• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Predictive Modeling and Parameter Optimization of Cutting Forces During Orbital Drilling*

    2014-04-24 10:54:10ShanYicai單以才LiLiang李亮HeNing何寧QinXiaojie秦曉杰ZhangTing章婷
    關(guān)鍵詞:李亮

    Shan Yicai(單以才),Li Liang(李亮),He Ning(何寧),Qin Xiaojie(秦曉杰),Zhang Ting(章婷)

    1.Nanjing College of Information Technology,Nanjing,210046,P.R.China;2.College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;3.School of Mechanical Engineering,Nanjing Institute of Technology,Nanjing,211167,P.R.China

    1 Introduction

    With the widely use of titanium alloy,carbon fiber reinforced plastics(CFRP)and aluminum alloy in aviation parts,highly efficient and precise hole-making technology has become a research hotspot[1-2].As a new hole-making technology,orbital drilling has some advantages including small axial force,minor tool wear,convenient chip removal,high dimension accuracy,etc.And compared with conventional drilling,it can process various holes with one tool.Therefore,orbital drilling has a broad application prospect in aviation assembly[3-5].

    As radial and axial cutting edges both participate in cutting,it is more difficult to control cutting forces in orbital drilling than in conventional drilling.Research on cutting forces and parameter optimization of orbital drilling has great values on machining accuracy enhancement and processing quality improvement.By now,many scholars have conducted various experimental and theoretical researches on cutting forces of orbital drilling.

    On the aspect of theoretical modeling,Bayoumi,et al.analyzed the relation between cutting parameters and tool rotation angle,then established an analytic model of cutting forces.Further,the effect of radial and axial engagements and cutting speed on the cutting parameters was investigated[6].Qin Xuda,et al.simplified the influence of cutting forces on axial cutting edge into a z-direction single force,then presented a novel analytical model of cutting force[7].Under certain time domain,Liu Changyi established cutting force models with inputs as helical feeding,spindle rotation speed,axial and radial cutting depth and tool geometric parameters[8].As orbital drilling process is effected by various factors(impact load,tool wear,chip deformation,etc.),large deviation is inevitable between theoretical and measured cutting forces.

    On the aspect of experimental studies,Ni Wangyang analyzed orbital drilling kinetics,and investigated the influence of revolution speed,axial feeding rate and revolution radius on cutting forces[9].Iyer et al.carried out contrast experiments between orbital drilling and conventional drilling on die steel AISI D2.The research confirmed the superiority of orbital drilling in the aspects of cutting forces,hole quality and tool wear,ect[10].Denkena,et al.analyzed the impact of axial and tangential feed on milling forces through undeformed chip model[11].Hiroyuki Sasahara studied the effect of minimum quantity lubrication on chip temperature,chip deformation,cutting temperature,cutting forces and shape error,and finally pointed out that the cutting force of orbital drilling was smaller than that of conventional drilling[12].Wang Ben pointed out that there was little difference between x-direction cutting force in orbital drilling and that in conventional drilling,while z-direction cutting force in orbital drilling was smaller than that in conventional drilling[13].Though the influence of cutting parameters on cutting forces has been analyzed,prediction model of cutting force has not been established in above references.

    In China,Yuan Zhixing built up cutting force models of x-and z-direction through orbital drilling in die steel.These models neglected the effect of revolution radius on cutting forces[14].Wang Haiyan,et al.built a multi-objective optimization model with two objectives including tool life and material removal rate.Pareto genetic algorithm was introduced to optimize cutting parameters[15].

    If conventional cutting parameters are used as inputs in establishing cutting force models of orbital drilling,forces of axial and radial edges need to be built respectively.We attempt to avoid the complexity of modeling with two edges,and chose four cutting control parameters as inputs.To realize predicting and controlling cutting forces during orbital drilling,we focus on establishing models of cutting forces when machining different holes with one tool,and optimizing cutting control parameters.

    2 Kinematics Analysis of Orbital Drilling

    Fig.1shows the principle of orbital drilling[16].During orbital drilling,tool practises three movements simultaneously(rotation around own axis,feed along axial direction,and revolution around hole axis).Several control parameters should be considered as the following:

    Hole diameter:D

    Tool diameter:d

    Axial feeding pitch:P

    Tool rotation speed:ns

    Tool revolution speed:nω

    Tool revolution radius:e

    Fig.1 Schematic diagram of orbital drilling

    Axial feeding pitch Prepresents the axial feeding after tool finishes revolution for a round.Hence,tool axial feed speed facan be expressed as

    Tool revolution radius eis the radial offset of tool axis from hole axis.In revolution,tangential feed speed ftof tool center point(TCP)is

    As tool screw feed is composed of axial and tangential feeds,screw feed speed fCof TCP is

    If tool tooth number is Z,the TCP cutting amount per toothδCcan be described as

    where fzaand fztare tool feeding per tooth in axial and tangential directions.

    During orbital drilling,tool tangential cutting amount per toothδPis different fromδC.It is expressed as

    As we all know,the cutting amount per tooth is directly related to cutting forces.The more cutting amount per tooth is,the bigger the resistance to overcome in chip formation is.Thus,Macro milling force is increased.From Eqs.(1-5),we know that cutting forces of orbital drilling can be determined by control parameters as ns,nω,P,e,d,Dand Z.As for a special tool,the influence of tool geometric parameters on cutting forces can be eliminated.

