• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鎳催化芳烴鹵化物還原性交叉偶聯(lián)的反應(yīng)機理

    2014-06-23 06:51:48任清華
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:鹵化物化學(xué)系理學(xué)院

    蔣 峰 任清華

    (上海大學(xué)理學(xué)院化學(xué)系,上海200444)

    1 Introduction

    Unsymmetrical biaryl compounds are very important intermediates in modern organic synthesis and exist extensively in biologically active molecules.1The unsymmetrical biaryl units play a major role in natural product synthesis,2,3organic semiconductor,4material science,5,6and drug design.7In the last several decades,a lot of methods based on microwave,8,9photochemistry,10or other approaches11,12have been developed to form biaryl compounds.Among these methods,transition metal catalyzed cross-coupling reactions are important strategies,13-15especially in the formation of unsymmetrical biaryls.16-19

    Unfortunately,most of these reactions involve air-and moisture-sensitive organometallic reagents,which often cause some troublesome problems such asβ-H elimination and slow reductive elimination.20,21Therefore much attention has been paid to the reductive cross-coupling of aryl halides to form the biaryls.For example,Amatore and Gosmini22have studied Co-catalyzed formation of unsymmetrical biaryls and Gonget al.23have reported Ni-catalyzed cross-coupling of aryl halides to form unsymmetrical biaryls.

    However,although transition metal catalyzed reductive crosscoupling reactions have been widely studied experimentally,no theoretical investigation of the mechanisms of Ni-catalyzed reductive cross-coupling of aryl halides to form unsymmetrical biaryl using density functional theory(DFT)method has yet been reported.

    In this paper,we explore the Ni-catalyzed formation of unsymmetrical biaryls from bromobenzene(R1)and methyl 4-bromobenzoate(R2)using the DFT method.We mainly try to investigate the following questions.Firstly,how does the overall catalytic cycle take place?Secondly,are organometallic reagents formed in the reaction process?And finally,which reactant is favored to combine with the active Ni catalyst during the formation of the unsymmetrical biaryl?

    Our model calculations are based on the experimental work ofGong′sgroup.23The scheme of the reaction is shown in Fig.1.In the experimental study,R1and R2were the reactants and 4,4'-di-methyl-2,2'-bipyridine was the ligand.NiBr2was used as the catalyst precursor and CH3CN as the solvent.

    2 Computational details

    All calculations were implemented in the Gaussian 03 program24using density functional theory method with the B3LYP hybrid functional.25-28The 6-31G*basis set was used for C,H,O,and N,and the 6-311G*basis set was used for the Br atom.29,30The SDD quasi-relativistic pseudopotential and associated basis set was employed for Ni.31All gas phase geometries were fully optimized without any symmetry restriction,following the vibrational frequencies analysis to ensure that the local minima had zero imaginary frequencies and the transition state had exactly one.The C-PCM(conductor-like PCM)32single point calculation with the UFF radii based on the gas-phase optimized structure was carried out to evaluate the solvation effect in CH3CN solvent.Both the electronic and nonelectronic free energies in solution were added to the gas-phase Gibbs free energies to obtain the solution Gibbs free energies in CH3CN(ΔGsol,298 K).

    3 Results and discussion

    The investigations of the mechanisms for both Ni0-catalyzed33,34and NiI-catalyzed35-37processes have attracted considerable attention in recent years.Based on these previous works,we propose that the mechanisms of the reductive crosscoupling reaction shown in Fig.1 include the following basic steps:(1)first oxidative addition,(2)reduction,(3)second oxidative addition,(4)reductive elimination and catalyst regeneration.The detailed catalytic cycles are outlined in Fig.2.

    3.1 First oxidative addition

    Fig.1 Ni-catalyzed reductive cross-coupling reaction of bromobenzene and methyl 4-bromobenzoate

    It can be seen from Fig.2 that the starting species NiBr2is reduced by Zn while connecting with the ligand to form the starting catalyst CA1,NiI-L-Br.The reaction goes through Path II if the reactant R1firstly attacks CA1,while Path IV labels the mechanism in which the reactant R2first attacks CA1.However,it is also possible that the catalyst CA1is reduced by Zn again to form the active Ni0catalyst CA0.Then the reactant R1attacks CA0to go through Path I or the reactant R2attacks CA0to go through Path III.We explore all possible paths below.

    3.1.1 First oxidative addition catalyzed by Ni0(Path I and Path III)

    As far as what we know,Ni0and NiIIcompounds have two multiplicities,namely,in the singlet or triplet states.Both of them will be discussed in the following studies.

    3.1.1.1 First oxidative addition of triplet Ni0with the reactants(R1in Path I and R2in Path III)

    For the studied system shown in Fig.1,the single electron transfer mechanism could not be found although it has been reported in the process of oxidative addition of the triplet Ni complexes with organohalogen compounds.38,39In the triplet Ni0mechanism of Path I or Path III,aπcomplex is formed before the first oxidative addition aiming to minimize the system energy,which is shown in Fig.3.The approach of R1or R2towards the active catalyst triplet Ni0(L),CA0t,leads to the formation ofπcomplexes(CP1tor CP2t),which decreases the electronic energy by 65.52 or 72.05 kJ·mol-1,respectively.

    Fig.2 Outline of the mechanisms for Ni-catalyzed formation of unsymmetrical biaryl Pfrom R1and R2

    From CP1t(triplet Ni0)or CP2t(triplet Ni0),after passing through the transition state TS1t(triplet Ni0)or TS4t(triplet Ni0),the intermediate IN1s(singlet NiII)or IN4s(singlet NiII)is formed.It is probably that the TS1tor TS4ttransforms adiabatically into IN1sor IN4sfrom CP1tor CP2tby a spin intercrossing process with a singlet potential energy surface.40The energy of IN1s(singlet NiII)or IN4s(singlet NiII)is 18.68 or 20.22 kJ·mol-1smaller than IN1t(triplet NiII)or IN4t(triplet NiII),which means that the singlet intermediate IN1sor IN4sis more stable.From the optimized structures shown in Fig.3,it can be seen that the Br,C,and two N atoms around the Ni center in TS1tand IN1sare nearly in one plane,but the Br―Ni bond in IN1tis nearly perpendicular to the plane of N―Ni―N.The optimized structure of IN1tor IN4t(shown in the Supporting Information)is very different from that of TS1tor TS4t.Nevertheless,it is also possible that the system proceeds from CP1tor CP2tto IN1tor IN4trather than to IN1sor IN4sconsidering the fact that the energy differences between the singlet and the triplet intermediates are not too much.

