• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Laguerre Isopararmetric Hypersurfaces in ?7

    2014-07-19 11:47:56JIXiuHUChuanfeng
    關(guān)鍵詞:形式新課程改革

    JI Xiu,HU Chuan-feng

    (College of Arts and Science,Yangtze University,Jingzhou 434000,China)

    On Laguerre Isopararmetric Hypersurfaces in ?7

    JI Xiu,HU Chuan-feng

    (College of Arts and Science,Yangtze University,Jingzhou 434000,China)

    Let x:M→?nbe an umbilical free hypersurface with non-zero principal curvatures,then x is associated with a Laguerre metric g,a Laguerre tensor L,a Laguerre form C,a Laguerre second fundamental form B,which are invariants of x under Laguerre transformation group.A classical theorem of Laguerre geometry states that M(n>3)is characterized by g and B up to Laguerre equivalence.A Laguerre isopararmetric hypersurface is def i ned by satisfying the conditions that C=0 and all the eigenvalues of B with respect to g are constant.It is easy to see that all Laguerre isopararmetric hypersurfaces are Dupin hypersurfaces.In this paper,we established a complete classif i cation for all Laguerre isopararmetric hypersurfaces with three distinct principal curvatures in ?7.

    laguerre metric;laguerre form;laguerre tensor;laguerre second fundamental form;laguerre isopararmetric hypersurface

    §1.Introduction

    Let U?nbe the unit tangent bundle over ?n.An oriented sphere in ?ncentered at p with radius r can be regarded as the“oriented sphere”{(x,ξ)|x?p=rξ}in U?n,where x is the position vector and ξ the unit normal of the sphere.An oriented hyperplane in ?nwith constant unit normal ξ and constant real number c can be regarded as the”oriented hyperplane”{(x,ξ)|x·ξ=c}in U?n.A dif f eomorphism ψ:U?n→U?nwhich takes oriented spheres to oriented spheres,oriented hyperplanes to oriented hyperplanes,preserving the tangentialdistance of any two spheres,is called a Laguerre transformation.All Laguerre transformations in U?nform a group called Laguerre transformation group.

    An oriented hypersurface x:M→?ncan be identif i ed as the submanifold(x,ξ):M→U?n,where ξ is the unit normal of x.Two hypersurfaces x,x′:M→?nare called Laguerre equivalent,if there is a Laguerre transformation ψ:U?n→U?nsuch that(x′,ξ′)=ψ?(x,ξ). In Laguerre geometry one studies properties and invariants of hypersurfaces in ?nunder the Laguerre transformation group.

    Laguerre geometry of surfaces in ?3has been developed by Blaschke and his schools[1]. Further discussions in this direction have been carried out by many other authors[25].

    In[6],Li and Wang have studied Laguerre dif f erential geometry of oriented hypersurfaces in?n.For any umbilical-free hypersurface x:M→?nwith non-zero principal curvatures,they def i ned a Laguerre invariant metric g,a Laguerre tensor L,a Laguerre form C and a Laguerre second fundamental form B on M,and showed that{g,B}is a complete Laguerre invariant system for hypersurfaces in ?nwith n>3.In the case n=3,a complete Laguerre invariant system for surfaces in ?3is given by{g,B,L}.

    An important class of hypersurfaces for Laguerre dif f erential geometry is the so-called Laguerre isopararmetric hypersurfaces in ?n.Recall that,according to[7],by a Laguerre isopararmetric hypersurface in ?n,we mean that it is an umbilical free hypersurface with non-zero principal curvature of ?nsuch that Laguerre form vanishes and all Laguerre principal curvatures are constant.Note that,by Laguerre principal curvatures,we mean the so-called eigenvalues of B with respect to g.In[7],Li and Sun classif i ed all Laguerre isopararmetric hypersurfaces in?4.Recently,we have classif i ed all Laguerre isopararmetric hypersurfaces in ?5and ?6.Here, we will classify all Laguerre isopararmetric hypersurfaces in ?7with three distinct principal curvatures.In order to obtain our result,we will use the following theorems.

    Theorem 1.1[8]Let x:Mn?1→?nbe an umbilical free hypersurface with non-zero principal curvatures.If its Laguerre second fundamental form is parallel,then x is Laguerre equivalent to an open part of one of the following hypersurfaces.

    (1)The oriented hypersurface x:Sk?1×?n?k→?nwill be given by the following Example 1;

    (2)The image of τ of the oriented hypersurface x:?n?1→?n0will be given by the following Example 2.

    Theorem 1.2[9]Let x:Mn?1→?nbe an umbilical free hypersurface with non-zero principal curvatures,where x has constant Laguerre eigenvalues.If Laguerre form of x is vanishing and x is not a Laguerre isotropic hypersurface,then x is Laguerre equivalent to an open part of one of the following hypersurfaces.

    (1)The oriented hypersurface x:Sk?1×?n?k→?nwill be given by the following Example 1;

    (2)The oriented hypersurface will be given by the following Example 3.

    Example 1For any integer k with 1≤k≤n?1 we denote by ?n?k={(v,w)∈|υ·υ?ω2=?1,ω>0}the hyperbolic space embedded in the Minkowski spaceand Sk?1the k?1-dimensional unit sphere in ?k.We de fi ne x:Sk?1×?n?k→?nby

    In[8],the authors have proved that the Laguerre second fundamental form of x is parallel, and x is a Laguerre isopararmetric hypersurface with two distinct Laguerre principal curvatures.

