• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Control Strategy for Buck Converter Under Successive Load Current Change*

    2014-04-24 10:54:14FangWei方煒LiuXiaodong劉曉東LiuYanfei劉雁飛
    關(guān)鍵詞:劉曉東

    Fang Wei(方煒),Liu Xiaodong(劉曉東),Liu Yanfei(劉雁飛),2

    1.Key Lab of Power Electronics and Motion Control,Anhui University of Technology,Ma′Anshan,243002,P.R.China;2.Queen′s University,Kingston K7L3N6,Canada

    1 Introduction

    In modern dc-dc switch mode power supplies,the tight voltage regulation and fast response to load change are among the most important requirements[1].A larger output filtering capacitor is always used to reduce output voltage derivation,however,this will occupies more board area and increase the cost.Thus,without modifying the hardware,couples of analog controllers and digital control algorithms have been developed in some previous literatures to improve the dynamic response of the dc-dc converters.Analog control strategies such as V2and hysteretic control,have received extensive attention in recent years,however,the main application challenge is the variations of the converter switching frequency[2-3].Considering the intrinsic nonlinear nature of the switched regulators,various nonlinear methods have been introduced to achieve fasttransient responses to load-step events.In Ref.[4],the state plane of the dc-dc converter was partitioned by means of one or more switching surface,and a nonlinear sliding-mode controller was presented to drive the state trajectory rapidly converged to the regulation point.Since the selection of the switching surfaces is a central problem in the boundary-control theory,several design criteria and comparative studies regarding the choice of the switching surfaces have been proposed[5-6].In Ref.[7],by using an 8-bit microcontroller,a self-regulating fuzzy control scheme was presented for the forward dc-dc converters.In Ref.[8],based on the Takagi-Sugeno model,the stability and performance was analyzed for the Boost converter which was controlled by a nonlinear fuzzy controller.

    Although these approaches presented in the literatures differ with varying performance in terms of speed and robustness,they cannot achieve a faster response to load current disturbance.In Refs.[9,10],some digital optimal schemes are discussed for dc-dc converters to approximate the fastest transient response during a transient event.In Ref.[11],by using the principle of capacitor charge balance control(CBC),a digital controller predicts the minimum voltage overshoot/undershoot and the recovery time for a buck converter.But it requires a sampling delay and complex mathematical computation.Based on the principle of CBC,couples of analog controllers and digital control algorithms were reported to improve the dynamic response of other power converters(such as the Boost converter,the Buck-Boost converter)in Refs.[12,13].However,these controllers only considered one-step load current change,and the algorithm required the condition that load current should keep constant during a transient.Consequently,the CBC controller is unsuitable for a successive load-change.

    A new digital control algorithm is discussed in this paper for dc-dc converters to enhance the dynamic performance during a successive loadchange condition.Under a steady-state condition,the output voltage is tightly regulated by a digital voltage mode controller(VMC).Once the load current change is significant,an optimal control scheme is activated immediately.With the integration of the capacitor current,the proposed CBC algorithm predicts the switching time based on the charge balance control,and the optimal transient performance under a successive loadchange is thus achieved.Compared with a conventional proportion integration differentiation(PID)controller,the proposed algorithm provides much better dynamic performance.

    2 Principle of CBC Algorithm

    The dc-dc Buck converter,composed of switchers Q1,Q2,an output filter circuit and a load R,is considered in this paper(Fig.1).

    According to the algorithm of capacitor charge balance,the average value of capacitor current over transient time must be equal to zero under one-step load current change[11].

    Fig.1 SR-Buck converter

    where ta,tbare the beginning time and the end time of the transient period,respectively;ic,vcthe current and the voltage of the output capacitor,respectively;Cthe value of the output capacitor.When Eq.(2)is satisfied,it means that the output voltage returns to the reference voltage after a transient period.Furthermore,if the inductor current iLequals to the new load current at time tb,the SR-Buck converter has recovered from a transient event(Fig.2).

    Fig.2 Optimal dynamic response of Buck converter under positive load-current change

    3 Mathematical Analysis of the Proposed Algorithm

    In Fig.2,the whole transient period under one-step load current change can be divided into two parts,i.e.,one part that the capacitor supplies a portion of the load current before tz1and the other part that the capacitor begins recharge before t3.In other words,the two parts determine the discharge portion(S1)and the recharge portion(S2).It should be noted that the capaci-tor current crosses zero at tz1,which is regarded as the turning point in the transient period.Once tz1is obtained,the discharge portion of the capacitor can be calculated directly.Thus,the key point of the CBC algorithm is to accurately obtain the value T1(determined by tz1),therefore,the charge of the capacitor keeps balance at the end of a transient period.