    From the optimized structures shown in Fig.3,it can be seen that the distance of Br-Ni in CP1tis 0.315 nm.It becomes shorten to 0.292 nm in TS1tand to 0.233 nm in IN1s.At the same time the Br―C bond is broken in IN1s(0.297 nm).From Fig.3,we can also see that the energy barrier for the first oxidative addition of the triplet Ni0-catalyzed step in Path I or in Path III is very small(9.42 kJ·mol-1for TS1t,5.35 kJ·mol-1for TS4t).

    3.1.1.2 First oxidative addition of singlet Ni0with the reactants(R1in Path I and R2in Path III)

    The energy of the singlet Ni0catalyst CA0s(shown in Fig.4)is 82.35 kJ·mol-1higher than the triplet Ni0catalyst CA0t.The detailed data of them are listed in the Supporting Information.The possible reason is that CA0spresents a distorted structure(the dihedral angle N―C―C―N is 25.5°),while CA0thas an N―C―C―N planar structure.The transition state from CP1sor CP2sto attain the intermediate IN1sor IN4sis TS1sor TS4s,respectively,where the corresponding electronic energy barrier is 39.77 or 32.62 kJ·mol-1.From the optimized structures shown in Fig.4,it can be seen that the Br―C bond is broken in IN1s(0.297 nm,compared to 0.203 nm in CP1sand 0.195 nm in TS1s),while the Ni―C bond is formed in IN1s(0.189 nm,compared to 0.282 nm in TS1sand 0.357 nm in CP1s).The process in going from CP2sto obtain IN4sis similar.From Fig.3 and Fig.4,we can see that the energy barrier of the singlet Ni0-catalyzed step(39.77 kJ·mol-1for TS1sin Path I or 32.62 kJ·mol-1for TS4sin Path III)is higher than that of the triplet Ni0-catalyzed step(9.42 kJ·mol-1for TS1tin Path I or 5.35 kJ·mol-1for TS4tin Path III)in the first oxidative addition,which means that the triplet Ni0mechanism is favored over the singlet Ni0mechanism.

    3.1.2 First oxidative addition catalyzed by NiI(Path II and Path IV)

    The NiI-catalyzed process starts from the active catalyst[NiI(L)(Br)],CA1.No complex could be found when the catalyst CA1attacks the reactant R1or R2.For a similar situation,Cárdenaset al.41also could not find a complex structure when they studied the mechanism of Ni-catalyzed cross-coupling of alkyl zinc halides for the formation of C(sp2)―C(sp3)bonds.The energy profiles and the optimized geometries of the NiI-catalyzed processes are shown in Fig.5.The intermediate IN7(for Path II)or IN8(for Path IV)is obtained from the oxidative addition of CA1with R1or R2after passing through the transition state TS7or TS8,respectively.

    In the first oxidative addition step of NiI-catalyzed process,it can be seen that the energy barrier of TS7is 53.34 kJ·mol-1for Path II,while the energy barrier of TS8is 45.72 kJ·mol-1for Path IV.Obviously,they are much higher than the energy barrier of TS1t(9.42 kJ·mol-1)or TS4t(5.35 kJ·mol-1)for the triplet Ni0-catalyzed processes.Overall,the triplet Ni0-catalyzed mechanism is favored for the first oxidative addition.

    Fig.3 Optimized structures and electronic energies of the first oxidative addition of triplet Ni0catalyst(CA0t)with the reactant R1or R2

    Fig.4 Optimized structures and electronic energies of the first oxidative addition of singlet Ni0catalyst(CA0s)with the reactant R1or R2

    3.2 Reduction

    The reduction processes by Zn powder in this article were not computed based on the following reasons:currently,no suitable model can be used to describe Zn aggregates;furthermore,the barrier for the reduction step is negligible compared to the energy of the rate-determining step.42The reduction step of a catalyst precursor to produce the catalyst is the first step in many traditional cross-coupling reactions,which is generally ignored in studies of the mechanism of transition metal catalyzed cross-coupling reactions.35,41,43Hence,it is safe to ignore these processes for our system.The middle product of reduction from IN1(t,s)for Path I or from IN7for Path II is IN2and the middle product of reduction from IN4(t,s)for Path III or IN8for Path IV is IN5.

    3.3 Second oxidative addition

    The second oxidative addition is initiated from the middle product of reduction IN2or IN5.The approach of R2towards IN2leads to the formation of the intermediate IN3after passing through the transition state TS2.The energy barrier of TS2is 70.50 kJ·mol-1.Similarly,the approach of R1towards IN5results in the formation of the intermediate IN6after passing through the transition state TS5with the energy barrier of 49.66 kJ·mol-1.All of the optimized geometries and the electronic en-ergies are shown in Fig.6.It can be seen that the bond of Ni atom with the2C atom which came from R2is formed in IN3(0.194 nm,compared to 0.208 nm in TS2).Similarly,the bond of Ni atom with the1C atom coming from R1is formed in IN6(0.195 nm,compared to 0.212 nm in TS5).We can also see that the energy values of the transition states TS2and TS5are close and their optimized structures are similar.From the orbital analyses of TS2and TS5,their HOMO orbitals are also very similar(shown in the Supporting Information).These results show that it makes no significant difference to the second oxidative addition step whether R1or R2is the first to attack the catalyst.