    3 Experimental Design

    3.1 Experimental conditions

    Orbital drilling experiment is conducted on Mikron UCP710high speed machining center,as shown in Fig.2.In the center,spindle power is 16kW and spindle speed is 100—18 000r/min.The workpiece material is aluminum alloy 6061.The workpiece size is 200mm×100mm×15mm.The tool is H602411-10from German Walter company,which has 45°helix angle and two teeth.Dry cutting and inverse milling are adopted in the experiment.Cutting force measurement system is composed of Kistler 9265Bdynamic force measurement instrument,Kistler 5019 charge amplifier,and computer data acquisition subsystem.

    Fig.2 Experimental setup for milling forces measurement

    3.2 Experimental scheme

    Under specific machine tool and cutting tool,the main parameters affecting cutting forces are tool rotation speed,axial feeding pitch,tool revolution speed and tool revolution radius.For different materials and workpieces,a lot of experiments should be done for analyzing the influence of cutting parameters on cutting forces.To reduce experimental cost,orthogonal experiment method is utilized in experimental design[17].In actual production,variation of nsleads to different axial cutting depth.Oversized revolution radius degrades machinability of orbital drilling.Hence,there is no need to use too many levels in tool axial feeding pitch and tool revolution radius.With reference to the different hole diameters and the hole processing security in aviation components,experimental factors and levels are designed as Table 1.

    Table 1 Cutting control parameters and levels

    4 Model Establishment and Accuracy Analysis

    4.1 Characteristic analysis on cutting forces in orbital drilling

    As influenced by radial and axial cutting edges in processing,the cutting force of orbital drilling is obviously different from that in conven-tional drilling[18].Fig.3(a)shows the waveform graph of milling force in x-direction,which is composed by one low frequency signal and one high frequency signal.The low frequency waveform is caused by tool revolution,while the high frequency waveform is mainly determined by tool rotation.The high frequency is also influenced by high speed vibration and various disturbances.Two types of waveform graph are shown in Figs.3(b,c).

    Fig.3 Waveform graph of cutting force in x-direction

    Cutting force measurement system can detect three milling forces as Fx,F(xiàn)yand Fzsimultaneously.In workpiece reference coordinate system,the three forces compose the cutting resultant force of orbital drilling.If tool coordinate system is set as a reference,the cutting resultant force can also be decomposed into tangential force Ft,radial force Fr,and axial force Fa.Here,F(xiàn)ris the main factor affecting hole dimensional error and shape precision.Facauses quality defects as burr of metal material and delamination of CFRP.Ftis mainly used to calculate consumed power.Therefore,the research on cutting force in tool coordinate system is significant for improving machining accuracy[19].According to Fig.2,cutting component forces in tool coordinate system can be calculated as

    To avoid calculation error caused by low frequency signal,we utilize high frequency waveform to calculate measured value of cutting force.Under signal stable stage,we select 100adjacent peaks and troughs.A bigger peak and a bigger trough are selected respectively from each four adjacent peaks and troughs.Then,the average values of peak and trough are calculated respectively.The bigger absolute average value is regarded as measured value of cutting force.We attempt to study axial and radial forces for further improving hole quality by controlling cutting forces and optimizing cutting parameters in orbital drilling.In experiment,various combinations of four cutting control parameters are designed and the values of Frand Faare measured.The values are shown as Table 2.

    Table 2 Cutting control parameters and cutting forces in experiment

    4.2 Establishment of prediction model

    According to Table 2,models of Frand Faare built and the influence of cutting control parameters on cutting forces is studied.Since there is different dimension and boundary in cutting control parameters,the four parameters need to be normalized,where linear function conversion is used as

    where xreflects the original value,ythe converted value,xminand xmaxare the minimum and the maximum of x.

    After normalization process,the data conversion is shown as Table 3.

    After data normalization,prediction models of Frand Faare established by four cutting control parameters.To overcome the shortcoming of direct-vision method in distinguishing conditional error from accidental error,variance analysis isintroduced in the research.The established models are described as Eqs.(8a,8b).

    Table 3 Results of data normalization

    Next,reverse normalized processing is made by Eqs.(8a,8b),the relationships are calculated between ns,nω,P,e,and Fa(or Fr),multiple quadratic regression models are gained as follows Fa=-186+6.98*10-2*x1+3.99*x2+

    where the four input values as x1,x2,x3and x4correspond to ns,nω,Pand e,respectively.According to the four input values in Table 2,fitted values of Frand Facan be worked out through Eqs.(9a,9b).

    The point is that(9a,9b)can only be used when parameters meet certain demands

    4.3 Accuracy analysis of prediction models

    In variance analysis,F(xiàn)criterion is introduced in significance testing.The results are shown in Table 4.

    Table 4 Adequacy of prediction models

    In Table 4,DFis a degree of freedom,SSis sum of squares,MS is mean square,and R2is determination coefficient.

    Under given significant levelα,regression model is credible if F<F1-0.05(p,n-p-1).From Table 4,the Fvalues of the two models are both less than F1-0.05.Eqs.(8a,9a)have high significance whenα=0.05.R2of Frand Famodels are 0.996and 0.989.The adjusted R2are 0.983and 0.957.These indicate that the predicted values of Frand Faare consistent with experimental values(as shown in Fig.4).The analysis shows that the models are fit for predicting cutting forc-es of orbital drilling in aluminium alloy 6061.

