• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Some Notes on G-cone Metric Spaces

    2014-07-19 11:47:55CAOXiaoshuangXUShaoyuan

    CAO Xiao-shuang,XU Shao-yuan

    (1.School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China;2.Department of Mathematics and Statistics,Hanshan Normal University,Chaozhou 521041,China)

    Some Notes on G-cone Metric Spaces

    CAO Xiao-shuang1,XU Shao-yuan2

    (1.School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China;2.Department of Mathematics and Statistics,Hanshan Normal University,Chaozhou 521041,China)

    In this paper,we introduce a G metric on the G-cone metric space and then prove that a complete G-cone metric space is always a complete G metric space and verify that a contractive mapping on the G-cone metric space is a contractive mapping on the G metric space.At last,we also give a new way to obtain the unique f i xed point on G-cone metric space.

    G-cone metric space;G metric;contractive mapping

    §1.Introduction

    In last two decades,many authors focused on f i xed point theory for contractive or generalized contractive mappings in abstract spaces(see[1-19]).To overcome fundamental f l aws in Dhage’s theory of generalized metric space[23].Mustafa and Sims[15]introduced a more appropriate generalization of metric space,that is,G metric space.Then,a concept of G-cone metric space,which we can consider to be the generalization of G metric space,was introduced by replacing the set of real numbers by an ordered Banach space[4].What’s more,in[5-9, 11-13],the authors extended some f i xed point theorems on metric space to cone metric space.

    In this paper,we introduce a G metric D on the G-cone metric space(X,d)and due to the relevant results[13],we point out that a complete G-cone metric space is always a complete G metric space and show that contractive mappings on a G-cone metric space(X,d)are contractive on the G metric space(X,D).Besides,at last,we also give a new way to obtain the unique f i xed point on G-cone metric space.

    §2.Preliminaries

    The following def i nitions and results will be needed in the sequel.

    Let E be a real Banach space.A subset P of E is called a cone if and only if

    (a)P is closed,non empty and P/={θ};

    (b)a,b∈?,a,b≥0,x,y∈P?ax+by∈P;More generally,if a,b,c∈?,a,b,c≥0, x,y,z∈P?ax+by+cz∈P;

    (c)P∩(?P)={θ}.

    Given a cone P?E,we def i ne a partial ordering≤with respect to P by x≤y if and only if y?x∈P,while x?y stands for y?x∈intP(interior of P).

    Def i nition 2.1[4]Let X be a nonempty set.Suppose a mapping G:X×X×X→E satisf i es

    (G1)G(x,y,z)=0 if x=y=z;

    (G2)0<G(x,x,y),whenever x/=y,for all x,y∈X;

    (G3)G(x,x,y)≤G(x,y,z),whenever y/=z;

    (G4)G(x,y,z)=G(x,z,y)=G(y,x,z)=···(symmetric in all three variables);

    (G5)G(x,y,z)≤G(x,a,a)+G(a,y,z),for all x,y,z,a∈X.

    Then G is called a generalized cone metric on X and X is called a generalized cone metric space or more specif i cally a G-cone metric space.

    Remark 2.2(1)It is clear that if G(x,y,z)=0,then x=y=z.That is,G(x,y,z)=0 if and only if x=y=z.

    (2)In Def i nition 2.1,if we replace G:X×X×X→E by G:X×X×X→R,then G cone metric space is reduced to G metric space.

    Def i nition 2.3[15]A G metric space(X,G)is symmetric if

    Lemma 2.4[15]Let(X,G)be a G metric space and def i ne dG:X×X→E by

    then(X,dG)is a metric space.

    It can be noted that G(x,y,y)≤dG(x,y).If(X,G)is a symmetric G metric space,then

    Def i nition 2.5[4]Let X be a G-cone metric space and{xn}be a sequence in X.We say that{xn}is

    (a)Cauchy sequence if for every c∈E with 0?c,there is N such that for all n,m,l>N,G(xn,xm,xl)?c.

    (b)Convergent sequence if for every c in E with 0?c,there is N such that for all m,n>N,G(xm,xn,x)?c for some f i xed x in X.Here x is called the limit of a sequence {xn}and is denoted by=x or xn→x as n→∞.

    A G-cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

    Lemma 2.6[15]Let X be a G metric space.If we suppose that{xn},{yn}and{zn}are sequences in X such that xn→x,yn→y and zn→z,then G(xm,yn,zl)→G(x,y,z)as m,n,l→∞(G metric is jointly continuous).

    Lemma 2.7[15]Let X be a G metric space.Then for a sequence{xn}?X and a point x∈X,the following statements are equivalent

    (i){xn}is convergent to x;

    (ii)G(xn,xn,x)→0 as n→∞;

    (iii)G(xn,x,x)→0 as n→∞;

    (iv)G(xm,xn,x)→0 as m,n→∞.

    Lemma 2.8[1]Let(X,d)be a complete metric space.Suppose the mapping T:X→X satisf i es the contractive condition

    where k∈[0,1)is a constant.Then T has a unique f i xed point in X.And for any x∈X, iterative sequence{Tnx}converges to the f i xed point.