    Before giving the second example,we have to describe the Laguerre embedding τ:→U?n(for details we refer to[6]).Letbe the Minkowski space with inner product

    We def i ne

    And we def i ne τ:U?n0→U?nby

    where x=(x1,x0,x1)∈?×?n?1×?,ξ=(ξ1+1,ξ0,ξ1)∈?×?n?1×? and

    From τ(x,ξ)=(x′,ξ′)∈U?n,we get a hypersurface x′:M→?n.

    Example 2For any positive integers m1,···,mswith m1+···+ms=n?1 and any non-zero constants λ1,···,λs,we def i ne x:?n?1→?n0,a space-like oriented hypersurface in?n0by

    where(u1,···,us)∈?m1×···×?ms=?n?1and|ui|2=ui·ui,i=1,···,s.Then τ?(x,ξ)= (x′,ξ′):?n?1→?n0and we get the hypersurface x′:?n?1→?n.

    In[8],the authors have proved that the Laguerre second fundamental form of x is parallel, and x is a Laguerre isopararmetric hypersurface with s distinct Laguerre principal curvatures.

    where kiare the principal curvatures of y.

    Let f:Sm(1)→?m+1be the canonical embedding where Sm(1)is a m-dimensional unit sphere.Locally we can def i ne hypersurface in ?nas follows,

    In[8],the authors have proved that x has constant Laguerre eigenvalues and vanishing Laguerre form,and x is a Laguerre isopararmetric hypersurface with two distinct Laguerre principal curvatures.

    Our main objective here is to prove the following main theorem.

    Theorem 1.3(Main Theorem)Let x:M6→?7be an umbilical free hypersurface with non-zero principal curvatures.If x is Laguerre isopararmetric hypersurfaces with three distinct Laguerre principal curvatures,then x is Laguerre equivalent to the image of τ of the oriented hypersurface x:?6→?70given by Example 2 with s=3.

    The organization of this paper is as follows.In section 2,we review some elementary facts of Laguerre geometry for hypersurfaces in ?n.In section 3,by investigating Laguerre isoparametric hypersurfaces in ?7with three distinct Laguerre principal curvatures and▽B/=0, we prove that there are no such Laguerre isopararmetric hypersurfaces(Theorem 3.1).Finally, in section 4,we complete the proof of the Main Theorem.

    §2.Laguerre Geometry of Hypersurfaces in ?n

    In this section,we review Laguerre invariants and structure equations of hypersurfaces in?n.For more details we refer to[6].

    Let ?n+3

    新課程改革要求課堂的教學(xué)形式要多樣化、活動化、開放化,提倡將一些生動有趣的教學(xué)形式引入課堂。因此,打造學(xué)生的幸福課堂,必須豐富我們的課堂教學(xué)形式。

    2be the space ?n+3,equipped with the inner product

    Let Cn+2be the light-cone in ?n+3given by Cn+2={X∈?n2+3|〈X,X〉=0}.Denote by LG the subgroup of orthogonal group O(n+1,2)on ?n2+3given by

    where?=(1,?1,0,0),0∈Rn,is a light-like vector in ?n+32.

    Let x:M→?nbe an umbilical free hypersurface with non-zero principal curvatures and ξ:M→Sn?1be its unit normal.Let{e1,···,en?1}be the orthonormal basis for TM withrespect to dx·dx,consisting of unit principal vectors.We write the structure equations of x:M→?nby

    where ki/=0 is the principal curvature corresponding to ei.Let

    be the curvature radius and mean curvature radius of x respectively.We def i ne

    Theorem 2.1Let x,x?:M→?nbe two umbilical free oriented hypersurfaces with non-zero principal curvatures.Then x andx? are Laguerre equivalent if and only if there exists T∈LG such thatY?=Y T.

    From this theorem we see that

    is a Laguerre invariant metric,where III is the third fundamental form of x.

    Letting△be the Laplace operator of g,we def i ne

    and

    From(2.1)we get

    Let{E1,···,En?1}be an orthonormal basis for g=〈dY,dY〉with dual basis{w1,···,wn?1}. Then we have the following orthogonal decomposition

    We call{Y,N,E1(Y),E2(Y),···,En?1(Y),η,?}a Laguerre moving frame in ?n+32of x.By taking derivatives of this frame,we obtain the following structure equations

    From these equations we obtain the following basic Laguerre invariants.

    1)The Laguerre metric g=〈dY,dY〉;

    2)The Laguerre second fundamental form

    3)The Laguerre symmetric 2-tensor

    The covariant derivative of Lij,Bijare def i ned by

    The second covariant derivative of Bijare def i ned by

    By exterior dif f erentiation of(2.6),we have the following Ricci identities

    By taking further derivatives of(2.2)~(2.4),we get the following relations between these invariants

    In the case n>3,we know from(2.13)and(2.15)that Ciand Lijare completely determined by the Laguerre invariants{g,B}and thus we get

    Theorem 2.2Two umbilical free oriented hypersurfaces in ?n(n>3)with non-zero principal curvatures are Laguerre equivalent if and only if they have the same Laguerre metric g and Laguerre second fundamental form B.

    We def i ne?Ei=riei,1≤i≤n?1,then{?E1,···,?En?1}is an orthonormal basis for III=dξ·dξ.Then{Ei=ρ?1?Ei|1≤i≤n?1}is an orthonormal basis for the Laguerre metric g and we write{w1,···,wn?1}for its dual basis.By a direct calculation,we have

    where,(Hessij)and▽are Hessian matrix and the gradient with respect to the third fundamental form III=dξ·dξ of the hypersurface x.