    Before the introduction of the proposed algorithm,some assumptions should be considered,that is,

    (1)the ESR and ESL can be neglected;

    (2)the values of the inductor and capacitor keep constant;

    (3)the input voltage keeps unchanged during the transient.

    3.1 One-step load-current change

    Firstly,the rising and falling slew rate of the inductor current is given as

    Based on Fig.2,the discharge portion S1can be calculated as

    while the charge portion S2can be given as

    According to the principle of the CBC,at the end of transient,the following equations should be fulfilled

    Thus,the optimal transient time T1,T2and T3can be given by

    A similar analysis can be performed for a negative load step based on Fig.3.The following equations should be satisfied

    Moreover,the optimal transient time T1,T2and T3under a negative load step change can be obtained

    Fig.3 Optimal dynamic response of Buck converter under negative load-current change

    3.2 Successive load-current change

    If a successive positive load-current change is considered,the proposed algorithm executes the corresponding action according to the different step change,as shown in Figs.4(a,b).It is obvious that the response is more complicate than that of the one-step load change.It is divided into several parts,including the discharge portion(S1,S3)and the recharge portion(S2,S4)in Fig.4.However,the detection of the point(tz1and tz2)is still the key step in the proposed algorithm,because the capacitor turns into the recharge portion at tz1and tz2.

    According to the algorithm of the capacitor charge balance control,at the end of transient,the following equation should be fulfilled

    It should be noted that the recharge portion S4can be calculated similarly to the one-step load change

    Fig.4 Optimal dynamic response of Buck converter under successive positive load current change

    Moreover,the sum of the portions S1,S2,S3can be given directly by the integration of the capacitor current over the period[t0tz2]

    Substituting Eqs.(14,15)into Eq.(13)yields

    In Fig.5,the optimal transient time T1,T2and T3can be calculated as

    A similar analysis can be carried out for a negative load step based on Fig.5.The following equation should be fulfilled

    Then the optimal transient time has the following expression

    With some minor change to Eqs.(16—19),the same analysis can be applied to the dc-dc converter under other successive load change conditions,which will not be discussed in this paper.

    Fig.5 Optimal dynamic response of Buck converter under a successive negative load current change

    4 Implementation of the Proposed Digital Controller

    4.1 Outline of algorithm operation

    According to the analysis in Section 3,the key steps of the proposed algorithm can be listed as follows:

    (1)After detecting a load current change(by comparing the change of the load current iowith the predefined threshold),the optimal control scheme is activated immediately at t0,and the counter and the integration of the capacitor current icin the digital controller are triggered;

    (2)The duty cycle is set as the maximum value 100%(apositive step change)or the minimum value 0%(a negative step change),which drives the induct current iLrise or fall at its maximum slew rate;

    (3)Once Eq.(8)or Eq.(11)is fulfilled,which means iLreaches its peak value or valley value(at t2in Figs.2,3),the duty cycle is set to 0%(apositive step change)or 100%(a negative step change);

    (4)If a successive load change occurs(by comparing the iochange with the threshold),the duty cycle is reset as 100%or 0%again,as shown in Figs.4,5;

    (5)When the condition of the charge balance control is satisfied,the digital controller returns to the conventional digital PID control scheme again.

    4.2 Hardware implementation

    The hardware implementation diagram of the proposed charge balance control algorithms is shown in Fig.6.RLand Roare the high precision resistances used to sample the inductor current and the load current.Cv-sens,CiL-sensand Cio-sensare the decoupling capacitor of the operational amplifiers.

    4.3 Digital controller based on FPGA

    In Fig.7,the proposed algorithm is programmed by Block diagram method in FPGA,with the logic elements(4,429),registers(2,848)and memory bits(251,560).

    In Fig.7,the clock module products the clock signals,which are used in other modules and A/D sample.The digital PID module is constructed according to the following equation

    where the coefficients are given as

    where Kp,τi,τdare the parameters of the PID controller.Tis the sample period.

    The proposed algorithm is programmed in the CBC module,including several submodules,such as the load step detection,the crossing-zero judgment of the ic,and the charge balance control(Fig.7).

    Fig.6 Hardware implementation diagram

    Fig.7 Block diagram implementation of the proposed algorithms in FPGA

    5 Simulation and Experiment Results

    To verify the performance of the proposed method,a Buck converter,undergoing several successive load current changes,was proposed.The parameters of the converter were provided as follows:Vin=5V,Vo=1.5V,fs=250kHz,L=1.5μH,C=290μF.

    5.1 Simulation results

    Simulation is performed by Matlab/Simulink.For comparison,a well-designed digital PID controller with bandwidth of 30kHz and phase margin of 52°is also simulated.