    Fig.5 Optimized structures and electronic energies of the first oxidative addition of NiIcatalyst(CA1)with the reactant R1or R2

    3.4 Reductive elimination

    Once the intermediate of the second oxidative addition IN3or IN6has been produced,the reductive elimination step is an easy process without any large energy barriers.The barrier for passing through the transition state TS3from IN3to obtain the final product P while regenerating the catalyst CA1is 11.09 kJ·mol-1.Similarly,the energy barrier for passing through the transition state TS6from IN6to regenerate the catalyst CA1is 9.01 kJ·mol-1(see Fig.7).The values of the energy barriers for the reductive elimination steps are very small and our calculated results are in agreement with the work of Liuet al.43From the optimized structures shown in Fig.7,the C―C bond is formed in the final product P(0.148 nm,compared that the distance of C―C is 0.213 nm in TS3and 0.211 nm in TS6).

    3.5 Comparison of the catalytic cycles

    Based on the above results,we can see that the triplet Ni0-catalyzed mechanism is favored over both the singlet Ni0-catalyzed mechanism and the NiI-catalyzed mechanism for the reaction system shown in Fig.1.The favored triplet Ni0-catalyzed mechanism involves Path I where the Ni0catalyst first combines with R1or Path III where the Ni0catalyst first attacks R2.The energy profiles for the whole catalytic cycles of Path I and Path III are listed in Fig.8.It can be seen that the rate-determining step for Path I or Path III is the second oxidative addition step,where the energy barrier is 70.50 kJ·mol-1for Path I and 49.66 kJ·mol-1for Path III,respectively.The difference is small,which means that the preferential combinations of the active catalyst with the substrate R1or R2are both possible in this reaction system.Also,the reaction is produced at room temperature,23so the values of the energy barriers for the triplet Ni0mechanism are reasonable.

    Fig.6 Optimized structures and electronic energies of the second oxidative addition of IN2and IN5with the reactant R1or R2

    Fig.7 Optimized structures and electronic energies of reductive elimination

    3.6 Solvent effect

    All of the above results are calculated in gas phase.In order to investigate whether solvent effects can play a significant role in the process,we discuss here the calculated results for the Gibbs free energies in CH3CN solution for Path I.The calculated results for Path III are listed in the Supporting Information.

    The Gibbs free energies in gas phase(ΔG)and the Gibbs free energies in CH3CN solvent(ΔGsol,298 K)for the overall catalytic cycles of Path I are shown in Fig.9.The former is depicted as a solid line and the latter is drawn as a dashed line.It can be seen that the solvent effect is small in the first oxidative addition step.However,the solvent effect is obvious for the second oxidative addition step,where the ΔGsolis 86.04 kJ·mol-1,compared to the ΔG,123.70 kJ·mol-1.The solvent effect leads to a lowering of the energy barrier for the rate-limiting step in CH3CN solution.For the next reductive elimination step,the solvent effect is not significant.The ΔGsolis 11.64 kJ·mol-1,compared to the ΔG,7.87 kJ·mol-1.

    Overall the rate-determining step in solution is still the second oxidative addition and the solvent effect does not change the mechanism of the reaction.The results obtained from the gas-phase calculations can effectively be used for the reaction.

    3.7 Organometallic reagents

    In the last several years,transition metal catalyzedin situKumada and Negishi cross-coupling reactions have been ex-tensively studied.For instance,Czaplik et al.44investigated Fe-catalyzed Kumada cross-coupling reactions which need not prepare organomagnesium species;Co-catalyzed Negishi crosscoupling reactions of arylzinc species with benzyl chlorides were explored by Amatore and Gosmini;45Lipshutzet al.46investigated the Pd-catalyzed formation of unsymmetrical diarylmethanes without preparation of organozinc reagents.All of these outstanding works lead us to consider whether organometallic reagents are or are not produced in the reductive crosscoupling reaction of aryl halides.In order to answer this question,we simulate the process of the formation of arylzinc species in our reaction system.As shown in Fig.10(a),the energy barrier for passing through the transition state TS9to produce the organozinc reagent IN9in the oxidative addition step of Zn with reactant R1is 177.44 kJ·mol-1.This means that the organozinc reagent IN9is unlikely to be obtained in the mild experimental reaction condition.23Similarly,the energy barrier of TS10is 176.60 kJ·mol-1in Fig.10(b).This also suggests that the organozinc reagent IN10cannot be formed in our reaction condition.Our simulated results are in keeping line with the experimental data of Ni-catalyzed cross-coupling of aryl halides and alky halides inWeix′sgroup.47

    Fig.8 Energy profiles for the overall catalytic cycles of Path I and Path III

    Fig.9 Gibbs free energies in gas phase(ΔG,solid line)and Gibbs free energies in solvent CH3CN(ΔGsol,298 K,dashed line)for the overall catalytic cycles of Path I

    Fig.10 Energy profiles for the processes of producing the possible organometallic reagents

    4 Conclusions

    In this paper,DFT calculations using the B3LYP method have been carried out to thoroughly explore the mechanisms of the Ni-catalyzed reductive cross-coupling reaction of bromobenzene(R1)and methyl 4-bromobenzoate(R2)to form an unsymmetrical biaryl.

    Our calculated results showed that the favored mechanism is the triplet Ni0acting as the active catalyst,and includes four basic steps:(1)first oxidative addition;(2)reduction;(3)second oxidative addition;(4)reductive elimination and regeneration of the catalyst.Whether the triplet Ni0catalyst combines initially with the reactant R1or R2has a small effect on the overall catalytic cycle.When the active Ni0catalyst firstly combines with R1in Path I,the energy barrier for the rate-limiting step is 70.50 kJ·mol-1,which is a little higher than that for the Ni0catalyst combining first with R2in Path III(49.66 kJ·mol-1).Additionally,the energy barriers of producing organozinc reagents IN9and IN10are 177.44 and 176.60 kJ·mol-1,respectively,which means that organozinc reagents are extremely difficult to produce under the mild experimental reaction conditions which have actually been used.

