• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Design and Control Strategy Analysis of Micro/Nano Transmission Platform*

    2014-04-24 10:53:58LinChao林超JiJiuxiang紀(jì)久祥TaoYoutao陶友淘HuoDehong霍德鴻CaiLizhong才立忠ChengKai程凱
    關(guān)鍵詞:程凱

    Lin Chao(林超),Ji Jiuxiang(紀(jì)久祥),Tao Youtao(陶友淘),Huo Dehong(霍德鴻),Cai Lizhong(才立忠),Cheng Kai(程凱)

    1.State Key Laboratory of Mechanical Transmission,Chongqing University,Chongqing,400030,P.R.China;2.School of Mechanical and Systems Engineering,Newcastle University,Newcastle Upon Tyne,NE1 7RU,UK;3.Advanced Manufacturing and Enterprise Engineering Department,Brunel University,Uxbridge,Middlesex UB8 3PH,UK

    1 Introduction

    Micro/nano transmission platform(MNTP)is used to produce small linear and angular displacement.With rapid development of microelectronics technology,aerospace and biological engineering,the research of MNTP with high accuracy and stability,multiple degrees of freedom and high controllability is increasingly gaining academic attention.

    So far,MNTP has become a research focus and many MNTPs have been developed in the past two decades.Zhang,et al.[1]developed a micro positioning table with long stroke.The micro positioning mechanism driven by piezoelectric actuators(PZTs)has two degrees of freedom and the displacement in Xor Y directions is about 288 μm.Wang,et al.[2]proposed an MNTP based on 3-revolute-revolute-revolute(3-RRR)parallel mechanism,and successfully realized±70μm displacement in both Xand Ydirections,as well as±0.1°rotation about Zaxis.Zhang,et al.[3]designed a precision positioning table with three degrees of freedom,and acquired±300μm displacements in Zdirection and±0.25°rotation about both Xand Yaxes.Chu,et al.[4]developed a long-travel linear nano-positioning stage driven by PZTs,and 35μm displacement along Xaxis was thus realized with a precision of 10nm.Yuen,et al.[5]presented a micro positioning platform with rapid movement in Xand Ydirections,followed by 25μm×25μm displacement successfully.Deepkishore,et al.[6]developed a new linkage mechanism which could achieve 18μm displacement in Xor Ydirection and±1.72°ro-tation around Zaxis.Li,et al.[7]proposed a new type of decoupled large-displacement micro position platform with two degrees of freedom,on which the stroke of each two linear axes is 117 μm.Although the above-mentioned micro positioning platforms have high accuracy and repeatability,there still exist some disadvantages,such as small movement range.Hu,et al.[8]designed a long range nano-transmission platform based on the principle of inchworm motion.It featured a maximum linear speed of 13.9μm/s,a minimum step of 10nm and a movement distance of more than 20mm.Though it met the requirements of both long displacement and high precision,it can only move along a single direction.Therefore,the study of MNTP with large displacement,high precision,and multiple degrees of freedom is challenging researchers in the field.

    In addition,the control strategies are also central to the development of micro positioning platforms.Since precision can be improved by using an effective control means,the research on control algorithms and control strategies has been carried out to improve the performance of micro positioning platforms.The digital proportion integration differentiation(PID)method is widely adopted due to its effective and simple setup.Moreover,some advanced control algorithms such as fuzzy algorithm,neural network algorithm and genetic algorithm were also applied to the precision control of MNTP[9-12].Currently,several control strategies have been used,including feedforward open-loop control,PID closed-loop control,and hybrid control which combines feedforward,closed-loop control and adaptive inverse control[13-14].

    This paper presents a fully flexure MNTP with five degrees of freedom driven by PZTs.The platform adopts leaf-springs and bridge type amplification mechanism(BTAM)to realize the amplification of input displacements.Firstly,the theoretical output displacements and driving mechanism of MNTP are analyzed according to the kinematic theory and elastic beam theory.PZT actuator is calibrated.Meanwhile,the whole closed-loop control strategy of MNTP is established using the feedforward PID compound con-trol algorithm based on the Preisach model.Moreover,the total transfer function of the positioning system is derived,and the calculation of output signal in the positioning system is performed.Finally,the finite element analysis(FEA)simulation and positioning experiments are conducted to verify the effectiveness of the control strategies.

    2 Principle of Structural Design

    According to the principles of machinery and compliant mechanism,the large displacement MNTP with five degrees of freedom is designed(Fig.1),whose dimensions are 260mm×260mm×120mm.It consists of a upper platform,a lower platform and six PZTs.The upper platform is composed of four micro displacement amplification mechanisms driven by four PZTs.And the four displacement amplifiers,symmetrically arranged,can make the upper platform to move along Zaxis and rotate around both Xand Yaxes.The lower platform is composed of two micro displacement amplification mechanisms driven by two PZTs.It employs an asymmetric structure to realize the motion in Xand Ydirections.This configuration ensures the high accuracy and fast response of MNTP.MNTP is manufactured by drilling,milling,grinding,and wire electrical discharge machining(EDM),etc.,on one piece of material,therefore,without gap and mechanical friction.By controlling the input voltages of the six PZTs,an MNTP with high-precision,high dynamics,and multiple degrees of freedom are obtained.