    Fig.8illustrates the different dynamic performance of the Buck converter under a PID controller and a CBC controller,while a positive successive load step change(from 0Ato 5Ato 10A).It is observed that,by using the PID controller,the undershoot of the output voltage is 102mV and the recovery time is 81μs;while using the proposed CBC algorithm,the overshoot is reduced to 15mV and the settling time is reduced to 11μs,which are improved by 85%and 86%,respectively,compared with those of the PID controlled converter.

    Fig.8 Simulation results of output voltage response to apositive successive load current change(0A→5A→10A)

    For a negative successive load step change(from 10Ato 5Ato 0A),as shown in Fig.9,with the proposed controller,the overshoot is reduced to 21mV,which is improved by 76%,and the settling time is reduced to 12μs,which is improved by 84%,compared with those of the PID controlled converter.

    Simulation results demonstrated that the settling time of the converter with the proposed algorithm is improved significantly compared to that of the PID controlled converter.

    Fig.9 Simulation results of output voltage response to an negative successive load current change(10A→5A→0A)

    5.2 Experimental results

    An experimental prototype of a Buck converter was designed and implemented with FPGA by using the aforementioned algorithm.

    Fig.10 Experimental results of successive positive load transient case 0A→5A→10A

    In Fig.10(a)and Fig.11(a),the experimen-tal results illustrate the transient performance of the PID controller under the successive load step change between 0Aand 10A.Limited by the bandwidth,the voltage mode controller has large voltage variations and long recovery time.For a positive load transient,the undershoot voltage is about 110mV with 107μs settling time.While,the overshoot voltage is 120mV with 118μs settling time during a negative load transient.

    Fig.11 Experimental results of successive negative load transient case 10A→5A→0A

    Experimental results of the proposed CBC controller under the load step change between 10Aand 0Aare shown in Fig.10(b)and Fig.11(b).Compared to the PID controller,the undershoot voltage is reduced by 81%with the recovery time shortened by 88%for a positive load step change,while the overshoot voltage is reduced by 70%with the recovery time shortened by 81%for a negative load step change.

    6 Conclusions

    A practical digital control algorithm has been presented for improving the dynamic performance of dc-dc converters under a successive load-change condition.The controller utilizes the principle of the charge balance control,where a PID compensator and a CBC controller are combined to provide the tight output voltage regulation and fast transient response.Furthermore,conditions and equations for capacitor charge balance are derived.The effectiveness of the proposed algorithm is verified on an experimental prototype of a Buck converter,demonstrating stable operation and fast transient response in different operating conditions.

    [1] Zhong Jie,Yu Shenglin,Liu Shousheng.Simulation study of chaos in DC-DC converter[J].Transactions of Nanjing University of Aeronautics and Astronautics,2003,20(1):79-84.

    [2] Huerta S C,Alou P,Garcia O,et al.Hysteretic mixed-signal controller for high-frequency DC-DC converters operating at constant switching frequency[J].IEEE Transactions on Power Electronics,2012,27(6):2690-2696.

    [3] Liu Jun,Yan Yangguang.Reliable hysteresis current controlled dual buck half bridge inverter[J].Transactions of Nanjing University of Aeronautics and Astronautics,2003,20(1):67-72.

    [4] Siew-Chong T,Lai Y M,Tse C K.General design issues of sliding-mode controllers in DC-DC converters[J].IEEE Transactions on Industrial Electronics,2008,55(3):1160-1174.

    [5] Rong-Jong W,Li-Chung S.Design of voltage tracking control for DC-DC boost converter via total sliding-mode technique[J].IEEE Transactions on Industrial Electronics,2011,58(6):2502-2511.

    [6] Lam H K,Tan S C.Stability analysis of fuzzy-model-based control systems:application on regulation of switching DC-DC converter[J].IET Control Theory and Applications,2009,3(8):1093-1106.

    [7] Hsu C F,Chung I F,Lin C M,et al.Self-regulating fuzzy control for forward DC-DC converters using an 8-bit microcontroller[J].IET Power Electronics,2009,2(1):1-12.

    [8] Mehran K,Giaouris D,Zahawi B.Stability analysis and control of nonlinear phenomena in boost converters using model-based Takagi-Sugeno fuzzy approach[J].IEEE Transactions on Circuits and Systems,2010,57(1):200-212.

    [9] Wen Y,Trescases O.DC-DC converter with digital adaptive slope control in auxiliary phase for optimal transient response and improved efficiency[J].IEEE Transactions on Power Electronics,2012,27(7):3396-3409.