    Fig.4 Comparison of predictive value with test value

    5 Effect of Cutting Control Parameters on Cutting Forces

    In regression model,when three input parameters are fixed at a certain level,the model will become a single-factor model.When Pand e are both set as 1mm,the relationship curves between Fa(or Fr)and nωare shown in Fig.5,where nωis set as 15.92,23.87,31.82r/min respectively.With the increase of ns,F(xiàn)aand Frincrease at first but decrease finally.In the lowspeed stage,tool tooth friction is predominant.The increase of nscauses the increase of Faand Fr.In high-speed stage,fzaand fztdecrease with the increase of ns.Consequently,F(xiàn)aand Frdecrease accordingly.In this stage,tool feeding becomes the main factor to determine milling force.Fig.5(a)indicates that Faincreases with the increase of nω.Fig.5(b)gives the relationship between nωand Fr.Obviously,the three curves are similar under three tool revolution speeds.

    When Pand e are both 1mm and nsis set as 3 000,4 500,6 000r/min,respectively,the relationship curves of Fa(or Fr)and nωare shown in Fig.6.Faand Frincrease with the increase of nω.As can be seen from Eq.(4),the increase of nωenlarges the values of fzaand fzt.Fig.6(a)shows that the influence of nωon Fais obvious when nsis low.But the influence becomes small with nsincreasing.In Fig.6(b),the increase of nωhas little influence on Fr.

    Fig.5 Effect of nson Faand Fr

    Fig.6 Effect of nω =15.92r/min on Faand Fr

    Fig.7 Effect of Pon Faand Fr

    When nωis 15.92r/min,eis 1mm,and nsis 3 000,4 500,6 000r/min,the relation curves of Fa(or Fr)and Pare shown in Fig.7.As for radial cutting edge,axial cutting depth fzaincreases with P.And,fztof axial cutting edge also enlarges.Consequently,F(xiàn)aincreases significantly under the special ns,which can be seen from Fig.7(a).In low-stage,F(xiàn)aincreases with the increase of ns.But,F(xiàn)adecreases with the sharp increase of ns.In lownsof Fig.7(b),F(xiàn)rdecreases with the increase of P.The reason is that under selected tool and certain revolution radius,the increase of Pamplifies cutting effect similar to conventional drilling.But Frincreases under high rotation speed.The reason is that the sharp increase of nsproduces cutting effect more similar to milling.In this case,nshas greater influence on Frthan P.

    We set the following parameters:P=1mm,ns=3 000,4 500,6 000r/min.In Fig.8(a),the increase ofe enlarges fztunder the special ns,and further increases Fa.In lowns,the fluence of the tool-workpiece friction on cutting forces is predominant in orbital drilling,which leads to the increase of Fa.In high ns,the sharp decrease of fztand fzacauses the decrease of Fa.Under lowns,the increase of e reduces Faas shown in Fig.8(b).The reason is that the tool-workpiece space for chip removal is increased and the materials removal cut by radial cutting edge is multiplied.While in high ns,tool dynamic characteristic exerts greater influence on cutting forces,where Frincreases accordingly.

    Fig.8 Effect of e on Faand Fr

    6 Optimization of Cutting Control Parameters

    To process a?13hole in aluminum alloy 6061,we choose tool H602411-10.If P=1mm,response surfaces of Faand Frbased on prediction models are shown in Fig.9.

    To achieve the minimum value of Fa(or Fr),we need to optimize combination of ns,nω,and P.The optimization method should satisfy the given objective function

    where i=a,r(Note:a means axial,r means radial).

    To achieve machining efficiency,the processing time of the hole is set as 30s.The constraints of cutting control parameters are

    As the objective function is multivariate nonlinear equation,it is uneasy to find a combination of optimal cutting control parameters through analytic method or experimental method.To solve the problem,we combined penalty function meth-od with prediction models to optimize cutting control parameters.

    Fig.9 Response surface of milling forces based on prediction model

    After multiple iterative solutions of objective functions,two optimum combinations are worked out as

    Under two combinations as x*aand x*r,theoretical and experimental values of Faand Frare obtained.The results are:

    Theoretical values:Fa=103.99N,F(xiàn)r=83.73N.

    Experimental values:Fa=108.68N,F(xiàn)r=85.49N.

    The consistency between theoretical and experimental values indicates that the optimization method is feasible and practicable in cutting control parameter optimization of orbital drilling.In practical application,the optimization of Frcan be used to improve hole dimensional error and shape precision.If burr at hole export needs to be strictly controlled in special occasion,the optimization of Facan be selected.

    7 Conclusions

    (1)Upon analyzing orbital drilling kinematics,main cutting control parameters are determined as ns,nω,Pand e,which impose great effect on cutting forces when processing with one selected tool.Nonlinear regression analysis is introduced in prediction models of Faand Fr,in which four milling control parameters are used as inputs.By Fcriterion,the Fvalues are 81.16 and 31.58,which show good significance of two cutting force models.Meanwhile,the determination coefficients R2of 0.996and 0.989prove the high fitting precision of the models.