    MNTP consists of 56leaf springs and 42rigid rods(Fig.1),and it is fixed on an experiment table by bolts.To ensure that the piezoelectric actuator is fully engaged with the micro displacement amplification mechanism,pre-loads are applied by threaded screws.The force and motion are conveyed by the pure elastic deformation of leaf springs.

    3 Performance Analysis of MNTP

    Fig.1 MNTP with five degrees of freedom

    Fig.2shows the micro-displacement amplification mechanism of MNTP.BTAM is a key com-ponent of MNTP.The input displacement of PZT is amplified by the amplification mechanism which also makes the platform move along a specified direction.Different rigid rods are connected with each other by leaf springs.In order to analyze the amplification performance of MNTP,the amplification ratio of BTAM should be first considered with the assumption that the material of different rigid rods and leaf springs is isotropic.

    According to the kinematic theory and the elastic beam theory,the amplification ratio of BTAM can be expressed as

    Fig.2 Drawing of displacement amplification mechanism

    where lais the center distance of adjacent leaf springs,t the thickness of leaf springs,andαthe amplifying angle of BTAM(Fig.2).

    Considering the relationship of geometric parameters of MNTP,the theoretical output displacements in different directions can be derived.

    The linear displacements along X,Y,and Z axes can be described by the equation

    The rotation angle around Xor Yaxis can be expressed as

    whereΔLis the elongation displacement of PZT under variable force,which can be obtained as

    whereΔL0is the elongation displacement of PZT under free condition,kPZTthe stiffness of PZT,and ksthe stiffness of MNTP.

    Based on the elastic beam theory,the stiffness of the leaf spring can be determined by the equation

    According to Eq.(5)and the principle of virtual work,the stiffness of BTAM can be calculated

    From Eqs.(5,6),the stiffness of MNTP can be expressed as

    where t,α,l,Land L1are the structural parameters of the displacement amplification mechanism in Fig.2,b the thickness of BTAM,and Ethe Young′s modulus.

    Substituting Eq.(7)into Eq.(4),ΔLis obtained.Then according to Eqs.(2,3),the displacements along X,Yand Zaxes can thus be determined.

    4 Drive and Control Strategies

    4.1 Drive mechanism of MNTP

    PZT is usually adopted as the actuator of micro positioning system.It works by utilizing the inverse piezoelectric effect,which means when an electric field is applied on PZT,it will generate a small deformation,accompanied by the micro-displacement of MNTP.The inverse piezoelectric effect of PZT can be expressed as follows

    where d33is the piezoelectric constant,S the strain,T′the stress,E the electric field strength,and xEthe elastic constant.

    For accurate and reliable positioning of MNTP,PZT used in the experiments has been calibrated under a free loading condition.By varying input displacements for PZT(model 40VS15),the output displacement values are collected by a capacitance displacement sensor(model Micro-Epsilon CS5).The calibration tests are repeated three times and the average values measured in the tests are shown in Fig.3.

    Fig.3 Calibration test results

    From Fig.3,it can be concluded that there is slight deviation between actual output displace-ments and target displacements.The overall er-rors are within 0.1μm range mainly due to the effect of the electromechanical coupling.The effect makes PZT exhibit hysteresis,creep,and nonlinear,etc.,which are the main factors that generate errors.Therefore,a well-calibrated PZT can also help to improve the control accuracy of MNTP.

    4.2 Control strategies of MNTP

    To effectively eliminate the displacement difference of PZT,the encapsulated ceramic with strain gauge sensor(SGS)is utilized.In addition,in order to reduce the stiffness of MNTP and obtain larger motion distance and swing angles,the lower platform adopts the aforementioned asymmetric structure.But the asymmetric structure will increase the coupled displacement and affect the platform precision.A full closedloop control system is thus designed to improve the positioning performance of the platform.Fig.4presents the schematic of the positioning system and Fig.5the block diagram of the basic control algorithm.The main control process can be expressed as follows:first,the driving control signal Ri(kT)is sent out by computer,and then the feedforward controller based on the Preisach model predicts the output values Ud(kT)more accurately by a certain control voltage sequence.Meanwhile,by a D/A converter,high voltages are generated to drive PZT,which will make the platform have an extremely small displacement C(s).The micro displacement can be measured by capacitance displacement sensors.And the position voltage signal x(kT)is sent back to the computer by the A/D converter,then the signal x(kT)will compare it with the signal Ri(kT)to obtain the deviation signal e(kT).By the PID controller,a certain offsetΔU(kT)will be generated to compensate the hysteresis and creep effects of the piezoelectric ceramic as well as external disturbances,so as to realize precise positioning.