    Homocoupling acting as a side reaction is always present in the transition metal catalyzed cross-coupling reactions.As far as we know,the experimental yield of the cross-coupling reaction of R1and R2is 52%.23Hence,the homocoupling byproducts is also expected to exist in this kind of reaction.Our calculated results show that the energy barriers of generating Ph―Ph or MeCOO―Ph―Ph―COOMe are 49.83 and 40.45 kJ·mol-1,respectively(the detailed data are listed in the Supporting Information).This proves that the homocoupling reactions are possible.Our recently paper48has already explored the mechanisms of homocoupling to form biphenyl in a similar system.So we have not discussed it here.

    Supporting Information:Detailed molecule coordinates of all optimized structures,the calculated energy values,the optimized structures of IN1tand IN4t,the HOMO orbitals of TS2and TS5,Gibbs free energies ΔGand ΔGsolof Path III have been included.This information is available free of chargeviathe internet at http://www.whxb.pku.edu.cn.

    (1) Torssell,K.B.Natural Product Chemistry:a Mechanistic and Biosynthetic Approach to Secondary Metabolism;John Wiley&Sons:New Jersey,1983;pp 401-404.

    (2) Bonesi,S.M.;Fagnoni,M.;Albini,A.Angew.Chem.Int.Edit.2008,47,10022.doi:10.1002/anie.v47:52

    (3) Corbet,J.P.;Mignani,G.Chem.Rev.2006,106,2651.doi:10.1021/cr0505268

    (4) Roncali,J.Chem.Rev.1992,92,711.doi:10.1021/cr00012a009

    (5)Yang,W.Y.;Ahn,J.H.;Yoo,Y.S.;Oh,N.K.;Lee,M.Nat.Mater.2005,4,399.doi:10.1038/nmat1373

    (6)Huang,Z.;Lee,H.;Lee,E.;Kang,S.K.;Nam,J.M.;Lee,M.Nat.Commun.2011,2,459.doi:10.1038/ncomms1465

    (7) Hajduk,P.J.;Bures,M.;Praestgaard,J.;Fesik,S.W.J.Med.Chem.2000,43,3443.doi:10.1021/jm000164q

    (8) Larhed,M.;Hallberg,A.J.Org.Chem.1996,61,9582.doi:10.1021/jo9612990

    (9) Blettner,C.G.;Ko¨nig,W.A.;Stenzel,W.;Schotten,T.J.Org.Chem.1999,64,3885.doi:10.1021/jo982135h

    (10) Fagnoni,M.;Mella,M.;Albini,A.Org.Lett.1999,1,1299.doi:10.1021/ol990982g

    (11) Mukhopadhyay,S.;Rothenberg,G.;Gitis,D.;Sasson,Y.J.Org.Chem.2000,65,3107.doi:10.1021/jo991868e

    (12)Inoue,A.;Kitagawa,K.;Shinokubo,H.;Oshima,K.Tetrahedron2000,56,9601.doi:10.1016/S0040-4020(00)00929-7

    (13) Hassan,J.;Sévignon,M.;Gozzi,C.;Schulz,E.;Lemaire,M.Chem.Rev.2002,102,1359.doi:10.1021/cr000664r

    (14)Wang,L.;Zhang,Y.;Liu,L.;Wang,Y.J.Org.Chem.2006,71,1284.doi:10.1021/jo052300a

    (15) Dankwardt,J.W.Angew.Chem.Int.Edit.2004,116,2482.

    (16)Dankwardt,J.W.J.Organomet.Chem.2005,690,932.doi:10.1016/j.jorganchem.2004.10.037

    (17) Catellani,M.;Motti,E.;Della Ca,N.;Ferraccioli,R.Eur.J.Org.Chem.2007,2007,4153.

    (18)Billingsley,K.L.;Barder,T.E.;Buchwald,S.L.Angew.Chem.Int.Edit.2007,119,5455.

    (19)Zhou,Z.;Liu,M.;Wu,X.;Yu,H.;Xu,G.;Xie,Y.Appl.Organomet.Chem.2013,27,562.

    (20) Breitenfeld,J.;Vechorkin,O.;Corminboeuf,C.;Scopelliti,R.;Hu,X.Organometallics2010,29,3686.doi:10.1021/om1007506

    (21) Jana,R.;Pathak,T.P.;Sigman,M.S.Chem.Rev.2011,111,1417.doi:10.1021/cr100327p

    (22)Amatore,M.;Gosmini,C.Angew.Chem.Int.Edit.2008,120,2119.

    (23)Qian,Q.;Zang,Z.;Wang,S.;Chen,Y.;Lin,K.;Gong,H.Synlett2013,24,619.doi:10.1055/s-00000083

    (24) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.et al.Gaussian 03,Revision 01;Gaussian Inc.;Wallingford,CT,2004.

    (25) Becke,A.D.Phys.Rev.A1988,38,3098.doi:10.1103/PhysRevA.38.3098

    (26) Becke,A.D.J.Chem.Phys.1993,98,5648.doi:10.1063/1.464913

    (27) Lee,C.T.;Yang,W.T.;Parr,R.G.Phys.Rev.B1988,37,785.doi:10.1103/PhysRevB.37.785

    (28) Stephens,P.J.;Devlin,F.J.;Chabalowski,C.F.;Frisch,M.J.J.Phys.Chem.1994,98,11623.doi:10.1021/j100096a001

    (29) Krishnan,R.;Binkley,J.S.;Seeger,R.;Pople,J.A.J.Chem.Phys.1980,72,650.doi:10.1063/1.438955

    (30)McLean,A.D.;Chandler,G.S.J.Chem.Phys.1980,72,5639.doi:10.1063/1.438980

    (31)Andrae,D.;Haussermann,U.;Dolg,M.;Stoll,H.;Preuss,H.Theor.Chim.Acta1990,77,123.doi:10.1007/BF01114537

    (32)Cossi,M.;Rega,N.;Scalmani,G.;Barone,V.J.Comput.Chem.2003,24,669.doi:10.1002/jcc.10189

    (33)Lin,B.L.;Liu,L.;Fu,Y.;Luo,S.W.;Chen,Q.;Guo,Q.X.Organometallics2004,23,2114.doi:10.1021/om034067h