    §3.Laguerre Isoparametric Hypersurfaces with Three Distinct Laguerre Principal Curvatures

    In this section,we consider the case that x:M6→?7is a Laguerre isoparametric hypersurface with three distinct Laguerre principal curvatures.If▽B≡0,we can use Theorem 1.1 directly;Now,we only consider the case that▽B/=0.Since the Laguerre form C vanishes,we can choose an orthonormal basis{Ei|1≤i≤6}with respect to Laguerre metric g such that

    From(2.13)we have

    From(2.9),(2.11)and Laguerre form C=0,we see that both Lij,kand Bij,kare totally symmetric tensors.We def i ne

    From(2.6),(3.1)and{bi}being constant,we get that for all i,j,k

    3.1 Firstly,we consider the case that the multiplicities of principal curvatures are 2,2,2,respectively.

    Now,we assume

    and B1,B2and B3are mutually distinct.From(3.4)we have for all i,j

    In this subsection,we use the following convention of indices

    Lemma 3.1Bij,k/≡0,the following hold

    ProofFrom(2.7),(3.3)and(3.4),we have

    Therefore

    According to

    we can obtain

    Using Ricci identity(2.8)and(3.1),we have

    On the other hand,the Gauss equation(2.12)and(3.1)imply that

    From(3.10)and(3.11),we get

    It follows from(3.12)that

    Then,(3.8)~(3.9)and(3.13)give that B13,5B14,5+B13,6B14,6=0.Using the same way we can obtain the others.

    Lemma 3.2Using Ricci identity,the following hold

    ProofFrom(2.7),(3.3)and(3.4),we have

    Hence

    Analogously,we have

    From(3.1)and(2.8),we obtain

    Then,(3.14)follows from(3.17)~(3.19).

    From(3.6),we see that in{Bij,k}i≤j≤k,only eight elements,that is

    can be probably non-zero.Let α denote the number of non-zero elements in

    According to Lemma 3.1,we know that α=1,2,3,4,8.

    If α=1,without loss of generality we assume B13,5/=0,then we have one case:I-1;

    If α=2 and B13,5/=0,by Lemma 3.1 B13,6=B14,5=B23,5=0,so one of{B14,6,B24,5, B24,6,B23,6}is non-zero,then we have four cases:I-2-I-5;

    If α=3 and B13,5B14,6/=0,by Lemma 3.1 B13,6=B14,5=B23,5=B24,6=0,so one of{B24,5,B23,6}is non-zero,then we have two cases:I-6-I-7;If α=3 and B13,5B23,6/=0 or B13,5B24,5/=0,by Lemma 3.1 we have one case:I-(7)B24,5B13,5B23,6/=0.However,using the symmetry of indices 1 and 2 and the symmetry of indices 5 and 6,we easily see that I-(7)can be transformed into I-7.If B13,5B24,6/=0,by Lemma 3.1,we needn’t to consider;

    If α=4 and B13,5B14,6B24,5/=0,by Lemma 3.1,we have one case:I-8;

    In summary,we are sufficient to consider the following nine independent cases

    I-1 B13,5/=0 and B13,6=B14,6=B14,5=B24,5=B24,6=B23,5=B23,6=0;

    I-2 B13,5B14,6/=0 and B13,6=B14,6=B14,5=B24,5=B23,5=B23,6=0;

    I-3 B13,5B23,6/=0 and B13,6=B24,6=B14,5=B24,5=B23,5=B23,6=0;

    I-4 B13,5B24,5/=0 and B13,6=B14,6=B14,5=B24,5=B24,6=B23,5=0;

    I-5 B13,5B24,6/=0 and B13,6=B14,6=B14,5=B24,6=B23,5=B23,6=0;

    I-6 B13,5B14,6B24,5/=0 and B13,6=B14,5=B24,6=B23,5=B23,6=0;

    I-7 B13,5B14,6B23,6/=0 and B13,6=B14,5=B24,5=B24,6=B23,5=0;

    I-8 B13,5B14,6B23,6B24,5/=0 and B13,6=B14,5=B24,6=B23,5=0;

    I-9 B13,5B13,6B14,6B14,5B24,5B24,6B23,5B23,6/=0.

    Proposition 3.3Case I-1-I-9 do not occur.

    Proof of Proposition 3.3

    I-1B13,5/=0 and B13,6=B14,6=B14,5=B24,5=B24,6=B23,5=B23,6=0.

    From Lemma 3.2,we have

    Since

    then,we get B13,5=0,a contradiction,so I-1 does not occur.Using the same way,we can obtain I-2~I(xiàn)-4 do not occur.

    From Lemma 3.2,we have

    Since

    I-6 B13,5B14,6B24,5/=0 and B13,6=B14,5=B24,6=B23,5=B23,6=0.

    From Lemma 3.2,we have

    From

    we have

    From

    we get

    Then(3.21)+(3.20)gives that B13,5=0,a contradiction,so I-6 does not occur.Using the same way,we can obtain I-7 does not occur.

    I-8B13,5B14,6B24,5B23,6/=0 and B13,6=B14,5=B24,6=B23,5=0.

    From Lemma 3.2,we have

    Since

    then,we have

    From a5?a6=R1515?R1616=R2525?R2626,we get

    (3.22)+(3.23)gives that

    (3.22)+(3.24)gives that

    It follows from(3.25)and(3.26)that.Hence,we have R1313?R2323=a1?a2=0,R1313?R1414=a3?a4=0,R2525?R2626=a5?a6=0. Which imply that

    Since

    then,we have two functions λ andμso that a1+λb1=a3+λb3=a5+λb5=μ.