    Taking the movement in Xdirection as an example,the differential equation of the positioning system holds

    Fig.4 Full closed-loop control principle of positioning system

    Fig.5 Feedforward PID control algorithm based on Preisach model

    where mis the mass of MNTP,μthe damping coefficient,kPZTthe stiffness of PZT,ksthe stiffness of MNTP,kgthe stiffness of BTAM,ΔLthe elongation displacement of PZT under variable force,and xthe output displacement along Xdirection of MNTP.

    According to Eq.(9),the transfer function of the MNTP in Xdirection can be obtained as

    whereωnis the natural frequency of MNTP,ζthe relative damping coefficient of MNTP.

    Similarly,MNTP transfer functions in Yand Zdirections are introduced by the equations

    Since the output of computer is a digital signal,D/A conversion and high voltage amplification are prerequisite for PZT actuator to generate a DC high voltage,which makes MNTP accom-plish precise positioning.The PZT controller here is equivalent to a scaling up link whose transfer function can be expressed by

    whereγvis the amplification coefficient of the PZT controller.

    Therefore,the transfer function of the feedback system is as follows

    Based on Eqs.(10-12),the transfer function of the positioning system moving along Xdirection can be expressed as

    Similarly,the transfer function of the positioning system along Y and Z directions can be written as

    Based on Eqs.(13-15),the output of the positioning system in X,Yand Zdirections can be obtained as

    where Tis the sampling period of the control system.kp,kiand kdrepresent the proportion,integral and differential coefficients of the PID controller,respectively.

    5 Simulation and Experimental Analyses

    The simulation is performed by the commer-cial FEA package ANSYS.The FEA model and displacement contours in different directions are illustrated in Fig.6.The platform is made of 65Si2Mn,and its mechanical properties are shown in Table 1.The structural parameters are shown in Fig.2and Table 2.

    Table 1 Mechanical properties of 65Si2Mn

    Table 2 Key structural parameters of MNTP

    Fig.6 FEA model and movement simulation

    In order to validate the effectiveness of the positioning control system,the feedforward PID rcontroller based on the Preisach model is integrated into the PZT controller.The device in Fig.7is to implement the control principle shown in Fig.5,and it includes PZTs(40VS15),XE-500/501modularized PZT controller,the capacitance displacement sensor(CS5with a measuring range of 5mm and the highest resolution of 3.75 nm),a capacitance displacement sensor controller(capaNCDT6500),an RS6500circuit controller and computers.Taking the movement in Xaxis direction as an example,the specific testing method is as follows:the PZT controller controls the output displacement of PZT,and then the capacitance displacement sensor collects the output displacement signals of MNTP,the signals are subsequently sent back to the computer and the PID controller so as to readjust the platform output.

    For the better test results,the range of 20—40μm is chosen as the PZT′s testing output.The test results of MNTP in different directions are shown in Figs.8(a-f).

    Fig.7 Experimental apparatus for testing positioning performance

    From Figs.8(a,c,e),it can be concluded that when PZT output displacement is within 20—40μm,the positioning system has a good repeated positioning performance,and the measured results in X,Yand Zaxes directions are basically identical.It can also be known that the minimum and maximum output displacement is 117.612μm and 355.863μm,respectively,and the repeated positioning errors are within 6—8μm range.In Figs.8(b,d,f),the experimental results agree well with the theoretical results and the FEA results,which further verifies the efficiency of the PID control algorithm based on the Preisach model.Besides,the positioning errors are mainly due to the change of material properties caused by local high temperature in the wire EDM processing.The change of material properties in turn results in the variation of stiffness and the increase of processing errors.Moreover,the asymmetric structure of the lower platform can also cause the nonlinear displacement coupling errors of the platform.All of these will affect the precision of the micro positioning system.Therefore,further optimization design about the control system,structural parameters and machining method of the platform are essential to MNTP for achieving the higher precision.

    Fig.8 Positioning performance tests in X,Y,and Zaxis directions

    6 Conclusions

    The following conclusions can be drawn from this research:

    (1)A long stroke MNTP,driven by PZT,with five degrees of freedom is designed.The amplification and guidance mechanism of micro displacement is achieved by flexure hinge.In addition,the structural design and displacement amplification performance of MNTP are analyzed.

    (2)The driving mechanism of MNTP is analyzed,and the PZT actuator is calibrated.As a result,the overall positioning errors are within 0.1μm range.Meanwhile,the full closed-loop control strategy of MNTP is established using the feedforward PID compound control algorithm based on the Preisach model.Moreover,the total transfer functions of the positioning system are derived,and the calculation method of the output signal of the positioning system is obtained.

    (3)The experimental apparatus is built to assess the local performance.The maximum output displacement of the positioning system is 355.863μm and the repetitive positioning errors are kept within 6—8μm.Finally,the experiment results,the FEA results and the theoretical values are in good agreement.The results also further verify the effectiveness of the PID control algorithm based on the Preisach model.