    (34) Liu,Y.;Liu,J.W.;Yang,X.Z.Acta Phys.-Chim.Sin.2002,18,1068.[劉 躍,劉佳雯,楊小震.物理化學(xué)學(xué)報,2002,18,1068.]doi:10.3866/PKU.WHXB20021203

    (35) Li,Z.;Jiang,Y.Y.;Fu,Y.Chem.Eur.J.2012,18,4345.doi:10.1002/chem.v18.14

    (36) Lin,X.;Phillips,D.L.J.Org.Chem.2008,73,3680.doi:10.1021/jo702497p

    (37) Joshi-Pangu,A.;Ganesh,M.;Biscoe,M.R.Org.Lett.2011,13,1218.doi:10.1021/ol200098d

    (38)Tsou,T.T.;Kochi,J.K.J.Am.Chem.Soc.1979,101,6319.doi:10.1021/ja00515a028

    (39)Bakac,A.;Espenson,J.H.J.Am.Chem.Soc.1986,108,719.doi:10.1021/ja00264a024

    (40) Besora,M.;Carreón-Macedo,J.L.;Cimas,á.;Harvey,J.N.Adv.Inorg.Chem.2009,61,573.doi:10.1016/S0898-8838(09)00210-4

    (41) Phapale,V.B.;Guisán-Ceinos,M.;Bu?uel,E.;Cárdenas,D.J.Chem.Eur.J.2009,15,12681.doi:10.1002/chem.v15:46

    (42)Moncomble,A.;Le Floch,P.;Gosmini,C.Chem.Eur.J.2009,15,4770.doi:10.1002/chem.v15:19

    (43) Li,Z.;Zhang,S.L.;Fu,Y.;Guo,Q.X.;Liu,L.J.Am.Chem.Soc.2009,131,8815.doi:10.1021/ja810157e

    (44)Czaplik,W.M.;Mayer,M.;Jacobi von Wangelin,A.Angew.Chem.Int.Edit.2009,48,607.doi:10.1002/anie.v48:3

    (45)Amatore,M.;Gosmini,C.Chem.Commun.2008,5019.

    (46) Krasovskiy,A.;Duplais,C.;Lipshutz,B.H.J.Am.Chem.Soc.2009,131,15592.doi:10.1021/ja906803t

    (47) Everson,D.A.;Jones,B.A.;Weix,D.J.J.Am.Chem.Soc.2012,134,6146.doi:10.1021/ja301769r

    (48) Jiang,F.;Ren,Q.J.Organomet.Chem.2014,757,72.doi:10.1016/j.jorganchem.2013.12.047