    (2)The influence of cutting control forces on Faand Frhas been studied based upon prediction models.With the increase of ns,F(xiàn)aand Frincrease firstly and then decrease.The increase of nωcan increase Faand Fr.When Pand e both increase,F(xiàn)aincreases accordingly,while Frincreases first and then decreases.

    (3)Under selected scope of cutting control parameters,Matlab software is used to optimize cutting control parameters with the optimization goals as minimum Faand Fr.Comparison between theoretical analysis and verification experiment shows that the prediction errors of Faand Frare both less than 5%,which proves the validity of the cutting force model during orbital drilling.But how to realize the collaborative optimization of Faand Frwill be our major research direction in future.

    [1] Jiang Chengyu,Wang Junbiao.Key manufacturing technologies of large aircraft development in China[J].Aeronautical Manufacturing Technology,2009(1):28-31.(in Chinese)

    [2] Bo Yong,Xu Guokang,Xiao Qingdong.Automatic precision drilling technology of aircraft structural part[J].Aeronautical Manufacturing Technology,2009(24):61-64.(in Chinese)

    [3] Whinnem E.Development and deployment of orbital drilling at Boeing[C]∥Aerospace Manufacturing and Automated Fastening Conference and Exhibition.USA:SAE,2006:2006-01-3152.

    [4] Whinnem E,Lipczynski G,Eriksson I.Development of orbital drilling for the Boeing 787[J].SAE Int J Aerosp,2009,1(1):811-816.

    [5] Marguet B,Wiegert F,Lebahar O,et al.Advanced portable orbital drilling unit for airbus final assembly lines[C]∥Aerospace Technology Conference and Exposition.USA:SAE,2007:2007-01-3849.

    [6] Bayoumi A E,Yucesan G,Kendall L A.An analytic mechanistic cutting force model for milling operations:a case study of helical milling operation[J].Transactions of the ASME,1994,8(114):331-339.

    [7] Wang Haiyan,Qin Xuda,Ren Chengzu,et al.Prediction of cutting forces in helical milling process[J].Int Adv Manuf Tchnol,2011,58(9/10/11/12):849-859.

    [8] Liu Changyi,Wang Gui,Dargusch M S.Modelling,simulation and experimental investigation of cutting forces during helical milling operations[J].Int Adv Manuf Tchnol,2012,63(9/10/11/12):839-850.

    [9] Ni Wangyang.Orbital drilling of aerospace materials[C]∥SAE 2007Transactions Set.Los Angeles:SAE International,2008(V116):2007-01-3814.

    [10]Iyer R,Koshy p,Eg E.Helical milling:an enabling technology for hard machining holes in AISI D2tool steel[J].Int J Mach Tool Manuf,2007,47(2):205-210.

    [11]Denkena B,Boehnke D,Dege J H.Helical milling of CFRP-titanium layer compounds[J].CIRP Journal of Manufacturing Science and Technology,2008,2(1):64-69.

    [12]Sasahara H,Kawasaki M,Tsetsumi M.Helical feed milling with MQL for boring of aluminum alloy[J].Trans Jpn Soc Mech Eng C,2003,69(8):2156-2161.

    [13]Wang Beng,Gao Hang,Bi Mingzhi,et al.Mechanism of reduction of damage during orbital drilling od C/E composites[J].Journal of mechanical engineering,2012,48(15):173-181.

    [14]Yuan Zhixing.Dynamics research on helical milling[D].Tianjing:School of Mechanical Engineering,Tianjing University,2008.

    [15]Wang Haiyan,Qin Xuda,Ren Chengzu,Optimization of cutting parameters in helical milling process based on pareto genetic algorithm[J].China Mechanical Engineering,2012,23(17):2058-2061.

    [16]Brinkmeier E,F(xiàn)angmann S,Meyer I.Orbital drilling kinematics[J].Annals of the WGP Production Engineering,2008,2(3):277-284.

    [17]Zhang Runchu,Liu Minqian,Yang Jianfeng,et al.Statistics for experimenters design,innovation,and discovery[M].Beijing:China Machine Press,2010.(in Chinese)

    [18]Shan Yicai,He Ning,Li Liang,et al.Orbital milling hole of aerospace al-alloy with big pitch.Transactions of Tianjin University[J].2011,17(5):229-235.

    [19]Geng Guosheng.Fundamental research on high speed milling of titanium alloys[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2006.