    [1] Zhang Y F,Gong J L.Structure and parameter design for two degrees of freedom micro-positioning mechanism with large travel[J].Journal of Mechanical Engineering,2010,46(23):30-35.(in Chinese)

    [2] Wang W,Hu P H,Zeng Q,et al.Theory design method of a flexure mechanism for parallel micromotion working table[J].Metrology Test Technology&Verification,2006,16(6):4-7.(in Chinese)

    [3] Zhang J L,Chen W Y,Ke X R,et al.Design and simulation of a 3-DOF micro-positioning worktable[J].Modern Manufacturing Engineering,2009(3):39-42.(in Chinese)

    [4] Chu C L,F(xiàn)an S H.A novel long-travel piezoelectric-driven linear nano-positioning stage[J].Precision Engineering,2005(30):85-95.(in Chinese)

    [5] Yuen K Y,Sumeet S A,Aphale S O.Design,analysis and control of a fast nano positioning stage[C]//Proceedings of the 2008IEEE/ASME International Conference on Advanced Intelligent Mechatronics.[S.l.]:IEEE,2008:451-456.

    [6] Deepkishore M,Dong J Y,Eakkachai P W,et al.A SOI-MEMS-based 3-DOF planar parallel-kinematics nano-positioning stage[J].Sensors and Actuators,A Physical,2008,147:340-351.

    [7] Li Y M,Xu Q S.Structural design and control strategy analysis of micro/nano transmission platform[J].IEEE/ASME Transactions on Mechatronics,2010,15(1):125-135.

    [8] Hu C D,Zhao M R,Li Y Q,et al.Study on design and experimentation of piezoelectric micro-moving platform with nano-step and long-range[J].Chinese Journal of Sensors and Actuators,2009,22(6):803-807.(in Chinese)

    [9] Jie D G,Sun L N,Qu D S,et al.Fuzzy-reasoning based self-tuning PID control for piezoelectric microdisplacement system[J].Journal of Harbin Institute of Technology,2005,37(2):145-147.

    [10]Yong Y K,Aphale S S,Moheimani S O R.Design,identification,and control of a flexure-based XY stage for fast nanoscale positioning[J].IEEE Transactions on Nanotechnology,2009,8(1):46-53.

    [11]Li C,Tan Y.A hybrid neural network based modeling for hysteresis[C]//Proceedings of the 2005IEEE International Symposium on,Mediterrean Conference on Control and Automation.Piscataway,USA:[s.n.],2005:53-58.

    [12]Wai R J,Lin C M,Peng Y F.Robust CMAC neural network control for LLCC resonant driving linear piezoelectric ceramic motor[J].IEE Proceedings:Control Theory and Applications,2003,150(3):221-232.

    [13]Yang C,Zhao Q,Wang H R,et al.Study on intelligent control system of two-dimensional platform based on ultra-precision positioning and large range[J].Precision Engineering,2010,34:627-633.

    [14]Liaw H C,Shirinzadeh B,Smith J.Robust neural network motion tracking control of piezoelectric actuation systems for micro/nanomanipulation[J].IEEE Transactions on Neural Networks,2009,20(2):356-366.