    Lemma 2.9[16]Let(X,G)be a complete G-metric space and T:X→X be a mapping satisfying the following condition for all x,y,z∈X

    where k∈[0,1).Then T has a unique f i xed point.

    §3.Main Results

    Theorem 3.1Let(X,d)be a G-cone metric space,then

    is a G metric on X.

    Proof(G1)and(G2)are obvious.

    (G3)Let x,y,z∈X,by the def i nition of G-cone metric,we have

    Noting that

    Then for arbitrary u,v∈P,suppose that u≥d(x,y,z),v≥d(x,x,y),we see

    Obviously,we can get D(x,x,y)≤‖u‖,which implies

    that is,

    (G4)By the chain of equalities d(x,y,z)=d(x,z,y)=d(y,z,x)=···,we have

    (G5)Let x,y,z∈X,by the def i nition of G-cone metric,we have

    Noting that

    Then for arbitrary v1,v2∈P,suppose that v1≥d(x,a,a),v2≥d(a,y,z),we see

    Obviously,we can get D(x,y,z)≤‖v1+v2‖,which implies

    Considering

    Therefore,we obtain

    that is,

    (G1)~(G5)show that D is a G metric on X.

    (2){xn}is a Cauchy sequence on the G-cone metric space(X,d)if and only if{xn}is a Cauchy sequence on the G metric space(X,D).

    (3)The G-cone metric space(X,d)is complete if and only if the G metric space(X,D)is complete.

    Proof(1)Suppose that{xn}is convergent to x on the G-cone metric space(X,d).For each ε>0,c?0,then

    ?0.Then for each c∈E with c?θ,there exists n0such that

    Therefore,we have

    which implies that

    that is,{xn}is convergent to x on the G metric space(X,D).

    Conversely,suppose that{xn}is convergent to x on the G metric spaces(X,D).For each c?0,there exists ε>0 such that c+B(0,ε)?P.For this ε,there exists n0such that

    Then,there exists v∈P,‖v‖≤ε such that d(xm,xn,x)≤v.Noting that v?c,we see

    It is obvious that we can get d(xm,xn,x)?c,which implies that{xn}is convergent to x on the G-cone metric spaces(X,d).

    (2)Suppose that{xn}is a Cauchy sequence on the G-cone metric spaces(X,d).For each ε>0,if c?θ,then?θ.Then for each c∈E with c?θ,there exists n0such that

    Therefore,we have

    which shows that{xn}is a Cauchy sequence on the G metric spaces(X,D).

    Conversely,suppose that{xn}is a Cauchy sequence on the G metric spaces(X,D).Then we get

    For each c?θ,there exists ε>0 such that c+B(0,ε)?P.For this ε,there exists n0such that

    Then,there exists v∈P,‖v‖≤ε,such that d(xm,xn,xl)≤v.Noting that v?c,we have

    It is obvious that we can get d(xm,xn,xl)?c,which shows that{xn}is a Cauchy sequence on the G-cone metric spaces(X,d).

    (3)It is a direct consequence of(1)and(2).

    As a consequence of Theorem 3.2,we easily get the following.

    Corollary 3.3(X,d)is a sequentially compact G-cone metric space if and only if(X,D) is a compact G metric space.

    Another result of this paper says that a contractive mapping on G-cone metric space is always contractive on G metric space.More precisely,we have

    Theorem 3.4Let(X,d)be a complete G-cone metric space.If T:X→X satisf i es the contractive condition

    where k∈[0,1)is a constant,then T is a contractive mapping on(X,D),i.e.,

    Hence,T has a unique f i xed point in X.

    ProofLet v∈P,suppose that v≥d(x,y,z),then kv≥d(Tx,Ty,Tz),which implies that

    we get

    that is,

    Therefore,we have

    Corollary 3.5Let(X,d)be a complete G-cone metric space and T:X→X be a mapping satisfying one of the following conditions

    (1)d(Tx,Ty,Tz)≤λ1d(x,y,z)+λ2d(x,Tx,Tx)+λ3d(y,Ty,Ty)+λ4d(z,Tz,Tz);

    (2)d(Tx,Ty,Tz)≤λ1d(x,y,z)+λ2d(x,x,Tx)+λ3d(y,y,Ty)+λ4d(z,z,Tz),for all x,y,z∈X,where λ1+λ2+λ3+λ4∈[0,1),then T is a contractive mapping on(X,D).

    That is,

    (3)D(Tx,Ty,Tz)≤λ1D(x,y,z)+λ2D(x,Tx,Tx)+λ3D(y,Ty,Ty)+λ4D(z,Tz,Tz);

    (4)D(Tx,Ty,Tz)≤λ1D(x,y,z)+λ2D(x,x,Tx)+λ3D(y,y,Ty)+λ4D(z,z,Tz).

    Hence T has a unique f i xed point in X.

