜免费观看性视频| 国产精品三级大全| 欧美变态另类bdsm刘玥| 91久久精品国产一区二区成人| 身体一侧抽搐| 香蕉精品网在线| 亚洲一级一片aⅴ在线观看| 18+在线观看网站| 91精品伊人久久大香线蕉| 91久久精品电影网| 最近2019中文字幕mv第一页| 亚洲精品视频女| freevideosex欧美| 亚洲欧美中文字幕日韩二区| 在线看a的网站| 2021少妇久久久久久久久久久| 国产免费福利视频在线观看| 国产精品久久久久久精品电影小说 | 亚洲av成人精品一二三区| 尤物成人国产欧美一区二区三区| 日韩不卡一区二区三区视频在线| 国产亚洲一区二区精品| 日韩一本色道免费dvd| 我要看黄色一级片免费的| 人体艺术视频欧美日本| 欧美xxxx黑人xx丫x性爽| 三级经典国产精品| 六月丁香七月| 人妻制服诱惑在线中文字幕| 国产黄片视频在线免费观看| 久久久久国产网址| 91久久精品国产一区二区成人| 岛国毛片在线播放| 91精品伊人久久大香线蕉| 黄色日韩在线| 丰满少妇做爰视频| 99精国产麻豆久久婷婷| 一区二区三区乱码不卡18| 99视频精品全部免费 在线| 亚洲综合精品二区| 精品熟女少妇av免费看| 欧美xxxx黑人xx丫x性爽| 精品国产一区二区三区久久久樱花 | 亚洲va在线va天堂va国产| 国产精品久久久久久久电影| 2021少妇久久久久久久久久久| 高清黄色对白视频在线免费看 | av线在线观看网站| 国产高清国产精品国产三级 | 99热全是精品| 色吧在线观看| 一个人看视频在线观看www免费| 色婷婷久久久亚洲欧美| 观看av在线不卡| 日韩一区二区视频免费看| 亚洲成人手机| 久久99精品国语久久久| 国产成人a区在线观看| av国产精品久久久久影院| 成人毛片a级毛片在线播放| 高清毛片免费看| 狂野欧美激情性xxxx在线观看| 美女脱内裤让男人舔精品视频| 色视频www国产| xxx大片免费视频| 国产精品一区二区三区四区免费观看| 欧美xxxx性猛交bbbb| 精品一区二区免费观看| 色5月婷婷丁香| 五月天丁香电影| 最新中文字幕久久久久| 欧美高清成人免费视频www| 能在线免费看毛片的网站| 黄片无遮挡物在线观看| 青春草视频在线免费观看| 91精品伊人久久大香线蕉| 汤姆久久久久久久影院中文字幕| 又黄又爽又刺激的免费视频.| av国产精品久久久久影院| 22中文网久久字幕| 涩涩av久久男人的天堂| 久久99热这里只频精品6学生| 91久久精品电影网| 国产乱人偷精品视频| 欧美日韩视频高清一区二区三区二| 身体一侧抽搐| 丝瓜视频免费看黄片| 偷拍熟女少妇极品色| 1000部很黄的大片| 国产在线一区二区三区精| 少妇裸体淫交视频免费看高清| 国产高潮美女av| 国产乱人偷精品视频| 天美传媒精品一区二区| 日韩人妻高清精品专区| 久久久a久久爽久久v久久| 久久6这里有精品| 汤姆久久久久久久影院中文字幕| 色吧在线观看| 新久久久久国产一级毛片| 校园人妻丝袜中文字幕| 久久久亚洲精品成人影院| 中文字幕人妻熟人妻熟丝袜美| 嫩草影院新地址| 在线观看av片永久免费下载| 在线观看人妻少妇| 久久99热这里只频精品6学生| 中文字幕av成人在线电影| 精品亚洲成国产av| 一区二区三区四区激情视频| 2022亚洲国产成人精品| 中文字幕久久专区| 97热精品久久久久久|