    From(3.5),(3.27),we have

    At the end of the paper,we can prove λ andμare constant.Thus,L has constant eigenvalues. If a6=a5=a4=a3=a2=a1,according to the above formulas,from R1313=R1515and R1313=R3535we have

    Which implies that B1=B2,a contradiction.So x is not a Laguerre isotropic hypersurface. According to Theorem 1.2 and the hypersurfaces in Example 3 has only two distinct Laguerre principal curvatures,this produces the contradiction and therefore I-8 does not occur.

    I-9 B13,5B13,6B14,6B14,5B24,5B24,6B23,5B23,6/=0.

    Since

    Then we have

    Hence,we have two functions λ andμso that

    At the end of the paper,we can prove λ andμare constant.Thus,L has constant eigenvalues. From Lemma 3.2,we have

    If a6=a5=a4=a3=a2=a1,from the above formulas,we have

    Analogously,we can obtain

    It follows from(3.28)and(3.29)that B1=B2,a contradiction.So x is not a Laguerre isotropic hypersurface.According to Theorem 1.2 and the hypersurfaces in Example 3 has only two distinct Laguerre principal curvatures,this produces the contradiction and therefore I-9 does not occur.

    3.2Now,we consider the case that the multiplicities of principal curvatures are 1,2,3,respectively.

    We assume

    From(3.4),we have for all i,j

    In this subsection,we use the following convention of indices

    Lemma 3.4Bij,k/≡0,the following hold

    ProofFrom

    we get

    According to

    we can obtain

    (3.12),(3.33)and(3.34)give that B12,4B13,4=0.using the same way we have the others.

    Lemma 3.5Using Ricci identity,the following hold

    ProofUsing the similar proof of Lemma 3.2.

    Since▽B/=0,according to Lemma 3.4,we know that at most one of{B12,4,B12,5,B12,6}or {B13,4,B13,5,B13,6}is nonzero.Hence,at most two of{B12,4,B12,5,B12,6,B13,4,B13,5,B13,6} are nonzero.According to Lemma 3.4,we may assume B12,4/=0 and B12,5=B12,6=B13,4= B13,5=B13,6=0,or B12,4B13,5/=0 and B12,5=B12,6=B13,4=B13,6=0,or B12,4B13,6/=0 and B12,5=B12,6=B13,4=B13,5=0,so we need consider the following three cases.

    Case II-1B12,4/=0 and B12,5=B12,6=B13,4=B13,5=B13,6=0;

    Case II-2B12,4B13,5/=0 and B12,5=B12,6=B13,4=B13,6=0;

    Case II-3B12,4B13,6/=0 and B12,5=B12,6=B13,4=B13,5=0.

    Proposition 3.6Case II-1~I(xiàn)I-3 do not occur.

    ProofII-1 B12,4/=0 and B12,5=B12,6=B13,4=B13,5=B13,6=0.

    From Lemma 3.5,we have

    From

    We obtain B12,4=0,a contradiction.So Case II-1 does not occur.Using the same way,we can obtain II-2 and II-3 do not occur.

    As a combination of Proposition 3.3 and Proposition 3.6,we have

    Theorem 3.1Let x:M6→?7be an umbilical free hypersurface with non-zero principal curvatures.If x is Laguerre isopararmetric hypersurfaces with three distinct Laguerre principal curvatures,then▽B≡0.

    ClaimLet x:Mn?1→?nbe an umbilical free hypersurface with non-zero principal curvatures which satisf i es(i)C=0(ii)L+λg+μB=0 for some functions λ andμ,then λ andμare constant.

    ProofUsing the similar proof of[10].

    §4.Proof of Theorem 1.3

    Let x:M6→?7be an umbilical free hypersurface with non-zero principal curvatures.If x is Laguerre isopararmetric hypersurfaces with three distinct Laguerre principal curvatures, then,by Theorem 3.1,Theorem 1.1,Example 1 and Example 2,we complete the proof of Theorem 1.3.

    [1]BLASCHE W.Vorlesungen¨Uber Dif f erentialgeometrie[M].Berlin:Springer-Verlag,1929.

    [2]LI Tong-zhu.Laguerre geometry of surfacs in ?3[J].Acta Mathematica Sinica,2005,21:1525-1534.

    [3]MUSSO E,NICOLODI L.Laguerre geomery of surfaces with plane lines of curvature[J].Abh Math Sem Univ Hamburg,1999,69:123-138.

    [4]MUSSO E,NICOLODI L.The Bianchi-Darboux transformation of L-isothermic surfaces[J].International Journal of Mathematics,2000,11:911-924.

    [5]PALMER B.Remarks on a variation problem in Laguerre geometry[J].Rendiconti di Mathematica,Serie VII,1999,19:281-293.

    [6]LI Tong-zhu,WANG Chang-ping.Laguerre geometry of hypersurfacs in ?n[J].Manuscripta Math,2007, 122:73-95.

    [7]LI Tong-zhu,SUN Hua-fei.Laguerre isopararmetric hypersurfaces in ?4[J].Acta Mathematica Sinica, English Series,2011,28:1179-1186.

    [8]LI Tong-zhu,LI Hai-zhong,WANG Chang-ping.Classif i cation of hypersurfacs with parallel Laguerre second fundamental form in ?n[J].Dif f erential Geom Appl,2010,28:148-157.

    [9]LI Tong-zhu,LI Hai-zhong,WANG Chang-ping.Classif i cation of hypersurfacs with constant Laguerre eigenvalues in ?n[J].Science China Mathematics,2011,54:1129-1144.