    ProofLet v1,v2,v3,v4∈P,suppose that v1≥d(x,y,z),v2≥d(x,Tx,Tx),v3≥d(x,Ty,Ty),v4≥d(z,Tz,Tz),then we have

    which implies

    Therefore,we easily get

    Noting that

    we have

    that is,?x,y,z∈X,we obtain

    D(Tx,Ty,Tz)≤λ1D(x,y,z)+λ2D(x,Tx,Tx)+λ3D(y,Ty,Ty)+λ4D(z,Tz,Tz).

    Similarly,if T satisf i es condition(2),the result can be proved in the same way.

    Theorem 3.6Let(X,D)be a complete G metric space and T:X→X be a mapping satisfying one of the following conditions

    (3)D(Tx,Ty,Tz)≤λ1D(x,y,z)+λ2D(x,Tx,Tx)+λ3D(y,Ty,Ty)+λ4D(z,Tz,Tz);

    (4)D(Tx,Ty,Tz)≤λ1D(x,y,z)+λ2D(x,x,Tx)+λ3D(y,y,Ty)+λ4D(z,z,Tz),for all x,y,z∈X,where λ1+λ2+λ3+λ4∈[0,1),then T has a unique f i xed point in X.

    ProofSuppose that T satisf i es condition(3),then for all x,y∈X,we have

    (5)D(Tx,Ty,Ty)≤λ1D(x,y,y)+λ2D(x,Tx,Tx)+(λ3+λ4)D(y,Ty,Ty);

    (6)D(Ty,Tx,Tx)≤λ1D(y,x,x)+λ2D(y,Ty,Ty)+(λ3+λ4)D(x,Tx,Tx). If(X,D)is symmetric,then by def i nition of metric(X,DG),we can get

    Since λ1+λ2+λ3+λ4∈[0,1),then the existence and uniqueness of the f i xed point follows from well-known theorem on metric space(X,DG).

    However,if(X,D)is not asymmetric.Let x0∈X be an arbitrary point,and def i ne the sequence{xn}by xn=Txn?1.

    By condition(3),we have

    D(xn,xn+1,xn+1)≤λ1D(xn?1,xn,xn)+λ2D(xn?1,xn,xn)+(λ3+λ4)D(xn,xn+1,xn+1), that is,

    Continuing in the same argument,we will get

    Moreover,for all m,n∈?,m>n,we have by rectangle inequality that

    Taking the limit as n→∞,then for all ε>0,there exists a N>0 such that for all n>N

    which implies that D(xn,xm,xm)≤ε.

    Therefore,{xn}is a Cauchy sequence.Due to the completeness of(X,D),there exists u∈X such that xnis convergent to u.Suppose that Tu/=u,then we obtain

    taking the limit as n→∞and using the fact that D is jointly continuous,we get

    which implies that u=Tu.

    To prove uniqueness,suppose that u/=v such that Tv=v,we have

    which implies that u=v.

    Similarly,if T satisf i es condition(4),the result can be proved in the same way.Therefore, T has a unique f i xed point.

    Remark 3.7If(X,D)is not asymmetric.By def i nition of metric DG,we can getThen the metric condition gives no information about this mapping sinceneed not be less than 1.Therefore we choose to use G metric to prove it.

    Theorem 3.8Let(X,d)be a complete G-cone metric space and T:X→X be a mapping satisfying one of the following conditions

    (1)d(Tx,Ty,Tz)≤λ1d(x,y,z)+λ2d(x,Tx,Tx)+λ3d(y,Ty,Ty)+λ4d(z,Tz,Tz);

    (2)d(Tx,Ty,Tz)≤λ1d(x,y,z)+λ2d(x,x,Tx)+λ3d(y,y,Ty)+λ4d(z,z,Tz),for all x,y,z∈X,where λ1+λ2+λ3+λ4∈[0,1),then T has a unique f i xed point in X.

    ProofLet D:X×X×X→[0,+∞)be def i ned byz∈X,then Theorem 3.1 shows that D(x,y,z)is a G metric space on X.Also,by Corollary 3.5,in G metric space(X,D)the mapping T satisf i es the following conditions

    (3)D(Tx,Ty,Tz)≤λ1D(x,y,z)+λ2D(x,Tx,Tx)+λ3D(y,Ty,Ty)+λ4D(z,Tz,Tz);

    (4)D(Tx,Ty,Tz)≤λ1D(x,y,z)+λ2D(x,x,Tx)+λ3D(y,y,Ty)+λ4D(z,z,Tz)for all x,y,z∈X,where λ1+λ2+λ3+λ4∈[0,1).This ensures that T satisf i es the assumption of Theorem 3.6,which implies that T has a unique f i xed point in X.

    [1]BANACH S.Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales[J]. Fundam Math,1922,3:133-181.

    [2]DHAGE B C.Gneneralized metric spaces and mapping with f i xed point[J].Bull Calcutta Math Soc,1992, 84:329-336.

    [3]DHAGE B C.On contunity of mapping in D-metric spaces[J].Bulletin of the Calcutta Mathematical Society, 1994,86:503-508.