    [10]Cortes P,Quiroz F,Rodriguez J.Predictive control of a grid-connected cascaded H-bridge multilevel converter[C]//Proceedings of the 2011-14th European Conference on Power Electronics and Applications,EPE,2011:1-7.

    [11]Feng G,Meyer E,Liu Y F.A new digital control algorithm to achieve optimal dynamic response performance in DC-to-DC converters[J].IEEE Transactions on Power Electronics,2007,22(4):1489-1498.

    [12]Liu X D,Ge L,F(xiàn)ang W,et al.An algorithm for Buck-Boost converter based on the principle of capacitor charge balance[C]//2011 6th IEEE Conference on Industrial Electronics and Applications,ICIEA.[S.l.]:IEEE,2011:1365-1369.

    [13]Fang W,Qiu Y J,Liu X D,et al.A new digital capacitor charge balance control algorithm for Boost DC/DC Converter[C]//2010IEEE Energy Conversion Congress and Exposition,ECCE. [S.l.]:IEEE,2010:2035-2040.

    猜你喜歡
    劉曉東
    Structure,electronic,and nonlinear optical properties of superalkaline M3O(M =Li,Na)doped cyclo[18]carbon
    例析通過構(gòu)造常數(shù)列進行解題的基本規(guī)律
    棉花GhIQM1基因克隆及抗黃萎病功能分析
    作物學報(2022年9期)2022-07-18 00:57:54
    羔羊早期斷母乳技術(shù)研究應用的進展
    《鐵單質(zhì)的化學性質(zhì)》教學設計
    權(quán)力“變現(xiàn)”高手的人生結(jié)局是什么?
    ——山東省某區(qū)開發(fā)區(qū)管委會原副主任劉曉東(正處級)受賄案紀實
    兩個自我的不能承受之重
    讀書(2019年9期)2019-09-23 08:15:12
    “雷擊哥”劉曉東:做有“靈魂”的氣象人
    蝴蝶發(fā)卡
    作品(2018年11期)2018-11-15 04:57:40
    光是購物卡就收了51萬元
    方圓(2018年11期)2018-07-03 05:53:52
    亚洲美女搞黄在线观看| 久久97久久精品| 22中文网久久字幕| 看黄色毛片网站| av线在线观看网站| 秋霞在线观看毛片| 男插女下体视频免费在线播放| 中国国产av一级| 丰满人妻一区二区三区视频av| 99久久精品热视频| 日本色播在线视频| 国产熟女欧美一区二区| 国产精品99久久久久久久久| 晚上一个人看的免费电影| 成年免费大片在线观看| 插阴视频在线观看视频| 最近中文字幕高清免费大全6| 日本wwww免费看| 亚洲精品乱码久久久久久按摩| 99精国产麻豆久久婷婷| 天天一区二区日本电影三级| 小蜜桃在线观看免费完整版高清| 在线观看一区二区三区激情| 91精品国产九色| 亚洲欧美日韩另类电影网站 | 亚洲三级黄色毛片| 美女视频免费永久观看网站| 亚洲精品第二区| 男人和女人高潮做爰伦理| 久久午夜福利片| 69av精品久久久久久| 观看美女的网站| 欧美少妇被猛烈插入视频| 久久久国产一区二区| av又黄又爽大尺度在线免费看| 搡女人真爽免费视频火全软件| 日韩av不卡免费在线播放| 身体一侧抽搐| 精品人妻偷拍中文字幕| 两个人的视频大全免费| 午夜福利高清视频| 国产女主播在线喷水免费视频网站| av.