    [10]LI Hai-zhong,WANG Chang-ping.Mobius geometry of hypersurfacs with constant mean curvature and constant scalar curvature[J].Manuscripta Math,2003,112:1-13.

    tion:53A40,53B25

    1002–0462(2014)04–0486–15

    date:2012-10-15

    Supported by the Department of Education of Hubei Province(B2014281)

    Biographies:JI Xiu(1979-),female,native of Xinyang,Henan,a lecturer of Yangtze University,M.S.D., engages in global dif f erential geometry;HU Chuan-feng(1978-),male,native of Xinyang,Henan,a lecturer of Yangtze University,M.S.D.,engages in global dif f erential geometry and combinatorics and graph theory.

    CLC number:O186.11Document code:A

    猜你喜歡
    形式新課程改革
    2021聚焦新課程 專注新高考 歡迎訂閱全新《新高考》
    改革之路
    金橋(2019年10期)2019-08-13 07:15:20
    微型演講:一種德育的新形式
    搞定語法填空中的V—ing形式
    改革備忘
    發(fā)現(xiàn)“形式” 踐行“形式”
    改革創(chuàng)新(二)
    發(fā)揮自制教具在初中數(shù)學(xué)新課程實施中的作用
    我區(qū)初中化學(xué)新課程實施中典型問題的思考
    西藏科技(2015年1期)2015-09-26 12:09:31
    瞧,那些改革推手
    亚洲国产精品999在线| 国产欧美日韩一区二区精品| 亚洲天堂国产精品一区在线| 国产午夜精品论理片| 小说图片视频综合网站| 18禁黄网站禁片免费观看直播| 国产三级黄色录像| 99在线视频只有这里精品首页| 色尼玛亚洲综合影院| 亚洲成av人片在线播放无| 99久久久亚洲精品蜜臀av| 精品国产美女av久久久久小说| 国产黄色小视频在线观看| 国产成人av教育| 啦啦啦观看免费观看视频高清| 小说图片视频综合网站| 欧美黄色片欧美黄色片| 性色avwww在线观看| 国产激情久久老熟女| 成人永久免费在线观看视频| 悠悠久久av| 丰满人妻一区二区三区视频av | www.www免费av| 亚洲欧美精品综合久久99| 国产成+人综合+亚洲专区| 此物有八面人人有两片| av在线天堂中文字幕| 亚洲精品久久国产高清桃花| 国产精品美女特级片免费视频播放器 | 免费观看人在逋| 69av精品久久久久久| 欧美3d第一页| 亚洲欧美日韩东京热| 免费看a级黄色片| 琪琪午夜伦伦电影理论片6080| 一本一本综合久久| 国产欧美日韩精品一区二区| 每晚都被弄得嗷嗷叫到高潮| 九色成人免费人妻av| 成年人黄色毛片网站| 午夜久久久久精精品| 国产精品99久久99久久久不卡| 国产精品香港三级国产av潘金莲| 亚洲国产精品成人综合色| 亚洲精品456在线播放app | 亚洲黑人精品在线| 亚洲精品乱码久久久v下载方式 | 美女黄网站色视频| 国产真实乱freesex| 中文字幕久久专区| 91字幕亚洲| 亚洲精品国产精品久久久不卡| 亚洲成av人片免费观看| 国产精品电影一区二区三区| 黄色 视频免费看| 男女床上黄色一级片免费看| 国产精品美女特级片免费视频播放器 | 午夜a级毛片| 最近最新中文字幕大全免费视频| av黄色大香蕉| 久久香蕉精品热| 国产欧美日韩一区二区三| 国产精品 国内视频| 99热这里只有精品一区 | 成在线人永久免费视频| 久久久国产成人精品二区| 国产熟女xx| 最好的美女福利视频网| 亚洲av第一区精品v没综合| 国产精品亚洲av一区麻豆| 国产黄片美女视频| 国产精品久久久久久精品电影| 久久亚洲真实| 亚洲在线自拍视频| 午夜福利在线在线| 久久久精品欧美日韩精品| 欧美色视频一区免费| 淫妇啪啪啪对白视频| 精品国产超薄肉色丝袜足j| 美女高潮喷水抽搐中文字幕| 麻豆国产av国片精品| 中文字幕久久专区| 国产男靠女视频免费网站| 国产精品女同一区二区软件 | 18禁黄网站禁片免费观看直播| 最近最新中文字幕大全免费视频| 九色国产91popny在线| 亚洲中文字幕一区二区三区有码在线看 | 夜夜夜夜夜久久久久| 国产熟女xx| 97人妻精品一区二区三区麻豆| 欧美日韩乱码在线| 国产激情久久老熟女| 又紧又爽又黄一区二区| 一进一出好大好爽视频| 