    [4]BEG I,ABBAS M,NAZIR T.Gneneralized cone metric spaces[J].J Nonlinear Sci Appl,2010,3:21-31.

    [5]RAO K P R,LAKSHMI K B,RAJU V C C.A unique common f i xed point theorem for three mappings in G-cone metric spaces[J].The Journal of Mathematics and Computer Science/TJMCS,2012,4:585-590.

    [6]HUANG Long-guang,ZHANG Xian.Cone metric spaces and f i xed point theorems of contractive mappings[J].J Math Anal Appl,2007,332:1468-1476.

    [7]ASGARI M S,ABBASBIGI Z.Generalizations of the Suzuki and Kannan f i xed point theorems in G-cone metric spaces[J].Anal Theory Appl,2012,28:248-262.

    [8]OZTURK M,BASARR M.On some coincidence and common f i xed point theorems in G-cone metric spaces[J].Thai Journal of Mathematics,2011,9:647-657.

    [9]VARGHESE P G,DERSANAMBIKA K S.Fixed point theorems on complete G-cone metric space[J].R J P A,2011,1:256-261.

    [10]MOHANTA S K.Some f i xed point theorems in G-metric spaces[J].An S Univ O C,2012,20:285-306.

    [11]MOHANTA S K.Common f i xed points for mappings satisfying ? and F-maps in G-cone metric spaces[J]. Bulletin of Mathematical Analysis and Applications,2012,4:133-147.

    [12]REZAPOUR S,HAMLBARANI R.Some notes on the paper“Cone metric spaces and f i xed point theorems of contractive mappings”[J].J Math Anal Appl,2008,345:719-724.

    [13]FENG Yu-qing,MAO Wei.The equivalence of cone metric spaces and metric spaces[J].Fixed Point Theory, 2010,11:259-264.

    [14]MUSTAFA Z.Fixed point results on complete G-metric spaces[J].Stud Sci Math Hungar,2011,48:304-319.

    [15]MUSTAFA Z,SIMS B.A new approach to gneneralized metric spaces[J].J Nonlinear and Convex Anal, 2006,7:289-297.

    [16]MUSTAFA Z.A New Structure for Generalized Metric Spaces with Applications to Fixed Point Theory[D]. Australia:the University of Newcastle,2005.

    [17]WANG Yun-jie,ZHU Jiang.Common f i xed points under contractive conditions in cone metric spaces[J]. Chinese Quarterly Journal of Mathematics,2013,28(1):47-52.

    [18]WEN Kai-ting.A new browder f i xed point theorem in noncompact hyperconvex metric spaces and its applications to section questions and intersection questions[J].Chinese Quarterly Journal of Mathematics, 2009,24(1):112-116.

    [19]WU Jian-rong,LIU Hai-yan.Common f i xed point theorems for sequences of-type contraction set-valued mappings[J].Chinese Quarterly Journal of Mathematics,2009,24(4):504-510.

    tion:47H10,54H25

    1002–0462(2014)04–0602–10

    date:2013–08–06

    Supported by the Natural Science Foundation of Hubei Province Education Department (Q20132505);SupportedbythePhDStart-upFundofHanshanNormalUniversityofGuangdong Province(QD20110920)

    Biographies:CAO Xiao-shuang(1988-),female,native of Zhongxiang,Hubei,a postgraduate of Hubei Normal University,engages in nonlinear analysis;XU Shao-yuan(1964-),male,native of Wuhan,Hubei,a professor of Hanshan Normal University,engages in nonlinear analysis(corresponding author).