    猜你喜歡
    鹵化物化學(xué)系理學(xué)院
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    昆明理工大學(xué)理學(xué)院學(xué)科簡介
    昆明理工大學(xué)理學(xué)院簡介
    硝酸銀沉淀法去除高鹽工業(yè)廢水中鹵化物對COD測定的干擾
    新興零維金屬鹵化物的光致發(fā)光與應(yīng)用研究進(jìn)展
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    一個二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    離子色譜法測定燃料電池汽車用燃料氫氣中的痕量鹵化物*
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    楊梅酮的抗氧化活性
    在线观看免费日韩欧美大片| 成人二区视频| 国产一级毛片在线| 如何舔出高潮| 国产免费又黄又爽又色| 国产淫语在线视频| 精品熟女少妇av免费看| 我的女老师完整版在线观看| 丰满少妇做爰视频| 精品人妻一区二区三区麻豆| 免费女性裸体啪啪无遮挡网站| 亚洲国产av影院在线观看| 美女xxoo啪啪120秒动态图| 日韩免费高清中文字幕av| 欧美成人午夜免费资源| 成人亚洲精品一区在线观看| 国产成人91sexporn| 日韩成人av中文字幕在线观看| 国产精品一二三区在线看| 少妇的逼水好多| 寂寞人妻少妇视频99o| 桃花免费在线播放| 成人无遮挡网站| 韩国精品一区二区三区 | 在线观看三级黄色| 欧美日韩av久久| 日本91视频免费播放| 青春草视频在线免费观看| 一区二区日韩欧美中文字幕 | 视频中文字幕在线观看| 亚洲国产成人一精品久久久| 90打野战视频偷拍视频| 亚洲国产av影院在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲成人一二三区av| 日韩成人伦理影院| 亚洲国产欧美日韩在线播放| 国产xxxxx性猛交| 久久人妻熟女aⅴ| 中国三级夫妇交换| 在线观看免费高清a一片| 国产一区亚洲一区在线观看| 日韩中字成人| 一区在线观看完整版| 又大又黄又爽视频免费| 777米奇影视久久| 人人澡人人妻人| 亚洲国产最新在线播放| 狂野欧美激情性bbbbbb| 天天躁夜夜躁狠狠躁躁| 男人添女人高潮全过程视频| 久久久久久久久久成人| 欧美日韩综合久久久久久| 久久99精品国语久久久| 久久99热这里只频精品6学生| 欧美3d第一页| 久久女婷五月综合色啪小说| 五月玫瑰六月丁香| 97人妻天天添夜夜摸| 亚洲精品久久成人aⅴ小说| 人成视频在线观看免费观看| 成人影院久久| 三上悠亚av全集在线观看| 久久久久精品人妻al黑| 中文字幕人妻熟女乱码| 国产免费一区二区三区四区乱码| 天天影视国产精品| 婷婷色麻豆天堂久久| 91久久精品国产一区二区三区| 熟女人妻精品中文字幕| 国产成人一区二区在线| 亚洲欧洲国产日韩| 热99国产精品久久久久久7| 国产免费又黄又爽又色| 只有这里有精品99| 热re99久久国产66热| 韩国精品一区二区三区 | av女优亚洲男人天堂| 国产精品麻豆人妻色哟哟久久| 最近中文字幕2019免费版| av免费在线看不卡| 九色亚洲精品在线播放| 尾随美女入室| 草草在线视频免费看| 亚洲成人手机| 国产色婷婷99| 国产精品成人在线| 国产高清不卡午夜福利| 国产一区二区在线观看av| 日韩欧美精品免费久久| 亚洲国产毛片av蜜桃av| 亚洲av国产av综合av卡| 青青草视频在线视频观看| 999精品在线视频| 久久久久国产网址| 国产精品国产三级国产av玫瑰| 亚洲四区av| 亚洲三级黄色毛片| 91aial.com中文字幕在线观看| 午夜免费鲁丝| 日本91视频免费播放| 午夜福利网站1000一区二区三区| 狂野欧美激情性xxxx在线观看| 韩国高清视频一区二区三区| 成人亚洲欧美一区二区av| 国产精品国产三级国产av玫瑰| 色婷婷久久久亚洲欧美| 人人妻人人爽人人添夜夜欢视频| 精品一区二区三区四区五区乱码 | 在线天堂中文资源库| 国产欧美日韩综合在线一区二区| 性色avwww在线观看| 国产日韩欧美在线精品| 亚洲精品乱码久久久久久按摩| 黑人欧美特级aaaaaa片| 97在线人人人人妻| 在线看a的网站| 色哟哟·www| 日韩一区二区三区影片| 亚洲av电影在线进入| 在线观看三级黄色| 香蕉精品网在线| 波野结衣二区三区在线| 久久久精品94久久精品| 黑人巨大精品欧美一区二区蜜桃 | 侵犯人妻中文字幕一二三四区| 国产精品不卡视频一区二区| 亚洲国产精品专区欧美| 少妇 在线观看| 久久精品国产亚洲av涩爱| 最新中文字幕久久久久| 亚洲国产精品成人久久小说| 精品人妻熟女毛片av久久网站| 视频区图区小说| 又黄又粗又硬又大视频| 国产成人一区二区在线| 久久久久国产精品人妻一区二区| 宅男免费午夜| 美女主播在线视频| 一本大道久久a久久精品| 两个人免费观看高清视频| 久久久a久久爽久久v久久| 免费观看av网站的网址| 男女边吃奶边做爰视频| 亚洲成人一二三区av| 夫妻性生交免费视频一级片| 中国国产av一级| 午夜精品国产一区二区电影| 中文天堂在线官网| 久久国产亚洲av麻豆专区| av在线app专区| 永久免费av网站大全| 久久久久人妻精品一区果冻| 精品亚洲成国产av| 国产精品成人在线| 国产精品熟女久久久久浪| 欧美变态另类bdsm刘玥| av福利片在线| 国产成人aa在线观看| 国产一区二区三区综合在线观看 | 国产午夜精品一二区理论片| 搡女人真爽免费视频火全软件| 在线 av 中文字幕| 国产成人精品福利久久| 欧美少妇被猛烈插入视频| 国产精品久久久久久久久免| 国产有黄有色有爽视频| 久久青草综合色| 久久久国产欧美日韩av| 如日韩欧美国产精品一区二区三区| 少妇猛男粗大的猛烈进出视频| 日本欧美视频一区| 日本av免费视频播放| 美国免费a级毛片| 久久久精品免费免费高清| 欧美日韩视频精品一区| 久久国内精品自在自线图片| 国产一区二区三区综合在线观看 | 午夜福利,免费看| www.