1024手机看黄色片| 国产成人精品久久二区二区免费| 日韩欧美精品v在线| а√天堂www在线а√下载| 精品午夜福利视频在线观看一区| 黄色成人免费大全| 男女床上黄色一级片免费看| aaaaa片日本免费| 国产午夜精品论理片| 中文字幕人成人乱码亚洲影| 亚洲国产欧美一区二区综合| 亚洲欧美日韩高清在线视频| 欧美+亚洲+日韩+国产| 国产精品爽爽va在线观看网站| 夜夜夜夜夜久久久久| 国产精品亚洲美女久久久| 亚洲自偷自拍图片 自拍| 麻豆成人午夜福利视频| 国产成人av教育| 真实男女啪啪啪动态图| 网址你懂的国产日韩在线| 好男人电影高清在线观看| 国产真人三级小视频在线观看| 亚洲av免费在线观看| 嫁个100分男人电影在线观看| 亚洲在线观看片| 12—13女人毛片做爰片一| 国产亚洲欧美在线一区二区| 久久草成人影院| 亚洲av五月六月丁香网| 一二三四社区在线视频社区8| 在线观看免费午夜福利视频| 特级一级黄色大片| 香蕉av资源在线| 成年人黄色毛片网站| 中文字幕av在线有码专区| av中文乱码字幕在线| 18禁美女被吸乳视频| 国产av一区在线观看免费| 国产午夜福利久久久久久| 国产午夜精品久久久久久| 最新在线观看一区二区三区| 三级男女做爰猛烈吃奶摸视频| 精品乱码久久久久久99久播| 精品一区二区三区四区五区乱码| 国产精品一区二区三区四区免费观看 | 久久国产乱子伦精品免费另类| 久久久久久久精品吃奶| 91老司机精品| 人人妻人人澡欧美一区二区| 亚洲精华国产精华精| 九色国产91popny在线| 18禁观看日本| 偷拍熟女少妇极品色| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩黄片免| 床上黄色一级片| 麻豆av在线久日| 亚洲一区二区三区色噜噜| 在线a可以看的网站| 国产高清视频在线播放一区| 亚洲欧美日韩无卡精品| 国产精品免费一区二区三区在线| 最近视频中文字幕2019在线8| 俺也久久电影网| 国产单亲对白刺激| 一级毛片女人18水好多| 搡老熟女国产l中国老女人| 999久久久精品免费观看国产| 午夜免费成人在线视频| 免费电影在线观看免费观看| 搡老妇女老女人老熟妇| 脱女人内裤的视频| 精品国产三级普通话版| 久久久国产成人免费| 亚洲无线观看免费| 亚洲av美国av| 亚洲精品456在线播放app | 中亚洲国语对白在线视频| 欧美一级a爱片免费观看看| 国产精品久久久久久亚洲av鲁大| 亚洲国产精品成人综合色| 亚洲在线自拍视频| 国产精品香港三级国产av潘金莲| 午夜精品久久久久久毛片777| 亚洲人成电影免费在线| 天堂影院成人在线观看| 亚洲男人的天堂狠狠| 成人欧美大片| 小说图片视频综合网站| avwww免费| 国产伦人伦偷精品视频| 少妇的丰满在线观看| 好看av亚洲va欧美ⅴa在| 国产av在哪里看| 日韩欧美免费精品| 18禁黄网站禁片午夜丰满| 久久久精品大字幕| 变态另类成人亚洲欧美熟女| av中文乱码字幕在线| 琪琪午夜伦伦电影理论片6080| 又黄又粗又硬又大视频| 国内少妇人妻偷人精品xxx网站 | 久久人妻av系列| 久久久久国产精品人妻aⅴ院| 91字幕亚洲| 久久久久久大精品| 免费在线观看成人毛片| 9191精品国产免费久久| 午夜福利高清视频| 免费高清视频大片| 毛片女人毛片| 一本综合久久免费| 国产一区二区激情短视频| 国产v大片淫在线免费观看| 亚洲专区国产一区二区| 亚洲七黄色美女视频| 99热这里只有是精品50| 久久国产乱子伦精品免费另类| 禁无遮挡网站| 亚洲专区字幕在线| 天堂动漫精品| 久久伊人香网站| 男人舔女人的私密视频| 俺也久久电影网| 国产伦在线观看视频一区| 91麻豆精品激情在线观看国产| 亚洲人成伊人成综合网2020| av在线天堂中文字幕| 亚洲av电影不卡..在线观看| 精品一区二区三区视频在线观看免费| 欧美在线一区亚洲| 2021天堂中文幕一二区在线观| 亚洲国产精品成人综合色| 久久精品aⅴ一区二区三区四区| 亚洲五月婷婷丁香| 亚洲熟妇中文字幕五十中出| 在线观看日韩欧美| 最近视频中文字幕2019在线8| 欧美xxxx黑人xx丫x性爽| 啦啦啦免费观看视频1| 久久久久久大精品| 欧美又色又爽又黄视频| 亚洲专区字幕在线| 十八禁网站免费在线| 18禁观看日本| 中文字幕av在线有码专区| 又紧又爽又黄一区二区| 丰满人妻熟妇乱又伦精品不卡| 黑人操中国人逼视频| 99久久国产精品久久久| 亚洲成a人片在线一区二区| 亚洲自偷自拍图片 自拍| 亚洲国产精品久久男人天堂| 俺也久久电影网| 成人亚洲精品av一区二区| 亚洲精品中文字幕一二三四区| 国产日本99.免费观看| 亚洲性夜色夜夜综合| 18美女黄网站色大片免费观看| 国产在线精品亚洲第一网站| 国产欧美日韩一区二区精品| 亚洲精品色激情综合| 国产精品一区二区三区四区免费观看 | 久久久国产成人免费| 亚洲av片天天在线观看| 国产亚洲欧美98| 国产精品av视频在线免费观看| 国产熟女xx| 精品国产美女av久久久久小说| 亚洲精品一卡2卡三卡4卡5卡| 99热这里只有精品一区 | 1024香蕉在线观看| 亚洲人成网站在线播放欧美日韩| 久久久久久国产a免费观看| www.