    CLC number:O177.91Document code:A

    国产成人啪精品午夜网站| av天堂久久9| 91字幕亚洲| 精品福利观看| 激情在线观看视频在线高清| 搡老熟女国产l中国老女人| 精品久久久久久久人妻蜜臀av | 中文字幕另类日韩欧美亚洲嫩草| 久久中文字幕一级| 日本撒尿小便嘘嘘汇集6| 国产真人三级小视频在线观看| 亚洲一区二区三区不卡视频| 又大又爽又粗| 十八禁网站免费在线| 曰老女人黄片| 99久久99久久久精品蜜桃| 久久 成人 亚洲| 久久人人爽av亚洲精品天堂| 国产精品野战在线观看| 多毛熟女@视频| 国产成人一区二区三区免费视频网站| 女警被强在线播放| av福利片在线| 又大又爽又粗| 男人的好看免费观看在线视频 | 极品人妻少妇av视频| 亚洲色图 男人天堂 中文字幕| 国内毛片毛片毛片毛片毛片| 亚洲男人天堂网一区| 黄色视频不卡| 99热只有精品国产| 午夜福利一区二区在线看| www.自偷自拍.com| 嫩草影视91久久| 伊人久久大香线蕉亚洲五| 一区二区三区激情视频| 午夜视频精品福利| 亚洲国产欧美网| 女人精品久久久久毛片| 亚洲在线自拍视频| 正在播放国产对白刺激| 亚洲av电影不卡..在线观看| 日本vs欧美在线观看视频| 久久久久精品国产欧美久久久| 人妻久久中文字幕网| 人人妻人人澡人人看| 亚洲国产中文字幕在线视频| 69精品国产乱码久久久| 丝袜人妻中文字幕| 国产精品久久久久久精品电影 | 久热爱精品视频在线9| 又黄又粗又硬又大视频| 91国产中文字幕| 麻豆久久精品国产亚洲av| 人妻丰满熟妇av一区二区三区| 亚洲国产欧美网| 久久久久久久久免费视频了| 可以在线观看的亚洲视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲天堂国产精品一区在线| 国产亚洲av嫩草精品影院| 18禁裸乳无遮挡免费网站照片 | 国产欧美日韩一区二区三区在线| 黄网站色视频无遮挡免费观看| 女人高潮潮喷娇喘18禁视频| 亚洲伊人色综图| 亚洲国产精品999在线| 亚洲国产毛片av蜜桃av| 国产高清视频在线播放一区| 男女午夜视频在线观看| 此物有八面人人有两片| 国产蜜桃级精品一区二区三区| 97人妻精品一区二区三区麻豆 | 国产欧美日韩一区二区三区在线| 亚洲精品国产区一区二| 午夜免费成人在线视频| 久久欧美精品欧美久久欧美| 国产亚洲精品第一综合不卡| 国产在线观看jvid| 在线永久观看黄色视频| 日韩三级视频一区二区三区| 国产精品爽爽va在线观看网站 | 亚洲国产精品合色在线| 亚洲五月色婷婷综合| 日韩精品中文字幕看吧| 亚洲欧美精品综合一区二区三区| www日本在线高清视频| 国产精品乱码一区二三区的特点 | 亚洲伊人色综图| 色哟哟哟哟哟哟| 中国美女看黄片| 91精品三级在线观看| 自线自在国产av| 国产伦一二天堂av在线观看| www日本在线高清视频| 九色亚洲精品在线播放| 精品少妇一区二区三区视频日本电影| 成人特级黄色片久久久久久久| 国产99白浆流出| 嫩草影视91久久| 亚洲成人精品中文字幕电影| 男女下面进入的视频免费午夜 | 国产精品野战在线观看| 老司机在亚洲福利影院| 一进一出抽搐gif免费好疼| 一级a爱片免费观看的视频| 精品久久久久久久毛片微露脸| 欧美日韩福利视频一区二区| 精品国产国语对白av| 嫩草影视91久久| 视频区欧美日本亚洲| 欧美日韩福利视频一区二区| 国产伦一二天堂av在线观看| 国产高清激情床上av| 高清黄色对白视频在线免费看| 最新在线观看一区二区三区| 老熟妇乱子伦视频在线观看| 午夜福利欧美成人| 男人的好看免费观看在线视频 | 十分钟在线观看高清视频www| 精品国产国语对白av| 涩涩av久久男人的天堂| 久久亚洲真实| 国产成人av激情在线播放| 日本黄色视频三级网站网址| av有码第一页| 久久精品国产99精品国产亚洲性色 | 国产成人啪精品午夜网站| 欧美激情久久久久久爽电影 | 日韩欧美国产在线观看| 国产成人欧美| 国产av精品麻豆| 最新在线观看一区二区三区| 久热爱精品视频在线9| 国产一卡二卡三卡精品| 精品熟女少妇八av免费久了| 老司机深夜福利视频在线观看| 99国产极品粉嫩在线观看| 大陆偷拍与自拍| 亚洲aⅴ乱码一区二区在线播放 | 亚洲一卡2卡3卡4卡5卡精品中文| 好看av亚洲va欧美ⅴa在| 色在线成人网| 这个男人来自地球电影免费观看| 国产精品野战在线观看| 国产一区在线观看成人免费| 两性夫妻黄色片| 啦啦啦观看免费观看视频高清 | 少妇熟女aⅴ在线视频| 巨乳人妻的诱惑在线观看| av网站免费在线观看视频| 