    猜你喜歡
    程凱
    危險(xiǎn)快遞
    以假亂真
    不翼而飛的手鏈
    冰原奇觀
    淘金夢
    縱橫雪原
    千萬遺產(chǎn)
    沒有水的湖
    藍(lán)血的活化石
    海邊的沙漠
    国产免费av片在线观看野外av| www.www免费av| 亚洲精华国产精华精| 99热6这里只有精品| 欧美大码av| 成人高潮视频无遮挡免费网站| 国产爱豆传媒在线观看 | 精品国产乱子伦一区二区三区| 日韩精品中文字幕看吧| 亚洲自拍偷在线| 午夜福利免费观看在线| a在线观看视频网站| 亚洲国产中文字幕在线视频| 国产黄片美女视频| 国产精品av视频在线免费观看| 日本免费a在线| 99热6这里只有精品| 黄色毛片三级朝国网站| 久久精品人妻少妇| 一个人免费在线观看的高清视频| 国产成人一区二区三区免费视频网站| 亚洲av片天天在线观看| 久久久久久九九精品二区国产 | 欧美日本视频| 亚洲成人精品中文字幕电影| 亚洲欧美一区二区三区黑人| 欧美极品一区二区三区四区| 黄色成人免费大全| 国产精品,欧美在线| 1024视频免费在线观看| 观看免费一级毛片| 日韩欧美 国产精品| 岛国视频午夜一区免费看| 免费看十八禁软件| 级片在线观看| 悠悠久久av| 欧美黄色片欧美黄色片| 给我免费播放毛片高清在线观看| 国内精品久久久久精免费| 国产亚洲精品久久久久久毛片| 99re在线观看精品视频| 香蕉丝袜av| 国产97色在线日韩免费| 成人高潮视频无遮挡免费网站| 国产成人系列免费观看| 免费搜索国产男女视频| 九色国产91popny在线| 女同久久另类99精品国产91| 亚洲18禁久久av| 桃红色精品国产亚洲av| 亚洲男人的天堂狠狠| 在线看三级毛片| 一边摸一边做爽爽视频免费| 老熟妇乱子伦视频在线观看| 亚洲中文日韩欧美视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国内精品一区二区在线观看| 999久久久精品免费观看国产| 午夜福利在线在线| 男女下面进入的视频免费午夜| 亚洲精品美女久久久久99蜜臀| 久久中文字幕一级| 亚洲五月婷婷丁香| 欧美黄色淫秽网站| 亚洲欧美日韩高清在线视频| 日韩国内少妇激情av| 国产精品免费视频内射| 88av欧美| 免费在线观看黄色视频的| 国产精品电影一区二区三区| 欧美日本亚洲视频在线播放| 免费人成视频x8x8入口观看| 制服人妻中文乱码| 少妇粗大呻吟视频| 免费在线观看亚洲国产| 男人的好看免费观看在线视频 | 黑人操中国人逼视频| 欧美 亚洲 国产 日韩一| 国产av麻豆久久久久久久| 一本一本综合久久| 精品欧美国产一区二区三| 亚洲av成人一区二区三| 亚洲一区中文字幕在线| 久久婷婷成人综合色麻豆| 他把我摸到了高潮在线观看| a级毛片a级免费在线| 色精品久久人妻99蜜桃| 久久精品国产99精品国产亚洲性色| 国产av麻豆久久久久久久| 日韩中文字幕欧美一区二区| 91在线观看av| 国产精品99久久99久久久不卡| 国产激情欧美一区二区| 一级黄色大片毛片| 天天躁夜夜躁狠狠躁躁| 草草在线视频免费看| 黄色女人牲交| 欧美日韩亚洲综合一区二区三区_| 香蕉国产在线看| 成人手机av| 夜夜夜夜夜久久久久| 最新美女视频免费是黄的| 搡老熟女国产l中国老女人| 在线a可以看的网站| 老汉色∧v一级毛片| 18禁黄网站禁片免费观看直播| videosex国产| 国产精品久久视频播放| 国产成人欧美在线观看| 欧美最黄视频在线播放免费| 成人国产综合亚洲| 亚洲乱码一区二区免费版| 波多野结衣高清作品| 国产成人精品无人区| 日韩有码中文字幕| 午夜激情福利司机影院| 两人在一起打扑克的视频| 怎么达到女性高潮| 欧美性长视频在线观看| 午夜两性在线视频| 欧美日本亚洲视频在线播放| 美女黄网站色视频| 国内毛片毛片毛片毛片毛片| 国产亚洲av嫩草精品影院| www.