自偷自拍.com| 曰老女人黄片| 90打野战视频偷拍视频| 啦啦啦韩国在线观看视频| 99久久精品热视频| 亚洲成a人片在线一区二区| av在线蜜桃| 91久久精品国产一区二区成人 | 亚洲最大成人中文| 免费观看人在逋| 国产伦精品一区二区三区四那| 国产欧美日韩一区二区三| 99久国产av精品| 波多野结衣高清无吗| 欧美乱妇无乱码| 手机成人av网站| av在线天堂中文字幕| 99精品在免费线老司机午夜| 91麻豆精品激情在线观看国产| 欧美成人免费av一区二区三区| 久久久久亚洲av毛片大全| 老司机在亚洲福利影院| 两个人视频免费观看高清| 成人精品一区二区免费| АⅤ资源中文在线天堂| 久久午夜综合久久蜜桃| 香蕉av资源在线| 成熟少妇高潮喷水视频| 在线视频色国产色| e午夜精品久久久久久久| av在线蜜桃| 国产成人影院久久av| 手机成人av网站| 观看美女的网站| 丁香六月欧美| 99在线人妻在线中文字幕| 黄色丝袜av网址大全| 国产一区二区在线观看日韩 | 午夜成年电影在线免费观看| 在线观看一区二区三区| 校园春色视频在线观看| 人人妻人人澡欧美一区二区| 99久久精品国产亚洲精品| 午夜福利高清视频| 熟女人妻精品中文字幕| 1000部很黄的大片| 国产伦精品一区二区三区四那| 在线免费观看不下载黄p国产 | 中出人妻视频一区二区| 亚洲精品中文字幕一二三四区| 在线观看一区二区三区| 午夜两性在线视频| 99久久99久久久精品蜜桃| 色综合欧美亚洲国产小说| 老汉色∧v一级毛片| netflix在线观看网站| 欧美中文日本在线观看视频| 中国美女看黄片| 18禁国产床啪视频网站| 精品久久久久久,| 欧美日韩国产亚洲二区| 久久久久久久午夜电影| 人人妻,人人澡人人爽秒播| av福利片在线观看| 午夜久久久久精精品| 日韩成人在线观看一区二区三区| 三级男女做爰猛烈吃奶摸视频| 一级毛片女人18水好多| 色综合欧美亚洲国产小说| 免费搜索国产男女视频| 99国产精品一区二区三区| 中文字幕最新亚洲高清| 非洲黑人性xxxx精品又粗又长| 制服丝袜大香蕉在线| 欧美最黄视频在线播放免费| 老司机福利观看| 免费观看的影片在线观看| 亚洲av美国av| 午夜成年电影在线免费观看| x7x7x7水蜜桃| 禁无遮挡网站| 国产精品av久久久久免费| 国产主播在线观看一区二区| 99久国产av精品| 成年人黄色毛片网站| 国产精品,欧美在线| 97碰自拍视频| 欧美日韩精品网址| 日韩大尺度精品在线看网址| а√天堂www在线а√下载| 国产精品亚洲美女久久久| 亚洲成人中文字幕在线播放| 蜜桃久久精品国产亚洲av| 岛国在线免费视频观看| 在线观看66精品国产| 欧美中文综合在线视频| 美女午夜性视频免费| 亚洲欧美精品综合一区二区三区| 国产精品一区二区免费欧美| 女警被强在线播放| 岛国在线免费视频观看| 色吧在线观看| 午夜福利在线在线| 99国产精品一区二区三区| 午夜福利18| 亚洲精品一卡2卡三卡4卡5卡| 国产精品电影一区二区三区| 国产激情久久老熟女| 亚洲欧美精品综合一区二区三区| 成人欧美大片| 在线播放国产精品三级| 久久久久性生活片| 18禁裸乳无遮挡免费网站照片| 亚洲av日韩精品久久久久久密| 日本 av在线| 狂野欧美激情性xxxx| 非洲黑人性xxxx精品又粗又长| av福利片在线观看| 久久精品亚洲精品国产色婷小说| 91老司机精品| 亚洲国产欧洲综合997久久,| 美女被艹到高潮喷水动态| 久久久水蜜桃国产精品网| 夜夜躁狠狠躁天天躁| 99在线人妻在线中文字幕| 啦啦啦韩国在线观看视频| 亚洲精品国产精品久久久不卡| 国产av麻豆久久久久久久| 色综合站精品国产| 欧美乱色亚洲激情| 夜夜爽天天搞| 熟女电影av网| 在线观看日韩欧美| 日本与韩国留学比较| 性欧美人与动物交配| 18禁黄网站禁片免费观看直播| 成熟少妇高潮喷水视频| 欧美午夜高清在线| 亚洲在线自拍视频| 久久久国产精品麻豆| 小蜜桃在线观看免费完整版高清| 亚洲九九香蕉| 免费无遮挡裸体视频| 麻豆av在线久日| 亚洲 欧美 日韩 在线 免费| 亚洲成人久久爱视频| 人人妻,人人澡人人爽秒播| 美女高潮的动态| 欧美在线黄色| 国内久久婷婷六月综合欲色啪| 国产91精品成人一区二区三区| 九色国产91popny在线| 香蕉av资源在线| 亚洲在线观看片| 国产一区二区激情短视频| 9191精品国产免费久久| 99国产精品一区二区蜜桃av| 亚洲中文字幕日韩| 一进一出抽搐动态| 成人三级黄色视频| 亚洲国产中文字幕在线视频| 男女床上黄色一级片免费看| 中文字幕高清在线视频| 日韩欧美免费精品| 亚洲午夜精品一区,二区,三区| 老鸭窝网址在线观看| 国内精品一区二区在线观看| or卡值多少钱| 亚洲午夜理论影院| 久久久久久久精品吃奶| 日韩精品中文字幕看吧| 国内毛片毛片毛片毛片毛片| 又大又爽又粗| 