亚洲欧美精品综合久久99| 亚洲午夜精品一区,二区,三区| 亚洲视频免费观看视频| 热99re8久久精品国产| 韩国av一区二区三区四区| 亚洲国产精品999在线| 老鸭窝网址在线观看| 国产精品一区二区在线不卡| 97碰自拍视频| 国产亚洲精品久久久久5区| 色av中文字幕| 亚洲成人久久性| 国产精品日韩av在线免费观看 | 久久亚洲精品不卡| 三级毛片av免费| 女人爽到高潮嗷嗷叫在线视频| 亚洲第一av免费看| 亚洲精华国产精华精| 伦理电影免费视频| 亚洲伊人色综图| 亚洲精品中文字幕一二三四区| 亚洲国产中文字幕在线视频| 嫩草影视91久久| 狠狠狠狠99中文字幕| 亚洲第一电影网av| 国产精品影院久久| 大香蕉久久成人网| 色播在线永久视频| 久久精品国产清高在天天线| 久久香蕉激情| 午夜福利影视在线免费观看| 欧美黄色片欧美黄色片| www国产在线视频色| 一二三四在线观看免费中文在| 亚洲精品美女久久久久99蜜臀| 无人区码免费观看不卡| 一本大道久久a久久精品| av在线播放免费不卡| 嫁个100分男人电影在线观看| 窝窝影院91人妻| 无遮挡黄片免费观看| av超薄肉色丝袜交足视频| 午夜福利成人在线免费观看| 又黄又粗又硬又大视频| 午夜福利高清视频| 国产成人系列免费观看| 老汉色av国产亚洲站长工具| 亚洲一码二码三码区别大吗| 夜夜夜夜夜久久久久| svipshipincom国产片| 一边摸一边抽搐一进一小说| 国产野战对白在线观看| 国产一区在线观看成人免费| 欧美日韩亚洲综合一区二区三区_| 真人一进一出gif抽搐免费| 在线播放国产精品三级| 韩国av一区二区三区四区| 亚洲va日本ⅴa欧美va伊人久久| 身体一侧抽搐| 宅男免费午夜| 如日韩欧美国产精品一区二区三区| 正在播放国产对白刺激| 成年版毛片免费区| 亚洲少妇的诱惑av| 国产午夜精品久久久久久| 国产色视频综合| 午夜久久久久精精品| 精品福利观看| 国产精品香港三级国产av潘金莲| 日韩欧美免费精品| e午夜精品久久久久久久| 精品国内亚洲2022精品成人| 999久久久精品免费观看国产| 1024香蕉在线观看| 色精品久久人妻99蜜桃| 午夜久久久在线观看| 亚洲最大成人中文| 午夜福利18| 欧美激情高清一区二区三区| 女人被狂操c到高潮| 两性午夜刺激爽爽歪歪视频在线观看 | 精品电影一区二区在线| 777久久人妻少妇嫩草av网站| 午夜福利欧美成人| 大型av网站在线播放| 可以免费在线观看a视频的电影网站| 精品一区二区三区av网在线观看| 精品一区二区三区视频在线观看免费| 免费av毛片视频| 亚洲国产欧美一区二区综合| 精品久久久久久成人av| 亚洲国产日韩欧美精品在线观看 | 欧美成狂野欧美在线观看| 精品一区二区三区av网在线观看| 国产乱人伦免费视频| 国产亚洲精品第一综合不卡| 国产黄a三级三级三级人| 欧美成狂野欧美在线观看| 淫妇啪啪啪对白视频| 亚洲精品中文字幕在线视频| 中文字幕人妻丝袜一区二区| 在线观看午夜福利视频| 在线播放国产精品三级| 少妇 在线观看| ponron亚洲| 久久久久国产精品人妻aⅴ院| АⅤ资源中文在线天堂| 国产精品影院久久| 午夜免费成人在线视频| 久久精品国产亚洲av香蕉五月| 色综合亚洲欧美另类图片| 天堂√8在线中文| 嫩草影院精品99| 国产午夜精品久久久久久| 欧美一级a爱片免费观看看 | 无人区码免费观看不卡| 久久精品亚洲精品国产色婷小说| 午夜福利18| 国产一区二区三区在线臀色熟女| 久久亚洲真实| svipshipincom国产片| 国产精品99久久99久久久不卡| 精品一品国产午夜福利视频| 亚洲国产精品成人综合色| 国产亚洲欧美精品永久| 国产精品98久久久久久宅男小说| 午夜福利一区二区在线看| 嫁个100分男人电影在线观看| 黄片播放在线免费| 精品电影一区二区在线| 欧美日韩亚洲综合一区二区三区_| 欧美中文日本在线观看视频| 曰老女人黄片| 国产精品免费一区二区三区在线| 波多野结衣一区麻豆| 色老头精品视频在线观看| 久久精品人人爽人人爽视色| 人妻丰满熟妇av一区二区三区| 久久亚洲精品不卡| 老司机福利观看| 久久久久亚洲av毛片大全| 91国产中文字幕| 亚洲最大成人中文| 99国产综合亚洲精品| 脱女人内裤的视频| 91精品三级在线观看| 国产精品 欧美亚洲| 午夜影院日韩av| 波多野结衣一区麻豆| 变态另类成人亚洲欧美熟女 | 777久久人妻少妇嫩草av网站| 国产av精品麻豆| 免费在线观看日本一区| 欧美黄色片欧美黄色片| 一卡2卡三卡四卡精品乱码亚洲| 伊人久久大香线蕉亚洲五| 久久九九热精品免费| 欧美精品亚洲一区二区| 