    猜你喜歡
    李亮
    改天請(qǐng)你喝酒
    故事會(huì)(2022年3期)2022-02-10 21:13:35
    好心人的憤怒
    白磷燃燒實(shí)驗(yàn)的改進(jìn)
    母親送雞蛋
    浙江警界學(xué)人浙江警察學(xué)院李亮副教授
    丟東西之后
    愛(ài)你(2017年36期)2017-12-07 06:53:31
    從唐詩(shī)看“一代有一代之文學(xué)”理論之失
    宰客不成
    愛(ài)你(2016年13期)2016-11-26 18:06:44
    宰客不成
    宰老板
    故事會(huì)(2016年8期)2016-05-06 09:16:51
    久久精品国产清高在天天线| 免费人成视频x8x8入口观看| 欧美av亚洲av综合av国产av| 精品国产美女av久久久久小说| 91av网站免费观看| av片东京热男人的天堂| 91在线观看av| 神马国产精品三级电影在线观看 | 亚洲中文av在线| 一边摸一边抽搐一进一小说| 欧美大码av| 91精品国产国语对白视频| 欧美成人午夜精品| 少妇被粗大的猛进出69影院| 视频在线观看一区二区三区| 夫妻午夜视频| 日日夜夜操网爽| av电影中文网址| 免费日韩欧美在线观看| 热99国产精品久久久久久7| 久热爱精品视频在线9| 亚洲欧美日韩另类电影网站| 亚洲自拍偷在线| 欧美黑人精品巨大| 国产一区二区激情短视频| 亚洲av第一区精品v没综合| 亚洲精品在线观看二区| 欧美日韩中文字幕国产精品一区二区三区 | 91成人精品电影| av在线播放免费不卡| 国产精品二区激情视频| 可以在线观看毛片的网站| 国产高清videossex| 一边摸一边抽搐一进一小说| 国产熟女午夜一区二区三区| 熟女少妇亚洲综合色aaa.| 亚洲国产中文字幕在线视频| 欧美成人性av电影在线观看| 男女之事视频高清在线观看| 久久久国产成人免费| 欧美日韩视频精品一区| 桃红色精品国产亚洲av| 国产成人系列免费观看| 精品久久久久久成人av| av片东京热男人的天堂| 一级a爱片免费观看的视频| 美女福利国产在线| 亚洲精品av麻豆狂野| 国产黄a三级三级三级人| 亚洲片人在线观看| www.精华液| 久久香蕉激情| 欧美日韩亚洲综合一区二区三区_| 欧美乱码精品一区二区三区| 99香蕉大伊视频| 精品国产乱码久久久久久男人| 亚洲成人国产一区在线观看| xxxhd国产人妻xxx| 在线观看日韩欧美| 日韩视频一区二区在线观看| 天天影视国产精品| 亚洲成人免费av在线播放| 91精品国产国语对白视频| 久久久久久久久免费视频了| 久久久久九九精品影院| 一二三四社区在线视频社区8| 欧美黑人欧美精品刺激| 在线免费观看的www视频| 久久精品人人爽人人爽视色| 极品教师在线免费播放| 18美女黄网站色大片免费观看| 桃红色精品国产亚洲av| 亚洲 欧美 日韩 在线 免费| 久久国产亚洲av麻豆专区| 国产亚洲欧美精品永久| 精品国产乱子伦一区二区三区| 亚洲欧美精品综合一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 波多野结衣高清无吗| 国产精品香港三级国产av潘金莲| av免费在线观看网站| 成人国产一区最新在线观看| 亚洲自拍偷在线| 88av欧美| 十八禁人妻一区二区| 成年女人毛片免费观看观看9| 免费观看精品视频网站| 99久久99久久久精品蜜桃| 国产亚洲精品久久久久久毛片| 成人特级黄色片久久久久久久| 亚洲中文日韩欧美视频| 久久人妻av系列| 国产欧美日韩精品亚洲av| 在线观看日韩欧美| 69精品国产乱码久久久| 免费高清在线观看日韩| 1024香蕉在线观看| 欧美+亚洲+日韩+国产| 国产99白浆流出| av天堂久久9| 国产人伦9x9x在线观看| 午夜老司机福利片| 女性生殖器流出的白浆| 久久精品国产亚洲av香蕉五月| 日韩精品免费视频一区二区三区| 国产三级在线视频| 国产精品国产高清国产av| 亚洲国产精品合色在线| 老司机深夜福利视频在线观看| 久久青草综合色| 男女高潮啪啪啪动态图| 日韩欧美免费精品| 两个人免费观看高清视频| 亚洲男人天堂网一区| 狠狠狠狠99中文字幕| а√天堂www在线а√下载| 亚洲,欧美精品.