精华液| 麻豆一二三区av精品| 国产99白浆流出| 亚洲乱码一区二区免费版| 久久天堂一区二区三区四区| 国产成人精品久久二区二区91| 国产av又大| 最新在线观看一区二区三区| 国产成人av激情在线播放| 欧美不卡视频在线免费观看 | 99久久无色码亚洲精品果冻| 国内精品久久久久久久电影| 精品一区二区三区av网在线观看| 亚洲av五月六月丁香网| 久久欧美精品欧美久久欧美| 天堂动漫精品| 精品久久久久久久末码| 精品欧美一区二区三区在线| 国产亚洲精品av在线| 一进一出抽搐gif免费好疼| 亚洲成人国产一区在线观看| 久久九九热精品免费| 脱女人内裤的视频| 国产三级在线视频| 免费人成视频x8x8入口观看| 男男h啪啪无遮挡| 日韩欧美精品v在线| 一级片免费观看大全| 成人18禁高潮啪啪吃奶动态图| 12—13女人毛片做爰片一| 久久中文字幕人妻熟女| 亚洲人成网站高清观看| 欧美av亚洲av综合av国产av| 亚洲精品久久国产高清桃花| 欧美日韩国产亚洲二区| 99精品欧美一区二区三区四区| 狂野欧美白嫩少妇大欣赏| 久久久精品大字幕| 国产午夜精品论理片| 亚洲人成伊人成综合网2020| 亚洲精品国产一区二区精华液| 一级毛片女人18水好多| 日本成人三级电影网站| 男女下面进入的视频免费午夜| 黄色视频,在线免费观看| 18禁黄网站禁片午夜丰满| 成人亚洲精品av一区二区| 亚洲一区二区三区不卡视频| 嫩草影视91久久| 国产精品一区二区三区四区久久| 在线观看免费日韩欧美大片| 精品久久久久久久久久久久久| 免费无遮挡裸体视频| 色在线成人网| 性色av乱码一区二区三区2| 精品无人区乱码1区二区| 中文字幕高清在线视频| 18禁观看日本| 国产精品精品国产色婷婷| 99久久精品国产亚洲精品| 日日爽夜夜爽网站| 久久天堂一区二区三区四区| 欧美色欧美亚洲另类二区| 777久久人妻少妇嫩草av网站| 免费高清视频大片| 成人18禁在线播放| 人人妻人人澡欧美一区二区| 成人手机av| 成人永久免费在线观看视频| 十八禁网站免费在线| 亚洲免费av在线视频| 一二三四在线观看免费中文在| 色综合站精品国产| 午夜久久久久精精品| 成人国产一区最新在线观看| 人成视频在线观看免费观看| 精品高清国产在线一区| 国产私拍福利视频在线观看| 欧美日韩福利视频一区二区| 国产99久久九九免费精品| 妹子高潮喷水视频| 午夜福利18| 免费看美女性在线毛片视频| 亚洲av成人av| 高清毛片免费观看视频网站| 亚洲欧洲精品一区二区精品久久久| 精品福利观看| 日韩欧美一区二区三区在线观看| av超薄肉色丝袜交足视频| 美女扒开内裤让男人捅视频| 国产精品一区二区三区四区免费观看 | 波多野结衣高清无吗| 久久久水蜜桃国产精品网| 欧美乱妇无乱码| 观看免费一级毛片| www日本在线高清视频| 欧美一区二区精品小视频在线| 19禁男女啪啪无遮挡网站| 99在线视频只有这里精品首页| 在线观看日韩欧美| 日本a在线网址| 国产精品美女特级片免费视频播放器 | 欧美成人性av电影在线观看| 特大巨黑吊av在线直播| 亚洲精品一卡2卡三卡4卡5卡| 宅男免费午夜| a级毛片在线看网站| 伦理电影免费视频| 久久精品91蜜桃| 中文字幕人妻丝袜一区二区| 午夜精品在线福利| 可以在线观看毛片的网站| 亚洲 国产 在线| 久久久久久大精品| 亚洲一码二码三码区别大吗| 可以在线观看的亚洲视频| 日韩大尺度精品在线看网址| 欧美日韩黄片免| 久久精品综合一区二区三区| xxxwww97欧美| 亚洲色图av天堂| 国产成年人精品一区二区| 一本一本综合久久| 成人精品一区二区免费| 国产视频一区二区在线看| 日韩精品青青久久久久久| 国内揄拍国产精品人妻在线| 床上黄色一级片| 69av精品久久久久久| 欧美人与性动交α欧美精品济南到| 91九色精品人成在线观看| av天堂在线播放| 搡老妇女老女人老熟妇| 国产成+人综合+亚洲专区| 成人三级做爰电影| 久久久久性生活片| 中国美女看黄片| 亚洲七黄色美女视频| 麻豆国产97在线/欧美 | 岛国视频午夜一区免费看| 精品久久久久久,| 91字幕亚洲| 国产午夜福利久久久久久| 成人国产综合亚洲| 色综合亚洲欧美另类图片| 中亚洲国语对白在线视频| 日韩欧美国产在线观看| 人妻夜夜爽99麻豆av| 久久久久久久久久黄片| 国产不卡一卡二| 久久欧美精品欧美久久欧美| 久久婷婷成人综合色麻豆| 身体一侧抽搐| 悠悠久久av| 亚洲熟女毛片儿| 曰老女人黄片| 欧美乱色亚洲激情| 国产1区2区3区精品| 亚洲在线自拍视频| 日本在线视频免费播放| 欧美一级毛片孕妇| 亚洲人与动物交配视频| 久9热在线精品视频| 亚洲精品久久国产高清桃花| 免费人成视频x8x8入口观看| 免费观看人在逋| 视频区欧美日本亚洲| 国产av不卡久久| 欧美黑人欧美精品刺激| 18禁国产床啪视频网站| 久久婷婷人人爽人人干人人爱| 啦啦啦免费观看视频1| 午夜福利18| 午夜影院日韩av| 大型黄色视频在线免费观看| 免费在线观看影片大全网站| 国产亚洲av高清不卡| 国内精品一区二区在线观看| 无限看片的www在线观看| 国产亚洲精品一区二区www| 