国产成人精品久久二区二区91| 热re99久久国产66热| 国产精品一区二区三区四区久久 | 免费在线观看日本一区| 亚洲久久久国产精品| 美女扒开内裤让男人捅视频| 国产成人系列免费观看| 69精品国产乱码久久久| 成人永久免费在线观看视频| 97碰自拍视频| 亚洲av五月六月丁香网| 亚洲成人精品中文字幕电影| 久久精品人人爽人人爽视色| 免费不卡黄色视频| 99久久99久久久精品蜜桃| 无遮挡黄片免费观看| 中亚洲国语对白在线视频| 国产人伦9x9x在线观看| 纯流量卡能插随身wifi吗| 国产亚洲精品久久久久5区| 国产av一区在线观看免费| 欧美亚洲日本最大视频资源| av在线天堂中文字幕| 大码成人一级视频| 亚洲国产高清在线一区二区三 | 久久国产精品影院| 男女床上黄色一级片免费看| 三级毛片av免费| 成人国产综合亚洲| 黄片小视频在线播放| 一进一出抽搐动态| 欧美日韩瑟瑟在线播放| 亚洲av成人av| 精品午夜福利视频在线观看一区| 国产亚洲精品久久久久久毛片| 亚洲av成人av| 精品一区二区三区四区五区乱码| 久久精品亚洲熟妇少妇任你| 99精品欧美一区二区三区四区| 国产精品秋霞免费鲁丝片| 又黄又爽又免费观看的视频| 91精品三级在线观看| 国产亚洲av嫩草精品影院| 久久精品91无色码中文字幕| 日韩大尺度精品在线看网址 | 露出奶头的视频| 狂野欧美激情性xxxx| 国产精品一区二区精品视频观看| 黄色女人牲交| 国产极品粉嫩免费观看在线| 好看av亚洲va欧美ⅴa在| 男女下面进入的视频免费午夜 | 嫩草影院精品99| 久久伊人香网站| 人人妻,人人澡人人爽秒播| av在线天堂中文字幕| 国产激情久久老熟女| 国产精品98久久久久久宅男小说| 色综合站精品国产| 久久久精品国产亚洲av高清涩受| 精品高清国产在线一区| 国产又色又爽无遮挡免费看| 黄色片一级片一级黄色片| 欧美性长视频在线观看| 亚洲精品美女久久久久99蜜臀| 免费不卡黄色视频| 成人国产综合亚洲| 国产精品一区二区三区四区久久 | 一个人免费在线观看的高清视频| 丰满的人妻完整版| 视频在线观看一区二区三区| 精品国产乱子伦一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 美女高潮喷水抽搐中文字幕| 少妇的丰满在线观看| 女性被躁到高潮视频| 99在线人妻在线中文字幕| 久久久水蜜桃国产精品网| 亚洲精品中文字幕一二三四区| 九色国产91popny在线| 久久人人精品亚洲av| 18禁美女被吸乳视频| 一级毛片女人18水好多| 老熟妇仑乱视频hdxx| 大型av网站在线播放| 色尼玛亚洲综合影院| 国产精品98久久久久久宅男小说| 国产亚洲欧美在线一区二区| 久久久国产成人精品二区| 麻豆成人av在线观看| 精品乱码久久久久久99久播| 欧美色欧美亚洲另类二区 | 亚洲精品美女久久av网站| 国产亚洲精品av在线| 久久精品国产亚洲av香蕉五月| 国产成人一区二区三区免费视频网站| 一二三四在线观看免费中文在| 久久久精品欧美日韩精品| 最近最新中文字幕大全电影3 | 一级黄色大片毛片| 国产一区二区三区在线臀色熟女| 国产成人av激情在线播放| 亚洲国产精品999在线| 如日韩欧美国产精品一区二区三区| 国产精品亚洲美女久久久| 国产精品野战在线观看| 亚洲 欧美 日韩 在线 免费| 国产一区二区三区在线臀色熟女| 久久影院123| 免费看a级黄色片| 午夜精品在线福利| 欧美激情久久久久久爽电影 | 欧美成人免费av一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 久久中文字幕人妻熟女| √禁漫天堂资源中文www| 一进一出抽搐gif免费好疼| 亚洲精华国产精华精| 午夜福利影视在线免费观看| 天堂√8在线中文| 欧美国产日韩亚洲一区| 亚洲少妇的诱惑av| 如日韩欧美国产精品一区二区三区| 成人国产综合亚洲| 天天添夜夜摸| 国产精品乱码一区二三区的特点 | 搡老熟女国产l中国老女人| 在线视频色国产色| 99国产精品一区二区蜜桃av| 嫩草影院精品99| 精品午夜福利视频在线观看一区| 亚洲电影在线观看av| 国产精品精品国产色婷婷| 亚洲精品久久国产高清桃花| 最近最新中文字幕大全电影3 | 国产片内射在线| 日韩成人在线观看一区二区三区| 亚洲人成电影免费在线| 一边摸一边做爽爽视频免费| 亚洲七黄色美女视频| 色播在线永久视频| 在线天堂中文资源库| 黄色丝袜av网址大全| 成人三级黄色视频| 97碰自拍视频| tocl精华| 久久国产精品影院| 两个人视频免费观看高清| 亚洲午夜理论影院| 亚洲精品美女久久av网站| 色尼玛亚洲综合影院| 