色视频.com| 亚洲欧美一区二区三区国产| 99国产综合亚洲精品| www.熟女人妻精品国产 | 又粗又硬又长又爽又黄的视频| 国产精品一二三区在线看| 成人亚洲欧美一区二区av| 黑人猛操日本美女一级片| 欧美日韩亚洲高清精品| 母亲3免费完整高清在线观看 | 五月天丁香电影| 欧美激情国产日韩精品一区| 夫妻午夜视频| 精品亚洲成a人片在线观看| 亚洲av中文av极速乱| av国产精品久久久久影院| 亚洲人与动物交配视频| 男女无遮挡免费网站观看| 免费观看av网站的网址| 精品午夜福利在线看| 美女国产高潮福利片在线看| 久久国产精品男人的天堂亚洲 | 亚洲欧美中文字幕日韩二区| 又黄又爽又刺激的免费视频.| 国产欧美亚洲国产| 国产一区二区在线观看日韩| 天堂8中文在线网| 激情视频va一区二区三区| 欧美人与善性xxx| 日本av免费视频播放| 综合色丁香网| 久久99热6这里只有精品| 欧美老熟妇乱子伦牲交| 汤姆久久久久久久影院中文字幕| 欧美精品av麻豆av| 韩国av在线不卡| 国产毛片在线视频| 成人手机av| 国国产精品蜜臀av免费| 国产日韩欧美亚洲二区| 一级,二级,三级黄色视频| 日韩av免费高清视频| 如何舔出高潮| 一区二区三区精品91| 国产在视频线精品| 亚洲中文av在线| 亚洲精品视频女| 在线观看免费高清a一片| 考比视频在线观看| 精品久久蜜臀av无| 国产在线一区二区三区精| freevideosex欧美| a级毛片黄视频| 伦理电影大哥的女人| 男女高潮啪啪啪动态图| 一个人免费看片子| 久久这里只有精品19| 三级国产精品片| 中文字幕人妻丝袜制服| 丝袜美足系列| 亚洲,欧美,日韩| 日韩中文字幕视频在线看片| 中文字幕免费在线视频6| 美女大奶头黄色视频| 嫩草影院入口| 亚洲,欧美精品.| 最黄视频免费看| 亚洲精品乱码久久久久久按摩| 色网站视频免费| 美女国产视频在线观看| av国产久精品久网站免费入址| videos熟女内射| 寂寞人妻少妇视频99o| 国产亚洲午夜精品一区二区久久| 国产精品一二三区在线看| 亚洲国产日韩一区二区| 亚洲国产av新网站| 男人爽女人下面视频在线观看| 韩国av在线不卡| 国产无遮挡羞羞视频在线观看| 性高湖久久久久久久久免费观看| 国产精品秋霞免费鲁丝片| 一级毛片我不卡| 精品人妻在线不人妻| 成人手机av| 亚洲高清免费不卡视频| 乱码一卡2卡4卡精品| 一区二区三区精品91| 久久久国产一区二区| 国产欧美日韩一区二区三区在线| 国产成人精品无人区| 久久精品久久精品一区二区三区| 天天影视国产精品| 69精品国产乱码久久久| 18禁在线无遮挡免费观看视频| 国产淫语在线视频| 大香蕉久久成人网| 咕卡用的链子| 亚洲精品一二三| 国产一区二区在线观看日韩| 欧美日韩国产mv在线观看视频| 精品一品国产午夜福利视频| 国产 一区精品| 91精品伊人久久大香线蕉| 一个人免费看片子| 免费高清在线观看视频在线观看| 一区二区三区四区激情视频| 丝瓜视频免费看黄片| 国产有黄有色有爽视频| 黄色怎么调成土黄色| 精品亚洲成a人片在线观看| 午夜福利在线观看免费完整高清在| av免费在线看不卡| 亚洲欧美一区二区三区国产| 看免费成人av毛片| 久久人人爽人人爽人人片va| 激情视频va一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 一本色道久久久久久精品综合| 激情视频va一区二区三区| 亚洲第一区二区三区不卡| 天堂8中文在线网| 又黄又爽又刺激的免费视频.| 亚洲精品aⅴ在线观看| 国产亚洲欧美精品永久| 亚洲成人一二三区av| 亚洲,欧美,日韩| 七月丁香在线播放| av女优亚洲男人天堂| 国产白丝娇喘喷水9色精品| 丰满乱子伦码专区| 韩国av在线不卡| 亚洲精华国产精华液的使用体验| 亚洲欧美精品自产自拍| 少妇的逼好多水| 婷婷成人精品国产| 亚洲欧美一区二区三区黑人 | 久久人妻熟女aⅴ| 亚洲精品国产色婷婷电影| 日韩制服丝袜自拍偷拍| 日韩人妻精品一区2区三区| 欧美性感艳星| 巨乳人妻的诱惑在线观看| 日本色播在线视频| 亚洲国产精品成人久久小说| 欧美激情极品国产一区二区三区 | 国产一级毛片在线| 最近中文字幕2019免费版| 一级a做视频免费观看| 美女视频免费永久观看网站| 国产男女超爽视频在线观看| 亚洲欧洲日产国产| 午夜精品国产一区二区电影| 高清黄色对白视频在线免费看| 日本爱情动作片www.在线观看| 丝袜喷水一区| 超色免费av| 美国免费a级毛片| 18禁国产床啪视频网站| 色婷婷av一区二区三区视频| 少妇 在线观看| 欧美日韩综合久久久久久| 亚洲精品国产色婷婷电影| 久久精品国产鲁丝片午夜精品| 亚洲精品乱码久久久久久按摩| 少妇猛男粗大的猛烈进出视频| 精品视频人人做人人爽| 视频区图区小说| 久久久久久久国产电影| 精品国产一区二区久久| 新久久久久国产一级毛片| 最新的欧美精品一区二区| 啦啦啦视频在线资源免费观看| 十八禁网站网址无遮挡| 丰满乱子伦码专区| 国产色爽女视频免费观看| 最新中文字幕久久久久| 精品亚洲乱码少妇综合久久| 十分钟在线观看高清视频www| 新久久久久国产一级毛片| 亚洲综合色惰| 亚洲国产毛片av蜜桃av| 免费不卡的大黄色大毛片视频在线观看| 精品亚洲成a人片在线观看| 久久久久久伊人网av| 亚洲国产精品国产精品| 少妇的丰满在线观看| 精品亚洲成国产av| 久久人人爽人人爽人人片va| 赤兔流量卡办理| 国产视频首页在线观看| 在线观看国产h片| 一级片'在线观看视频| 午夜影院在线不卡| 亚洲欧洲日产国产| 久久亚洲国产成人精品v| 久久ye,这里只有精品| 国产又色又爽无遮挡免| 欧美日韩视频高清一区二区三区二| 免费在线观看完整版高清| 人人澡人人妻人| 91精品三级在线观看| 黄片播放在线免费| 九草在线视频观看| 好男人视频免费观看在线| 久久久久久久久久人人人人人人| 国产精品久久久久成人av| 肉色欧美久久久久久久蜜桃| 久久久久精品性色| 2022亚洲国产成人精品| 亚洲精品456在线播放app| 亚洲熟女精品中文字幕| 国产深夜福利视频在线观看| 中国三级夫妇交换| 精品一品国产午夜福利视频| 亚洲av电影在线观看一区二区三区| 人妻一区二区av| xxxhd国产人妻xxx| 