在线天堂| 黄色一级大片看看| 久久鲁丝午夜福利片| 亚洲性久久影院| 小蜜桃在线观看免费完整版高清| 美女被艹到高潮喷水动态| 97在线人人人人妻| 久久久久久久亚洲中文字幕| 丝瓜视频免费看黄片| 国产成人aa在线观看| 色婷婷久久久亚洲欧美| 在现免费观看毛片| 欧美成人a在线观看| 综合色丁香网| 亚洲国产日韩一区二区| 日日摸夜夜添夜夜添av毛片| 免费少妇av软件| 国产欧美日韩精品一区二区| 日韩视频在线欧美| 欧美97在线视频| 日韩视频在线欧美| 国产色爽女视频免费观看| 汤姆久久久久久久影院中文字幕| 国产精品人妻久久久久久| 赤兔流量卡办理| 赤兔流量卡办理| 一个人看视频在线观看www免费| 亚洲精品一二三| 麻豆成人av视频| 久久鲁丝午夜福利片| 亚洲在久久综合| 黄色一级大片看看| 伦理电影大哥的女人| 波野结衣二区三区在线| 免费av不卡在线播放| 亚洲成人av在线免费| 寂寞人妻少妇视频99o| 两个人的视频大全免费| 男的添女的下面高潮视频| 亚洲av国产av综合av卡| 日本与韩国留学比较| 亚洲成人中文字幕在线播放| 三级国产精品欧美在线观看| 日本免费在线观看一区| 纵有疾风起免费观看全集完整版| 男女边摸边吃奶| 亚洲精品日韩在线中文字幕| 国产一区二区三区av在线| 欧美亚洲 丝袜 人妻 在线| 少妇人妻一区二区三区视频| 久久国产乱子免费精品| 日本午夜av视频| 亚洲熟女精品中文字幕| 国产精品无大码| 亚洲熟女精品中文字幕| 国产一区二区在线观看日韩| 免费av毛片视频| 一边亲一边摸免费视频| 欧美少妇被猛烈插入视频| 日韩av免费高清视频| 麻豆国产97在线/欧美| 久久综合国产亚洲精品| 午夜福利视频精品| 男插女下体视频免费在线播放| 亚洲国产精品成人久久小说| 99热全是精品| 特大巨黑吊av在线直播| 亚洲国产精品国产精品| 国产探花在线观看一区二区| 亚洲在线观看片| 人妻一区二区av| 在线a可以看的网站| 一级毛片黄色毛片免费观看视频| av在线蜜桃| 国产高潮美女av| 国产真实伦视频高清在线观看| 日韩精品有码人妻一区| 国产欧美另类精品又又久久亚洲欧美| 舔av片在线| 国产成人a∨麻豆精品| 麻豆成人午夜福利视频| 亚洲欧美日韩另类电影网站 | 欧美少妇被猛烈插入视频| 亚洲精品久久午夜乱码| 亚洲精品影视一区二区三区av| 大香蕉97超碰在线| 最近2019中文字幕mv第一页| 天堂俺去俺来也www色官网| 蜜桃久久精品国产亚洲av| 久久久久久久亚洲中文字幕| 午夜免费观看性视频| 人妻制服诱惑在线中文字幕| 欧美三级亚洲精品| 免费高清在线观看视频在线观看| 欧美bdsm另类| 免费av毛片视频| 激情五月婷婷亚洲| 久久久久久久精品精品| 97热精品久久久久久| 狂野欧美激情性bbbbbb| 国产91av在线免费观看| 久久久精品免费免费高清| 人妻制服诱惑在线中文字幕| 欧美三级亚洲精品| 亚洲欧美日韩无卡精品| 亚洲欧美成人综合另类久久久| 搡女人真爽免费视频火全软件| 美女国产视频在线观看| 亚洲精品乱久久久久久| 一级二级三级毛片免费看| av国产久精品久网站免费入址| 午夜爱爱视频在线播放| 最近的中文字幕免费完整| 精品99又大又爽又粗少妇毛片| 亚洲在线观看片| 在线播放无遮挡| 成人高潮视频无遮挡免费网站| 国产熟女欧美一区二区| 日韩一本色道免费dvd| 国产午夜精品久久久久久一区二区三区| 自拍偷自拍亚洲精品老妇| 久久精品国产自在天天线| 亚洲国产精品专区欧美| 大片电影免费在线观看免费| 欧美性猛交╳xxx乱大交人| 免费观看无遮挡的男女| 看黄色毛片网站| 精品亚洲乱码少妇综合久久| 日韩视频在线欧美| 日本熟妇午夜| 91午夜精品亚洲一区二区三区| 日韩不卡一区二区三区视频在线| 国产男女内射视频| 校园人妻丝袜中文字幕| 大香蕉97超碰在线| 欧美丝袜亚洲另类| 高清在线视频一区二区三区| 久久久精品免费免费高清| 看免费成人av毛片| 