| 亚洲av第一区精品v没综合| 视频区图区小说| 中文字幕最新亚洲高清| 欧美性长视频在线观看| 在线永久观看黄色视频| 在线观看日韩欧美| 欧美乱色亚洲激情| 国产欧美日韩一区二区三| 亚洲色图 男人天堂 中文字幕| 黄色毛片三级朝国网站| 男女下面进入的视频免费午夜 | 悠悠久久av| 色综合站精品国产| 欧美日韩亚洲国产一区二区在线观看| 一二三四在线观看免费中文在| 91麻豆精品激情在线观看国产 | 久久人人精品亚洲av| 精品乱码久久久久久99久播| 青草久久国产| 两性午夜刺激爽爽歪歪视频在线观看 | 精品一区二区三卡| 精品欧美一区二区三区在线| 一边摸一边抽搐一进一出视频| 女同久久另类99精品国产91| 99国产精品99久久久久| 日韩成人在线观看一区二区三区| 欧美成人性av电影在线观看| 热99re8久久精品国产| 精品国内亚洲2022精品成人| 麻豆久久精品国产亚洲av | 中文字幕精品免费在线观看视频| 国产成人系列免费观看| 91成年电影在线观看| 操出白浆在线播放| 久久精品亚洲精品国产色婷小说| 黄色女人牲交| 18禁裸乳无遮挡免费网站照片 | 亚洲黑人精品在线| 老司机福利观看| 女同久久另类99精品国产91| 久久久精品欧美日韩精品| 成人三级做爰电影| 丝袜在线中文字幕| 日韩欧美在线二视频| 婷婷丁香在线五月| 91精品三级在线观看| 久久国产精品影院| 妹子高潮喷水视频| √禁漫天堂资源中文www| 欧美日韩福利视频一区二区| 18美女黄网站色大片免费观看| 中文字幕av电影在线播放| 在线观看日韩欧美| 亚洲国产欧美一区二区综合| av天堂在线播放| 村上凉子中文字幕在线| 精品国产一区二区三区四区第35| 男女做爰动态图高潮gif福利片 | 热99国产精品久久久久久7| 午夜精品国产一区二区电影| av天堂在线播放| 视频区欧美日本亚洲| 亚洲久久久国产精品| 亚洲专区字幕在线| 在线永久观看黄色视频| 亚洲欧美精品综合一区二区三区| av国产精品久久久久影院| 成人永久免费在线观看视频| av中文乱码字幕在线| 午夜免费观看网址| 国产不卡一卡二| 91成年电影在线观看| 后天国语完整版免费观看| 国产精品成人在线| 女人爽到高潮嗷嗷叫在线视频| 国产欧美日韩一区二区精品| 正在播放国产对白刺激| 美女国产高潮福利片在线看| 午夜a级毛片| 欧美成人性av电影在线观看| 亚洲avbb在线观看| 老熟妇乱子伦视频在线观看| av欧美777| 亚洲七黄色美女视频| 首页视频小说图片口味搜索| 91在线观看av| 大型黄色视频在线免费观看| 视频区欧美日本亚洲| 精品无人区乱码1区二区| 在线国产一区二区在线| 国产精品影院久久| 极品教师在线免费播放| 久久久久国产一级毛片高清牌| 精品日产1卡2卡| 在线观看免费高清a一片| 在线观看舔阴道视频| 亚洲avbb在线观看| 99久久综合精品五月天人人| 中文字幕最新亚洲高清| 免费一级毛片在线播放高清视频 | 亚洲五月天丁香| 黄片播放在线免费| 国产一区在线观看成人免费| 精品熟女少妇八av免费久了| 亚洲av五月六月丁香网| 黑丝袜美女国产一区| 欧美黄色淫秽网站| 欧美一区二区精品小视频在线| 日本a在线网址| 91老司机精品| 在线观看一区二区三区| 欧美人与性动交α欧美精品济南到| av电影中文网址| av视频免费观看在线观看| 一区二区三区精品91| 高潮久久久久久久久久久不卡| 久久人人97超碰香蕉20202| 久久精品国产清高在天天线| 日韩一卡2卡3卡4卡2021年| 亚洲欧美精品综合一区二区三区| 日本a在线网址| 丁香六月欧美| 午夜免费成人在线视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产精品一区二区三区在线| 亚洲一区高清亚洲精品| 国产成人一区二区三区免费视频网站| av国产精品久久久久影院| 最好的美女福利视频网| 91成年电影在线观看| 视频区图区小说| av天堂久久9| 欧美丝袜亚洲另类 | 亚洲精品一卡2卡三卡4卡5卡| 黄色女人牲交| 久久久国产精品麻豆| 亚洲一区高清亚洲精品| 精品久久蜜臀av无| 黄色毛片三级朝国网站| 搡老熟女国产l中国老女人| av超薄肉色丝袜交足视频| 日韩av在线大香蕉| 嫩草影院精品99| 久久久久久久久久久久大奶| 丝袜美腿诱惑在线| 亚洲精品在线美女| 欧美日韩国产mv在线观看视频| www日本在线高清视频| 免费在线观看日本一区| 国产精品一区二区精品视频观看| 日韩欧美一区视频在线观看| 亚洲七黄色美女视频| 自拍欧美九色日韩亚洲蝌蚪91| 两性午夜刺激爽爽歪歪视频在线观看 | 夜夜看夜夜爽夜夜摸 | av欧美777| 69精品国产乱码久久久| 亚洲熟女毛片儿| 男女之事视频高清在线观看| 亚洲一区二区三区不卡视频| 亚洲av美国av| 久久人妻av系列| 又黄又爽又免费观看的视频| 天天躁夜夜躁狠狠躁躁| 女人高潮潮喷娇喘18禁视频| 久久国产精品男人的天堂亚洲| 日韩欧美国产一区二区入口| 美女高潮到喷水免费观看| 亚洲成国产人片在线观看| 久久国产精品影院| 免费高清视频大片| 免费看十八禁软件| 成人18禁高潮啪啪吃奶动态图| 69精品国产乱码久久久| 