亚洲成色77777| 最后的刺客免费高清国语| 在线天堂最新版资源| 国产精品久久久久成人av| 高清黄色对白视频在线免费看| 成年人午夜在线观看视频| av网站免费在线观看视频| 少妇 在线观看| 亚洲精品,欧美精品| 欧美亚洲日本最大视频资源| 亚洲国产av影院在线观看| 国产亚洲精品第一综合不卡 | 国产又色又爽无遮挡免| 久久99热这里只频精品6学生| av有码第一页| 高清欧美精品videossex| 国产福利在线免费观看视频| 一边摸一边做爽爽视频免费| 午夜av观看不卡| 激情视频va一区二区三区| 天天躁夜夜躁狠狠久久av| 春色校园在线视频观看| 高清视频免费观看一区二区| 欧美精品国产亚洲| 熟妇人妻不卡中文字幕| 欧美精品一区二区免费开放| 亚洲国产精品成人久久小说| 成人亚洲欧美一区二区av| 91精品国产国语对白视频| 国产精品人妻久久久久久| 色吧在线观看| 国产亚洲一区二区精品| 成年美女黄网站色视频大全免费| 久久99热这里只频精品6学生| 宅男免费午夜| 久久 成人 亚洲| 美女脱内裤让男人舔精品视频| 老司机亚洲免费影院| 1024视频免费在线观看| 亚洲国产欧美日韩在线播放| 七月丁香在线播放| 精品人妻在线不人妻| 黑人欧美特级aaaaaa片| 国产成人精品在线电影| 色婷婷久久久亚洲欧美| 在线观看免费日韩欧美大片| 丝瓜视频免费看黄片| 黑人高潮一二区| 午夜视频国产福利| 亚洲色图综合在线观看| 免费女性裸体啪啪无遮挡网站| 水蜜桃什么品种好| 国产熟女午夜一区二区三区| 精品人妻一区二区三区麻豆| 夫妻午夜视频| 久久久久国产网址| 国产亚洲精品久久久com| 亚洲精品乱码久久久久久按摩| 妹子高潮喷水视频| 亚洲国产av影院在线观看| 丝袜喷水一区| 国产精品一区二区在线不卡| 性高湖久久久久久久久免费观看| 国产成人免费无遮挡视频| 99国产精品免费福利视频| av播播在线观看一区| 涩涩av久久男人的天堂| 交换朋友夫妻互换小说| 中文乱码字字幕精品一区二区三区| 男女免费视频国产| 好男人视频免费观看在线| 岛国毛片在线播放| 综合色丁香网| 国产伦理片在线播放av一区| 中文字幕av电影在线播放| 狠狠婷婷综合久久久久久88av| 97人妻天天添夜夜摸| 午夜av观看不卡| 极品少妇高潮喷水抽搐| av一本久久久久| 国产一区二区激情短视频 | 丝袜在线中文字幕| 最近最新中文字幕免费大全7| 午夜免费观看性视频| 亚洲av电影在线观看一区二区三区| 看十八女毛片水多多多| 精品一区二区三区视频在线| 成人黄色视频免费在线看| 新久久久久国产一级毛片| 欧美另类一区| 五月开心婷婷网| 国产老妇伦熟女老妇高清| 街头女战士在线观看网站| 欧美成人午夜免费资源| √禁漫天堂资源中文www| 成年人免费黄色播放视频| 99久久精品国产国产毛片| 国产精品国产三级专区第一集| 免费黄网站久久成人精品| xxx大片免费视频| 亚洲国产精品999| 亚洲国产最新在线播放| 国产黄色免费在线视频| 久久精品国产a三级三级三级| 国产精品免费大片| 免费大片黄手机在线观看| 在现免费观看毛片| 中文欧美无线码| 亚洲精品一区蜜桃| 亚洲欧洲精品一区二区精品久久久 | 国产精品国产三级国产av玫瑰| 另类亚洲欧美激情| 91精品国产国语对白视频| 纵有疾风起免费观看全集完整版| 晚上一个人看的免费电影| 精品久久蜜臀av无| 不卡视频在线观看欧美| 在线 av 中文字幕| 最黄视频免费看| 精品国产一区二区三区四区第35| av国产精品久久久久影院| 最近最新中文字幕大全免费视频 | 亚洲国产欧美在线一区| 精品少妇黑人巨大在线播放| 亚洲四区av| 国产精品一国产av| 又黄又爽又刺激的免费视频.| 久久人人爽av亚洲精品天堂| 免费女性裸体啪啪无遮挡网站| 国产日韩欧美视频二区| 日韩不卡一区二区三区视频在线| 成人午夜精彩视频在线观看| 久久国产亚洲av麻豆专区| 男的添女的下面高潮视频| 18禁观看日本| 男女高潮啪啪啪动态图| 黑丝袜美女国产一区| 国产乱来视频区| 精品久久久久久电影网| kizo精华| 性色avwww在线观看| 免费人妻精品一区二区三区视频| 精品亚洲成国产av| 色视频在线一区二区三区| 寂寞人妻少妇视频99o| 亚洲国产欧美日韩在线播放| 777米奇影视久久| 看免费成人av毛片| 97人妻天天添夜夜摸| 精品国产一区二区久久| 18禁国产床啪视频网站| 又黄又粗又硬又大视频| 日本av免费视频播放| 夜夜爽夜夜爽视频| 高清不卡的av网站| 日韩av在线免费看完整版不卡| 国产在线一区二区三区精| 久久久久人妻精品一区果冻| 一级毛片黄色毛片免费观看视频| 热re99久久精品国产66热6| 精品午夜福利在线看| 黄色配什么色好看| 国产成人aa在线观看| 少妇人妻久久综合中文| 亚洲性久久影院| 五月天丁香电影| 日韩精品有码人妻一区| 久久毛片免费看一区二区三区| 日韩欧美精品免费久久| 午夜av观看不卡| 久久精品熟女亚洲av麻豆精品| 亚洲精品av麻豆狂野| 22中文网久久字幕| 自线自在国产av| 国产成人欧美| 少妇人妻久久综合中文| 国产成人一区二区在线| 女性被躁到高潮视频| 人人妻人人澡人人看| 国产又色又爽无遮挡免| 永久网站在线| av电影中文网址| 永久免费av网站大全| 韩国高清视频一区二区三区| 国产极品粉嫩免费观看在线| 国产亚洲精品第一综合不卡 | 丁香六月天网| 黑人猛操日本美女一级片| 欧美激情国产日韩精品一区| 黄色毛片三级朝国网站| 美女脱内裤让男人舔精品视频| 精品一区二区三区视频在线| 亚洲一区二区三区欧美精品| 激情视频va一区二区三区| 欧美人与性动交α欧美精品济南到 | 亚洲欧洲国产日韩| 国产亚洲精品第一综合不卡 | 亚洲国产看品久久| 91久久精品国产一区二区三区| 亚洲精品美女久久av网站| 男男h啪啪无遮挡| 亚洲成人av在线免费| 老司机影院成人| 一级,二级,三级黄色视频| 欧美亚洲日本最大视频资源| 精品一区二区免费观看| 亚洲第一av免费看| 国产高清国产精品国产三级| av有码第一页| 色婷婷久久久亚洲欧美| 在线观看免费日韩欧美大片| 精品亚洲乱码少妇综合久久| 国产精品免费大片| 精品一区二区三卡| 在线天堂最新版资源| 国产精品熟女久久久久浪| 男女边摸边吃奶| 国产成人欧美|