18禁黄网站禁片午夜丰满| 国产精品 国内视频| 五月玫瑰六月丁香| 18禁国产床啪视频网站| 国产蜜桃级精品一区二区三区| 在线观看免费日韩欧美大片| 麻豆av在线久日| 亚洲五月天丁香| 母亲3免费完整高清在线观看| 欧美成人性av电影在线观看| 18禁美女被吸乳视频| 少妇裸体淫交视频免费看高清 | 亚洲一码二码三码区别大吗| 精品免费久久久久久久清纯| 国产精品av久久久久免费| 久久久国产精品麻豆| 天堂√8在线中文| 十八禁网站免费在线| 天堂动漫精品| 亚洲熟妇熟女久久| АⅤ资源中文在线天堂| 国产三级黄色录像| 亚洲精品国产精品久久久不卡| 哪里可以看免费的av片| 久久香蕉国产精品| videosex国产| av在线天堂中文字幕| 国内毛片毛片毛片毛片毛片| 性色av乱码一区二区三区2| 亚洲精品中文字幕一二三四区| av视频在线观看入口| 一个人观看的视频www高清免费观看 | 国产97色在线日韩免费| 久久草成人影院| 国产精品久久电影中文字幕| svipshipincom国产片| 最近最新中文字幕大全电影3| 欧美一级a爱片免费观看看 | 丁香欧美五月| 欧美黑人精品巨大| 免费av毛片视频| 岛国视频午夜一区免费看| 老汉色av国产亚洲站长工具| 久久久久久国产a免费观看| av在线天堂中文字幕| 两个人视频免费观看高清| 日本 欧美在线| 两性夫妻黄色片| 亚洲人与动物交配视频| 国产精品亚洲av一区麻豆| 亚洲avbb在线观看| 久久国产精品人妻蜜桃| 亚洲精品av麻豆狂野| 好看av亚洲va欧美ⅴa在| 在线十欧美十亚洲十日本专区| 老司机在亚洲福利影院| 女同久久另类99精品国产91| 悠悠久久av| 国产野战对白在线观看| 啪啪无遮挡十八禁网站| 99精品在免费线老司机午夜| 国产男靠女视频免费网站| 国产精品av久久久久免费| 99久久精品国产亚洲精品| 亚洲国产欧美网| 大型黄色视频在线免费观看| 久久久久久久午夜电影| av福利片在线| 久久香蕉精品热| 午夜影院日韩av| 88av欧美| 精品免费久久久久久久清纯| 亚洲五月婷婷丁香| 两人在一起打扑克的视频| 国产高清videossex| 国产成人精品久久二区二区免费| 国内精品一区二区在线观看| 欧美日韩黄片免| 97人妻精品一区二区三区麻豆| 丰满的人妻完整版| 视频区欧美日本亚洲| 亚洲国产欧美一区二区综合| 日韩有码中文字幕| 欧美日韩亚洲国产一区二区在线观看| 麻豆成人av在线观看| 国产精品av久久久久免费| 日本三级黄在线观看| 亚洲专区国产一区二区| 免费av毛片视频| 禁无遮挡网站| 50天的宝宝边吃奶边哭怎么回事| 12—13女人毛片做爰片一| 久久精品综合一区二区三区| 午夜老司机福利片| 日本熟妇午夜| 日韩欧美国产一区二区入口| 久久中文看片网| 亚洲七黄色美女视频| 亚洲人与动物交配视频| 精品久久久久久久久久久久久| 国产熟女xx| 一区二区三区激情视频| 亚洲国产精品sss在线观看| 波多野结衣高清作品| 色播亚洲综合网| 亚洲人与动物交配视频| 正在播放国产对白刺激| 久久久久免费精品人妻一区二区| 国产视频一区二区在线看| 亚洲成人精品中文字幕电影| 99在线人妻在线中文字幕| a级毛片在线看网站| 桃色一区二区三区在线观看| 精品第一国产精品| 国产成人av激情在线播放| 搡老熟女国产l中国老女人| 在线观看www视频免费| 搡老岳熟女国产| 女生性感内裤真人,穿戴方法视频| 母亲3免费完整高清在线观看| 两人在一起打扑克的视频| 人妻丰满熟妇av一区二区三区| www日本在线高清视频| 日韩精品青青久久久久久| 99热只有精品国产| 亚洲国产精品成人综合色| av片东京热男人的天堂| 国产探花在线观看一区二区| 久热爱精品视频在线9| 午夜影院日韩av| 久久精品综合一区二区三区| 成人手机av| 国产精品永久免费网站| 国产成+人综合+亚洲专区| 天天躁夜夜躁狠狠躁躁| 欧美黑人欧美精品刺激| 亚洲精华国产精华精| 亚洲第一欧美日韩一区二区三区| 日日摸夜夜添夜夜添小说| 一边摸一边做爽爽视频免费| 一a级毛片在线观看| 午夜精品在线福利| 狂野欧美白嫩少妇大欣赏| 久久热在线av| 精品少妇一区二区三区视频日本电影| 18禁黄网站禁片免费观看直播| 欧美性猛交黑人性爽| 禁无遮挡网站| 中文字幕最新亚洲高清| 老司机在亚洲福利影院| 搡老岳熟女国产| 久久中文字幕一级| 亚洲人成伊人成综合网2020| 可以在线观看毛片的网站| 色哟哟哟哟哟哟| 精品乱码久久久久久99久播| 一级片免费观看大全| 亚洲avbb在线观看| 亚洲最大成人中文| 