亚洲免费av在线视频| 午夜日韩欧美国产| 18禁观看日本| 欧美人与性动交α欧美精品济南到| av免费在线观看网站| 亚洲av电影在线进入| 国产亚洲欧美98| 色老头精品视频在线观看| 黄色怎么调成土黄色| 国产日韩一区二区三区精品不卡| 脱女人内裤的视频| 日韩中文字幕欧美一区二区| 久久人人精品亚洲av| 欧美老熟妇乱子伦牲交| 成人亚洲精品一区在线观看| 桃色一区二区三区在线观看| 777久久人妻少妇嫩草av网站| 男女做爰动态图高潮gif福利片 | 亚洲精品一区av在线观看| 最好的美女福利视频网| 国产极品粉嫩免费观看在线| 999精品在线视频| 母亲3免费完整高清在线观看| 国产亚洲精品一区二区www| 国产精品免费一区二区三区在线| 国内久久婷婷六月综合欲色啪| 乱人伦中国视频| 香蕉国产在线看| 黄色成人免费大全| 免费看十八禁软件| 超碰成人久久| 日韩欧美免费精品| 亚洲欧美一区二区三区久久| 国产亚洲欧美在线一区二区| 制服人妻中文乱码| 精品乱码久久久久久99久播| 久久人人爽av亚洲精品天堂| 黄片小视频在线播放| 国产精品永久免费网站| 一级a爱片免费观看的视频| 69精品国产乱码久久久| 三上悠亚av全集在线观看| 欧美精品一区二区免费开放| 亚洲欧美激情在线| 中亚洲国语对白在线视频| 一边摸一边抽搐一进一出视频| 男女之事视频高清在线观看| 色婷婷久久久亚洲欧美| 露出奶头的视频| 欧美最黄视频在线播放免费 | 成人18禁在线播放| 精品人妻在线不人妻| 老司机午夜福利在线观看视频| 麻豆久久精品国产亚洲av | 亚洲少妇的诱惑av| 视频区图区小说| 日韩免费av在线播放| 久久性视频一级片| 12—13女人毛片做爰片一| 亚洲色图 男人天堂 中文字幕| 免费日韩欧美在线观看| 少妇裸体淫交视频免费看高清 | 国产黄a三级三级三级人| 国产aⅴ精品一区二区三区波| 久久亚洲精品不卡| 日本三级黄在线观看| 欧美在线黄色| 中文字幕色久视频| 亚洲精品在线观看二区| 欧美中文日本在线观看视频| 国产成人系列免费观看| 亚洲男人的天堂狠狠| 亚洲精品久久成人aⅴ小说| 国产激情久久老熟女| 国产一区在线观看成人免费| 久久伊人香网站| av欧美777| 国产精品久久电影中文字幕| 精品国产美女av久久久久小说| 免费久久久久久久精品成人欧美视频| 在线永久观看黄色视频| 国产在线精品亚洲第一网站| 亚洲精品粉嫩美女一区| 国产亚洲精品综合一区在线观看 | av免费在线观看网站| 亚洲精华国产精华精| 欧美不卡视频在线免费观看 | 午夜精品国产一区二区电影| 精品国内亚洲2022精品成人| 亚洲国产看品久久| 国产成人精品无人区| 亚洲精品国产一区二区精华液| av网站在线播放免费| 亚洲av成人不卡在线观看播放网| 国产精品日韩av在线免费观看 | 日韩有码中文字幕| 精品国内亚洲2022精品成人| av视频免费观看在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 可以在线观看毛片的网站| 免费看a级黄色片| 国产精品久久久久久人妻精品电影| 久久国产亚洲av麻豆专区| 亚洲三区欧美一区| 精品久久久久久久毛片微露脸| 久久久国产一区二区| 欧美国产精品va在线观看不卡| 天天添夜夜摸| 欧美中文日本在线观看视频| 丝袜在线中文字幕| 亚洲一区二区三区欧美精品| 国产精品久久电影中文字幕| 亚洲三区欧美一区| 国产精品久久视频播放| 国产免费男女视频| 男女做爰动态图高潮gif福利片 | 18禁国产床啪视频网站| 成人三级做爰电影| 韩国精品一区二区三区| 在线观看免费日韩欧美大片| 午夜91福利影院| 丰满的人妻完整版| 国产三级在线视频| 啦啦啦 在线观看视频| 十分钟在线观看高清视频www| 免费在线观看影片大全网站| 波多野结衣一区麻豆| 色哟哟哟哟哟哟| 欧美成人性av电影在线观看| 久久精品亚洲熟妇少妇任你| 久久精品国产清高在天天线| 欧美黄色淫秽网站| 99久久久亚洲精品蜜臀av| 久久99一区二区三区| 搡老熟女国产l中国老女人| 岛国视频午夜一区免费看| 国产aⅴ精品一区二区三区波| 久久天堂一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看| 乱人伦中国视频| 老司机午夜十八禁免费视频| 午夜两性在线视频| 日韩高清综合在线| 日韩免费av在线播放| 日本 av在线| 国产成人影院久久av| 久久热在线av| 女人被躁到高潮嗷嗷叫费观| 国产成人精品在线电影| 一级片'在线观看视频| 成年版毛片免费区| 亚洲熟妇中文字幕五十中出 | 精品卡一卡二卡四卡免费| 日韩成人在线观看一区二区三区| 久久亚洲真实| 高清在线国产一区| 丰满饥渴人妻一区二区三| 国产亚洲欧美在线一区二区| 