午夜福利欧美成人| 久久精品国产99精品国产亚洲性色 | 黄片播放在线免费| 久久精品人人爽人人爽视色| 欧美性长视频在线观看| 亚洲人成电影观看| 老司机靠b影院| 精品国产一区二区久久| 美女大奶头视频| 黄色丝袜av网址大全| АⅤ资源中文在线天堂| 国产精品亚洲美女久久久| 一个人观看的视频www高清免费观看 | 婷婷六月久久综合丁香| 夜夜躁狠狠躁天天躁| 久久精品人人爽人人爽视色| 岛国在线观看网站| 亚洲成av人片免费观看| 波多野结衣高清无吗| 精品日产1卡2卡| 黄片小视频在线播放| 一级毛片高清免费大全| 在线观看免费日韩欧美大片| 久久欧美精品欧美久久欧美| 精品久久久久久成人av| 国产成年人精品一区二区| 午夜日韩欧美国产| 狠狠狠狠99中文字幕| 麻豆成人av在线观看| 在线观看日韩欧美| 亚洲国产精品999在线| 级片在线观看| 久久久久久久午夜电影| 日韩精品中文字幕看吧| 国产av又大| 神马国产精品三级电影在线观看 | 一进一出抽搐动态| 美女午夜性视频免费| 亚洲情色 制服丝袜| 露出奶头的视频| 欧美不卡视频在线免费观看 | 午夜亚洲福利在线播放| 亚洲欧美激情在线| 精品一区二区三区四区五区乱码| 在线观看一区二区三区| 国产精品一区二区免费欧美| 99国产综合亚洲精品| 国产精品1区2区在线观看.| 别揉我奶头~嗯~啊~动态视频| 免费看a级黄色片| 国产精品 欧美亚洲| 变态另类丝袜制服| 国产亚洲精品综合一区在线观看 | 日韩成人在线观看一区二区三区| 多毛熟女@视频| 啦啦啦 在线观看视频| 老司机深夜福利视频在线观看| 国产成人影院久久av| 天天躁夜夜躁狠狠躁躁| 老司机福利观看| 天堂动漫精品| 欧美 亚洲 国产 日韩一| 嫁个100分男人电影在线观看| 国产精品久久久久久亚洲av鲁大| 多毛熟女@视频| 女生性感内裤真人,穿戴方法视频| 无限看片的www在线观看| 亚洲人成电影观看| 人人妻,人人澡人人爽秒播| 日本在线视频免费播放| 久久精品人人爽人人爽视色| 国产精品一区二区精品视频观看| 中文字幕人妻熟女乱码| 精品久久久久久,| 级片在线观看| 国产av精品麻豆| 国产视频一区二区在线看| 免费在线观看亚洲国产| 他把我摸到了高潮在线观看| 窝窝影院91人妻| 色综合站精品国产| 精品高清国产在线一区| 黄片小视频在线播放| 国产一区二区在线av高清观看| 99国产精品免费福利视频| 免费久久久久久久精品成人欧美视频| 亚洲少妇的诱惑av| 首页视频小说图片口味搜索| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久亚洲精品国产蜜桃av| 一区二区三区高清视频在线| 免费搜索国产男女视频| av电影中文网址| 一夜夜www| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一区二区激情短视频| 制服人妻中文乱码| 免费少妇av软件| 女警被强在线播放| 最好的美女福利视频网| 精品午夜福利视频在线观看一区| 日韩精品免费视频一区二区三区| 午夜成年电影在线免费观看| 亚洲视频免费观看视频| 人人澡人人妻人| 国产一区二区三区综合在线观看| 麻豆一二三区av精品| 亚洲av电影在线进入| 又黄又粗又硬又大视频| 亚洲国产精品成人综合色| 女同久久另类99精品国产91| 午夜福利视频1000在线观看 | 欧美成狂野欧美在线观看| 久久精品91蜜桃| 国产欧美日韩综合在线一区二区| 乱人伦中国视频| 久久精品国产99精品国产亚洲性色 | 国内精品久久久久久久电影| 国产精品久久久av美女十八| 国产激情久久老熟女| 午夜福利18| 自拍欧美九色日韩亚洲蝌蚪91| 国产不卡一卡二| 最近最新中文字幕大全电影3 | 日韩欧美一区视频在线观看| 多毛熟女@视频| 99精品欧美一区二区三区四区| 国产高清videossex| 亚洲精品美女久久av网站| 亚洲午夜理论影院| 狠狠狠狠99中文字幕| 亚洲五月色婷婷综合| 亚洲成av人片免费观看| 好男人电影高清在线观看| 夜夜夜夜夜久久久久| 日韩欧美一区视频在线观看| 久久热在线av| 色综合站精品国产| 午夜福利影视在线免费观看| 一个人观看的视频www高清免费观看 | 在线观看午夜福利视频| 中文字幕人妻熟女乱码| 午夜精品国产一区二区电影| 成年人黄色毛片网站| 亚洲五月色婷婷综合| 精品国产一区二区三区四区第35| 国产成人啪精品午夜网站| 免费高清视频大片| 精品高清国产在线一区| а√天堂www在线а√下载| 九色亚洲精品在线播放| a在线观看视频网站| 99久久久亚洲精品蜜臀av| aaaaa片日本免费| 午夜福利欧美成人|