在线视频色国产色| 国产一区二区三区在线臀色熟女| 日韩有码中文字幕| 国产精品野战在线观看| 日韩欧美 国产精品| 久久久水蜜桃国产精品网| 最近在线观看免费完整版| 观看免费一级毛片| 夜夜看夜夜爽夜夜摸| 亚洲激情在线av| 色精品久久人妻99蜜桃| 国产精品永久免费网站| 久热爱精品视频在线9| 在线永久观看黄色视频| 1024视频免费在线观看| 在线播放国产精品三级| 国产亚洲av高清不卡| 美女黄网站色视频| 亚洲成av人片免费观看| 久久久久久久久免费视频了| 亚洲精品在线美女| 国产精品,欧美在线| 久久性视频一级片| 看免费av毛片| 精品电影一区二区在线| 久久久久久大精品| 最新在线观看一区二区三区| 久久精品亚洲精品国产色婷小说| 日韩成人在线观看一区二区三区| 国内毛片毛片毛片毛片毛片| 狂野欧美激情性xxxx| 亚洲欧美日韩东京热| www日本黄色视频网| 岛国在线免费视频观看| 国产精品久久电影中文字幕| 国产精品免费视频内射| 18禁国产床啪视频网站| 一本一本综合久久| 男男h啪啪无遮挡| 色在线成人网| 人成视频在线观看免费观看| 亚洲第一电影网av| 全区人妻精品视频| 久久香蕉国产精品| 国产视频内射| 国产精品国产高清国产av| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲成av人片免费观看| 国产激情偷乱视频一区二区| 久久久久亚洲av毛片大全| 欧美日韩亚洲综合一区二区三区_| 狂野欧美激情性xxxx| 一级黄色大片毛片| 狠狠狠狠99中文字幕| 免费无遮挡裸体视频| 国产高清有码在线观看视频 | 老司机靠b影院| 精品久久久久久久末码| 久久精品亚洲精品国产色婷小说| 99在线人妻在线中文字幕| 国产人伦9x9x在线观看| av欧美777| 国产精品av视频在线免费观看| 精品欧美国产一区二区三| 女人爽到高潮嗷嗷叫在线视频| 美女午夜性视频免费| 禁无遮挡网站| 好看av亚洲va欧美ⅴa在| 久久这里只有精品中国| 成年人黄色毛片网站| 女人爽到高潮嗷嗷叫在线视频| 久久精品aⅴ一区二区三区四区| 男插女下体视频免费在线播放| 色综合欧美亚洲国产小说| 国产精品98久久久久久宅男小说| 色在线成人网| 亚洲性夜色夜夜综合| 黄色丝袜av网址大全| 欧美+亚洲+日韩+国产| 亚洲av熟女| 国产99久久九九免费精品| 搡老岳熟女国产| 亚洲欧美日韩高清专用| 亚洲成人免费电影在线观看| 亚洲色图 男人天堂 中文字幕| 国产视频一区二区在线看| av超薄肉色丝袜交足视频| 国产精品乱码一区二三区的特点| 国产精品自产拍在线观看55亚洲| 窝窝影院91人妻| 亚洲国产欧洲综合997久久,| 欧美国产日韩亚洲一区| 美女免费视频网站| 久久久久久亚洲精品国产蜜桃av| 久久久久亚洲av毛片大全| 久久久国产成人免费| 老熟妇乱子伦视频在线观看| 90打野战视频偷拍视频| 久久午夜综合久久蜜桃| 欧美av亚洲av综合av国产av| 91国产中文字幕| 又黄又爽又免费观看的视频| av有码第一页| 中文在线观看免费www的网站 | 嫁个100分男人电影在线观看| 亚洲国产日韩欧美精品在线观看 | 国产真实乱freesex| 亚洲国产精品合色在线| 久久久久久久午夜电影| 亚洲天堂国产精品一区在线| 丁香欧美五月| 午夜激情福利司机影院| 一区二区三区激情视频| 岛国在线免费视频观看| 一区二区三区国产精品乱码| 宅男免费午夜| 成人亚洲精品av一区二区| 亚洲av成人不卡在线观看播放网| 久久精品91无色码中文字幕| 中文资源天堂在线| 亚洲熟妇中文字幕五十中出| 亚洲男人的天堂狠狠| 国产av在哪里看| 别揉我奶头~嗯~啊~动态视频| 国产乱人伦免费视频| 我要搜黄色片| 日日爽夜夜爽网站| 国产精品,欧美在线| 一卡2卡三卡四卡精品乱码亚洲| 国产精品影院久久| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机在亚洲福利影院| 日本免费a在线| 99国产精品99久久久久| 黄片小视频在线播放| 午夜成年电影在线免费观看| 国产男靠女视频免费网站| 可以在线观看的亚洲视频| 国产精品久久久久久久电影 | 中文在线观看免费www的网站 | 中亚洲国语对白在线视频| 欧美性长视频在线观看| 黄色视频,在线免费观看| 亚洲精品av麻豆狂野| 岛国视频午夜一区免费看| 成人18禁在线播放| av在线播放免费不卡| 狂野欧美激情性xxxx| 国产男靠女视频免费网站| 无人区码免费观看不卡| 久久久久久九九精品二区国产 | 搞女人的毛片|