麻豆久久精品国产亚洲av| 亚洲精品日韩av片在线观看| 一本色道久久久久久精品综合| 在线观看国产h片| 亚洲精品影视一区二区三区av| 国产老妇伦熟女老妇高清| 一级黄片播放器| 国产亚洲av片在线观看秒播厂| 联通29元200g的流量卡| kizo精华| h日本视频在线播放| 91午夜精品亚洲一区二区三区| 亚洲综合色惰| 搡老乐熟女国产| 亚洲综合精品二区| 99热6这里只有精品| 中文字幕免费在线视频6| 黄色欧美视频在线观看| 日本熟妇午夜| 国产女主播在线喷水免费视频网站| 看非洲黑人一级黄片| 欧美精品国产亚洲| 最近中文字幕高清免费大全6| 国产精品99久久99久久久不卡 | 久久精品久久久久久噜噜老黄| 亚洲自偷自拍三级| 中国国产av一级| 精品一区二区三区视频在线| 欧美成人午夜免费资源| 午夜免费观看性视频| 国产老妇女一区| 少妇人妻一区二区三区视频| 亚洲欧洲日产国产| 插阴视频在线观看视频| 91精品国产九色| 亚洲精华国产精华液的使用体验| 日本免费在线观看一区| 国产 一区精品| 亚洲内射少妇av| 日韩欧美精品免费久久| 亚洲精品成人av观看孕妇| 国产色爽女视频免费观看| 欧美激情久久久久久爽电影| 国产极品天堂在线| 国产一区亚洲一区在线观看| 啦啦啦中文免费视频观看日本| 国产成人aa在线观看| 在线观看一区二区三区激情| 国产一区二区三区综合在线观看 | 99热全是精品| 男女那种视频在线观看| 亚洲欧美日韩东京热| freevideosex欧美| 18禁裸乳无遮挡动漫免费视频 | 久久亚洲国产成人精品v| 中文天堂在线官网| 亚洲欧美成人综合另类久久久| 狂野欧美激情性xxxx在线观看| 麻豆成人午夜福利视频| 伊人久久国产一区二区| 色5月婷婷丁香| 午夜福利高清视频| 午夜激情久久久久久久| 性插视频无遮挡在线免费观看| 美女高潮的动态| 国产淫语在线视频| 欧美日韩一区二区视频在线观看视频在线 | 欧美激情国产日韩精品一区| 国产成人精品久久久久久| 国产真实伦视频高清在线观看| 久久ye,这里只有精品| 男人爽女人下面视频在线观看| 又爽又黄a免费视频| 国产精品一区二区三区四区免费观看| 国产极品天堂在线| a级毛片免费高清观看在线播放| 国产淫片久久久久久久久| 成人综合一区亚洲| 免费观看在线日韩| 亚洲av男天堂| 一区二区三区免费毛片| 香蕉精品网在线| 亚洲精华国产精华液的使用体验| 欧美精品一区二区大全| 国产视频首页在线观看| 干丝袜人妻中文字幕| 国产毛片a区久久久久| 国产精品成人在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲国产精品专区欧美| 精品午夜福利在线看| 久久国内精品自在自线图片| 晚上一个人看的免费电影| 精品少妇黑人巨大在线播放| 国产精品偷伦视频观看了| 国产中年淑女户外野战色| 男人狂女人下面高潮的视频| 亚洲国产精品999| 男女边摸边吃奶| 精品久久国产蜜桃| 国产 精品1| 成年女人在线观看亚洲视频 | 精品久久久精品久久久| 欧美 日韩 精品 国产| 在线精品无人区一区二区三 | 欧美日韩精品成人综合77777| 国产精品精品国产色婷婷| 国产老妇伦熟女老妇高清| 国产日韩欧美在线精品| 精品熟女少妇av免费看| 丰满人妻一区二区三区视频av| 亚洲国产最新在线播放| 国产乱人偷精品视频| 一级毛片黄色毛片免费观看视频| 99久久中文字幕三级久久日本| 一区二区三区免费毛片| 免费黄网站久久成人精品| 岛国毛片在线播放| 亚洲熟女精品中文字幕| 青青草视频在线视频观看| 狂野欧美激情性bbbbbb| 青春草视频在线免费观看| 欧美精品人与动牲交sv欧美| 狂野欧美激情性xxxx在线观看| 在线免费观看不下载黄p国产| 久久久精品免费免费高清| 亚洲av中文av极速乱| 青春草亚洲视频在线观看| 男人狂女人下面高潮的视频| 国产毛片a区久久久久| 精品久久久久久电影网| 欧美激情在线99| 女人被狂操c到高潮| 久久久久久久国产电影| 久久99热这里只频精品6学生| 日本与韩国留学比较| 午夜精品国产一区二区电影 | 婷婷色综合大香蕉| 一级毛片 在线播放| 日韩欧美精品免费久久| 国产精品麻豆人妻色哟哟久久| 寂寞人妻少妇视频99o| 