欧美丝袜亚洲另类 | 涩涩av久久男人的天堂| 久久99一区二区三区| 欧美久久黑人一区二区| 女人被躁到高潮嗷嗷叫费观| 日本免费a在线| 国产精品一区二区在线不卡| 韩国精品一区二区三区| 一个人观看的视频www高清免费观看 | √禁漫天堂资源中文www| 亚洲国产欧美日韩在线播放| 91av网站免费观看| 久久人妻av系列| 男女午夜视频在线观看| 视频在线观看一区二区三区| 人人妻人人添人人爽欧美一区卜| 涩涩av久久男人的天堂| 中亚洲国语对白在线视频| 久久国产亚洲av麻豆专区| av在线播放免费不卡| 一级作爱视频免费观看| 免费在线观看视频国产中文字幕亚洲| 国产成人系列免费观看| 成年人黄色毛片网站| 亚洲av片天天在线观看| 男女做爰动态图高潮gif福利片 | 琪琪午夜伦伦电影理论片6080| 人妻久久中文字幕网| 国产99白浆流出| 日本a在线网址| 99精品在免费线老司机午夜| 久久狼人影院| 一进一出抽搐动态| 成年版毛片免费区| 久久久久久久午夜电影 | 亚洲国产精品sss在线观看 | 丰满迷人的少妇在线观看| 国产精品影院久久| a在线观看视频网站| av电影中文网址| a级片在线免费高清观看视频| 欧美日韩一级在线毛片| 欧美激情久久久久久爽电影 | 长腿黑丝高跟| 91麻豆av在线| 麻豆久久精品国产亚洲av | 国产亚洲精品一区二区www| 在线免费观看的www视频| 欧美丝袜亚洲另类 | 亚洲视频免费观看视频| 夜夜夜夜夜久久久久| 九色亚洲精品在线播放| 亚洲精品粉嫩美女一区| 国内久久婷婷六月综合欲色啪| av天堂在线播放| 欧美成狂野欧美在线观看| 精品福利观看| 日本免费a在线| 国产精品久久久久成人av| 天堂动漫精品| 日日干狠狠操夜夜爽| 亚洲欧美一区二区三区久久| 午夜福利欧美成人| 成人黄色视频免费在线看| 好看av亚洲va欧美ⅴa在| 国产免费现黄频在线看| 国产成人av激情在线播放| 女人被躁到高潮嗷嗷叫费观| 免费看十八禁软件| 色播在线永久视频| 老司机亚洲免费影院| www.999成人在线观看| 国产精品久久电影中文字幕| 大型黄色视频在线免费观看| 十八禁人妻一区二区| 欧美激情久久久久久爽电影 | 丰满的人妻完整版| 国产精品永久免费网站| 日本五十路高清| 欧美乱妇无乱码| 曰老女人黄片| 亚洲狠狠婷婷综合久久图片| 一级毛片女人18水好多| 国产不卡一卡二| 在线av久久热| 日韩精品青青久久久久久| a在线观看视频网站| 欧美日韩av久久| 动漫黄色视频在线观看| 亚洲欧美一区二区三区黑人| 国产亚洲精品综合一区在线观看 | 欧美日韩中文字幕国产精品一区二区三区 | 午夜影院日韩av| 99久久国产精品久久久| 老汉色∧v一级毛片| 一级,二级,三级黄色视频| 国产免费男女视频| 日韩视频一区二区在线观看| 日日夜夜操网爽| 亚洲精品一二三| 亚洲精品国产一区二区精华液| 日韩成人在线观看一区二区三区| 日本wwww免费看| 亚洲国产欧美日韩在线播放| 一区二区三区精品91| 老司机亚洲免费影院| 久久中文字幕一级| 一级毛片高清免费大全| 99国产精品免费福利视频| 多毛熟女@视频| 久久国产精品男人的天堂亚洲| 日本一区二区免费在线视频| 丰满饥渴人妻一区二区三| 一边摸一边抽搐一进一小说| 精品福利观看| 亚洲黑人精品在线| a级毛片黄视频| 亚洲aⅴ乱码一区二区在线播放 | 午夜激情av网站| 69av精品久久久久久| 欧美激情久久久久久爽电影 | 亚洲欧美一区二区三区黑人| 又黄又粗又硬又大视频| 嫩草影院精品99| 午夜91福利影院| 国产av精品麻豆| 香蕉久久夜色| 国产一区二区三区在线臀色熟女 | 久久精品影院6| 一级毛片女人18水好多| 国产一区二区三区综合在线观看| 久久国产精品人妻蜜桃| 国产精品免费一区二区三区在线| 中文字幕最新亚洲高清| 亚洲视频免费观看视频| 制服人妻中文乱码| 免费在线观看完整版高清| 欧美久久黑人一区二区| 99精品欧美一区二区三区四区| 国产激情久久老熟女| 国产高清激情床上av| 国产av一区在线观看免费| 他把我摸到了高潮在线观看| 男女高潮啪啪啪动态图| 国产真人三级小视频在线观看| 色综合欧美亚洲国产小说| 男人舔女人下体高潮全视频| 国产成人啪精品午夜网站| 在线视频色国产色| 日本一区二区免费在线视频| 日韩精品青青久久久久久| 97超级碰碰碰精品色视频在线观看| 新久久久久国产一级毛片| 久久久国产成人精品二区 | 久久午夜亚洲精品久久| 超碰97精品在线观看| 久久香蕉激情| 嫩草影视91久久| bbb黄色大片| 欧美日本亚洲视频在线播放| 亚洲第一欧美日韩一区二区三区| 国产99白浆流出| 一进一出抽搐动态| 免费看a级黄色片| 色综合欧美亚洲国产小说| 男女做爰动态图高潮gif福利片 |