99热精品在线国产| 丰满人妻熟妇乱又伦精品不卡| 999精品在线视频| 国产精品久久久久久人妻精品电影| 国产伦精品一区二区三区四那| 国产91精品成人一区二区三区| 伦理电影免费视频| 色噜噜av男人的天堂激情| 首页视频小说图片口味搜索| 亚洲乱码一区二区免费版| 一进一出抽搐动态| 不卡一级毛片| 亚洲国产色片| 日本黄大片高清| 嫩草影院入口| 一个人看视频在线观看www免费 | avwww免费| 在线免费观看不下载黄p国产 | 午夜福利欧美成人| 国产麻豆成人av免费视频| 日韩中文字幕欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产综合久久久| 琪琪午夜伦伦电影理论片6080| 欧美一级a爱片免费观看看| 一进一出好大好爽视频| 特大巨黑吊av在线直播| 日韩欧美精品v在线| 99久久精品国产亚洲精品| 大型黄色视频在线免费观看| 99精品久久久久人妻精品| 久久香蕉精品热| 欧美xxxx黑人xx丫x性爽| 激情在线观看视频在线高清| 亚洲七黄色美女视频| 亚洲一区二区三区不卡视频| 亚洲狠狠婷婷综合久久图片| 99精品在免费线老司机午夜| 亚洲国产欧洲综合997久久,| 日本一本二区三区精品| 国产成人福利小说| 欧美精品啪啪一区二区三区| 亚洲成av人片免费观看| 村上凉子中文字幕在线| 国产综合懂色| 黄色视频,在线免费观看| 国产精品一区二区精品视频观看| 在线观看免费午夜福利视频| 中文字幕人成人乱码亚洲影| 亚洲av电影不卡..在线观看| 国产真人三级小视频在线观看| 禁无遮挡网站| 狂野欧美激情性xxxx| av天堂在线播放| 在线免费观看不下载黄p国产 | АⅤ资源中文在线天堂| 超碰成人久久| 美女cb高潮喷水在线观看 | 国内久久婷婷六月综合欲色啪| 国产成人福利小说| 亚洲国产精品合色在线| 麻豆国产av国片精品| 男女午夜视频在线观看| 久久午夜综合久久蜜桃| 欧美性猛交╳xxx乱大交人| 变态另类成人亚洲欧美熟女| 美女 人体艺术 gogo| 午夜福利欧美成人| 国产激情欧美一区二区| 69av精品久久久久久| 悠悠久久av| 特大巨黑吊av在线直播| 亚洲精品美女久久av网站| 免费看光身美女| 香蕉国产在线看| 成人三级黄色视频| 午夜精品一区二区三区免费看| 国产精品精品国产色婷婷| 国产精品1区2区在线观看.| 国产真实乱freesex| 99re在线观看精品视频| 国产欧美日韩精品一区二区| 免费搜索国产男女视频| 好男人电影高清在线观看| 法律面前人人平等表现在哪些方面| 国产黄a三级三级三级人| 婷婷亚洲欧美| 亚洲人与动物交配视频| 久久久成人免费电影| 麻豆一二三区av精品| 亚洲精华国产精华精| 此物有八面人人有两片| 亚洲天堂国产精品一区在线| av在线天堂中文字幕| 国产精品久久久久久久电影 | 欧美精品啪啪一区二区三区| 麻豆成人午夜福利视频| 一区福利在线观看| 免费一级毛片在线播放高清视频| 嫩草影院入口| 日韩欧美 国产精品| 亚洲avbb在线观看| 久久久国产精品麻豆| 一级黄色大片毛片| 免费在线观看亚洲国产| 久久中文看片网| 在线观看舔阴道视频| 男插女下体视频免费在线播放| 日本与韩国留学比较| 99热这里只有是精品50| 狠狠狠狠99中文字幕| 身体一侧抽搐| 蜜桃久久精品国产亚洲av| 久久久久久大精品| 亚洲熟女毛片儿| 非洲黑人性xxxx精品又粗又长| 久久久国产欧美日韩av| 蜜桃久久精品国产亚洲av| 欧美黄色片欧美黄色片| 国产伦精品一区二区三区四那| 成在线人永久免费视频| 无限看片的www在线观看| 亚洲国产精品成人综合色| 黑人巨大精品欧美一区二区mp4| 亚洲成av人片免费观看| 亚洲 国产 在线| 国产成人欧美在线观看| 国产高清激情床上av| 国产精品一区二区免费欧美| 国产三级黄色录像| 一本综合久久免费| 99久久无色码亚洲精品果冻| 99视频精品全部免费 在线 | 日韩欧美 国产精品| 免费在线观看亚洲国产| av国产免费在线观看| 在线播放国产精品三级| 波多野结衣高清作品| 99国产精品99久久久久| 久久中文字幕一级| 国产精品国产高清国产av| 国模一区二区三区四区视频 | 1024手机看黄色片| 男人舔奶头视频| 亚洲精品456在线播放app | 天堂av国产一区二区熟女人妻| 午夜福利在线观看吧| 午夜福利18| 国产精品电影一区二区三区| 欧美成人一区二区免费高清观看 | 国内久久婷婷六月综合欲色啪| 叶爱在线成人免费视频播放| 999久久久精品免费观看国产| 精品久久久久久成人av| 淫秽高清视频在线观看| 成年女人看的毛片在线观看| 亚洲欧美精品综合久久99| 欧美性猛交黑人性爽| 欧美三级亚洲精品| 亚洲国产中文字幕在线视频| 久久中文字幕人妻熟女| 两个人的视频大全免费| 在线播放国产精品三级| 搡老妇女老女人老熟妇| 久久精品人妻少妇| 午夜久久久久精精品| 成人午夜高清在线视频| 又粗又爽又猛毛片免费看| 国产高清三级在线| 国产成人精品久久二区二区91| 久久欧美精品欧美久久欧美| xxx96com|