亚洲最大成人av| 成人二区视频| 亚洲色图av天堂| 日本wwww免费看| 禁无遮挡网站| 熟女av电影| 搡女人真爽免费视频火全软件| 日韩亚洲欧美综合| 精品一区二区三卡| 汤姆久久久久久久影院中文字幕| 日韩强制内射视频| 免费看av在线观看网站| 日韩,欧美,国产一区二区三区| 26uuu在线亚洲综合色| 欧美xxxx黑人xx丫x性爽| 新久久久久国产一级毛片| 永久网站在线| 久久久精品欧美日韩精品| 极品教师在线视频| 人人妻人人澡人人爽人人夜夜| 99热网站在线观看| 亚洲精品日本国产第一区| 男人添女人高潮全过程视频| 日韩av在线免费看完整版不卡| 精品少妇久久久久久888优播| 国产在线一区二区三区精| 在线看a的网站| 噜噜噜噜噜久久久久久91| 婷婷色av中文字幕| h日本视频在线播放| 爱豆传媒免费全集在线观看| 好男人在线观看高清免费视频| 久久精品熟女亚洲av麻豆精品| 亚洲av欧美aⅴ国产| 久久影院123| 成年av动漫网址| 在线a可以看的网站| 中文精品一卡2卡3卡4更新| 午夜激情福利司机影院| 人妻制服诱惑在线中文字幕| av免费在线看不卡| 久久久久网色| 色5月婷婷丁香| 国产伦精品一区二区三区视频9| 精品久久久精品久久久| 日韩欧美一区视频在线观看 | 欧美xxxx性猛交bbbb| 搞女人的毛片| 久久99热这里只有精品18| 国产人妻一区二区三区在| 亚洲精品一二三| 又大又黄又爽视频免费| 久久久久九九精品影院| 日韩在线高清观看一区二区三区| 97人妻精品一区二区三区麻豆| 亚洲va在线va天堂va国产| 亚洲丝袜综合中文字幕| 精品久久久久久久久亚洲| 国产亚洲精品久久久com| 97超碰精品成人国产| 九九久久精品国产亚洲av麻豆| 国产精品嫩草影院av在线观看| 国产成人一区二区在线| www.色视频.com| 久久久久精品性色| 精品少妇黑人巨大在线播放| 搡女人真爽免费视频火全软件| 毛片女人毛片| 中文资源天堂在线| 一区二区av电影网| 丝袜脚勾引网站| 天天一区二区日本电影三级| 我的女老师完整版在线观看| 秋霞在线观看毛片| 伦理电影大哥的女人| 高清av免费在线| 美女视频免费永久观看网站| 寂寞人妻少妇视频99o| 欧美一区二区亚洲| 亚洲天堂国产精品一区在线| 22中文网久久字幕| 性插视频无遮挡在线免费观看| 免费人成在线观看视频色| 欧美亚洲 丝袜 人妻 在线| 嫩草影院入口| 80岁老熟妇乱子伦牲交| 久久精品久久精品一区二区三区| 欧美3d第一页| 国产有黄有色有爽视频| 男女国产视频网站| 久久精品国产a三级三级三级| 国内精品美女久久久久久| 欧美日韩视频高清一区二区三区二| 极品少妇高潮喷水抽搐| 久久久亚洲精品成人影院| 日本爱情动作片www.在线观看| 精品久久久噜噜| 亚洲自拍偷在线| 亚洲av免费高清在线观看| 亚洲在久久综合| 黑人高潮一二区| 91精品国产九色| 国产高潮美女av| 一区二区三区四区激情视频| 精品久久久噜噜| 97人妻精品一区二区三区麻豆| 国产精品嫩草影院av在线观看| 日韩成人伦理影院| 大码成人一级视频| 国产精品久久久久久久久免| 欧美xxⅹ黑人| 啦啦啦中文免费视频观看日本| 久久这里有精品视频免费| 精品国产乱码久久久久久小说| 亚洲av免费高清在线观看| 黄色配什么色好看| 99九九线精品视频在线观看视频| tube8黄色片| 亚洲av中文av极速乱| 午夜福利视频精品| 97超碰精品成人国产| 日韩大片免费观看网站| 久热久热在线精品观看| 久久久久久九九精品二区国产| 亚洲国产最新在线播放| 国产成人一区二区在线| 免费不卡的大黄色大毛片视频在线观看| 极品教师在线视频| 精品人妻偷拍中文字幕| 性插视频无遮挡在线免费观看| 日韩在线高清观看一区二区三区| 免费电影在线观看免费观看| 成年免费大片在线观看| 成年女人看的毛片在线观看| 久久6这里有精品| 看黄色毛片网站| 欧美精品国产亚洲| 亚洲人成网站在线播| 欧美亚洲 丝袜 人妻 在线| 午夜福利视频1000在线观看| 97在线人人人人妻| 免费高清在线观看视频在线观看| 高清欧美精品videossex| 麻豆成人av视频| 精品久久国产蜜桃| 久久精品国产亚洲av天美| 亚洲精品视频女| 日本一二三区视频观看| 国产成人精品福利久久| 久久久精品94久久精品| av线在线观看网站| 成人毛片a级毛片在线播放| 一个人观看的视频www高清免费观看| 亚洲精华国产精华液的使用体验| 亚洲av.av天堂| 一级av片app| 日韩人妻高清精品专区| 一本久久精品| 在线播放无遮挡| 又粗又硬又长又爽又黄的视频| 久久精品国产亚洲av天美| 男人舔奶头视频| 亚洲高清免费不卡视频| 中国美白少妇内射xxxbb| 五月玫瑰六月丁香| 欧美极品一区二区三区四区| 久久久午夜欧美精品| 老司机影院成人| 国产有黄有色有爽视频| 免费观看无遮挡的男女| 国产精品人妻久久久久久| 久久久国产一区二区| 内地一区二区视频在线| 五月伊人婷婷丁香| 国产乱来视频区| 交换朋友夫妻互换小说| 成人无遮挡网站| 看免费成人av毛片| 美女xxoo啪啪120秒动态图| 国产在线男女| 五月玫瑰六月丁香| av在线app专区| 哪个播放器可以免费观看大片| 99热这里只有是精品在线观看| 在线观看av片永久免费下载| 97热精品久久久久久| 看免费成人av毛片| 在线观看美女被高潮喷水网站| 久久久精品免费免费高清| 国产欧美另类精品又又久久亚洲欧美| 日本三级黄在线观看| 哪个播放器可以免费观看大片| a级毛色黄片| 国内少妇人妻偷人精品xxx网站| 高清欧美精品videossex| 99久久九九国产精品国产免费| 综合色丁香网| 欧美老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 在线观看一区二区三区激情| 日日撸夜夜添| 久久久久久久国产电影| av免费观看日本| 国产精品久久久久久精品古装| 亚洲精品乱码久久久久久按摩| 亚洲四区av| 天堂中文最新版在线下载 | 麻豆精品久久久久久蜜桃| 肉色欧美久久久久久久蜜桃 | 国产探花极品一区二区| 男女国产视频网站| 成人综合一区亚洲| 我的女老师完整版在线观看| 99久久人妻综合| 99热网站在线观看| 久久久久久久久久久丰满| 久久99蜜桃精品久久| 人妻系列 视频| 亚洲真实伦在线观看| 国产精品99久久99久久久不卡 | 中文字幕免费在线视频6| 亚洲天堂av无毛| 热re99久久精品国产66热6| 国产精品偷伦视频观看了| 日韩一区二区三区影片| av在线观看视频网站免费| 国产成人aa在线观看| 国产免费一级a男人的天堂| 久久久色成人| av.在线天堂| 午夜福利视频1000在线观看| 国产av码专区亚洲av| 国语对白做爰xxxⅹ性视频网站| 亚洲成色77777| 王馨瑶露胸无遮挡在线观看| 国产成人精品福利久久| 久久99热这里只频精品6学生| 伊人久久精品亚洲午夜| 听说在线观看完整版免费高清| 3wmmmm亚洲av在线观看| 欧美3d第一页| 欧美日韩精品成人综合77777| 久热久热在线精品观看| 国产一区二区在线观看日韩| 内地一区二区视频在线| 国产精品av视频在线免费观看| 别揉我奶头 嗯啊视频| av免费在线看不卡| 夜夜爽夜夜爽视频| 免费观看a级毛片全部| 老司机影院成人| 交换朋友夫妻互换小说| 亚洲成人久久爱视频| 国产极品天堂在线| 一区二区三区乱码不卡18| av天堂中文字幕网| 久久久久九九精品影院| 免费观看av网站的网址| 久久久久网色| 2022亚洲国产成人精品| 国产精品久久久久久精品古装| 最新中文字幕久久久久| 亚洲不卡免费看| 色吧在线观看| 免费人成在线观看视频色| 一级毛片电影观看| 日日摸夜夜添夜夜添av毛片| av国产精品久久久久影院| 国产高清不卡午夜福利| 久久国内精品自在自线图片| 永久免费av网站大全| 在线免费观看不下载黄p国产| 自拍偷自拍亚洲精品老妇| 男人狂女人下面高潮的视频| 最新中文字幕久久久久| 老女人水多毛片| 日韩三级伦理在线观看| 成人欧美大片| 深爱激情五月婷婷| 黄色配什么色好看| 国产成人a∨麻豆精品| 熟女电影av网| 色婷婷久久久亚洲欧美| 日产精品乱码卡一卡2卡三| 特大巨黑吊av在线直播| 久久久久久伊人网av| 欧美潮喷喷水| 激情 狠狠 欧美| 人妻制服诱惑在线中文字幕| 国语对白做爰xxxⅹ性视频网站| 国产女主播在线喷水免费视频网站| 最近的中文字幕免费完整|