• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structure,electronic,and nonlinear optical properties of superalkaline M3O(M =Li,Na)doped cyclo[18]carbon

    2024-02-29 09:17:12XiaoDongLiu劉曉東QiLiangLu盧其亮andQiQuanLuo羅其全
    Chinese Physics B 2024年2期
    關(guān)鍵詞:劉曉東

    Xiao-Dong Liu(劉曉東), Qi-Liang Lu(盧其亮),?, and Qi-Quan Luo(羅其全)

    1School of Physics and Material Science,Anhui University,Hefei 230601,China

    2Institute of Physical Science and Information Technology,Anhui University,Hefei 230601,China

    3Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China

    Keywords: superalkaline doped cyclo[18]carbon,structure and electronic properties,nonlinear optical properties,density functional theory(DFT)

    1.Introduction

    Carbon has long been a popular research topic.In 1985,Krotoet al.obtained sp-hybridized fullerene C60clusters[1]with a coordination number of three by laser vaporization.This result opened a new door for the study of lowdimensional materials.Since then, carbon nanotubes[2]and graphene[3]have been synthesized successively,and the family of molecular carbon allotropes has continued to expand.In 1966,Hoffman proposed the ring-like C18cluster.[4]Since the first detection of the C18ring in 1989,[5]small carbon clusters have attracted extensive attention from experimental and theoretical studies.[5–8]One of the most impressive advances in this field in recent years is the successful synthesis and characterization of a ring consisting of 18 carbon atoms, named cyclo[18]carbon,on the surface of Cu(111)by Kaiseret al.[9]Recently, Andersonet al.[10]proposed an efficient synthesis of C18from bromocyclic carbon (C18Br6).This discovery has attracted the extensive attention of scholars who wish to study cyclic[n]carbon, and its analogs and derivatives due to its potential use in practical applications.[11–36]Many studies have shown that the C–C bond of the most stable structure of C18cannot be simply described as alternating single and triple bonds but can only be described as alternating long and short bonds.[9,14,16,19]

    The diameter of cyclo[18]carbon is about 7.40 ?A,[17]which is equivalent to the size of C60(7.1 ?A).Cyclo[18]carbon provides sufficient space to encapsulate a range of other atoms or small molecules, thus forming a similar endohedral fullerene species.[37–40]This endohedral complex is an interesting structure from the perspective of research and application.Compared with many studies on the structure and properties of cyclo[18]carbon, work on the structure and properties of doped C18[41–49]and other carbon rings[50–53]is limited.Alkali metal atoms have the lowest ionization energy(5.39 eV–3.89 eV) in the periodic table.[54]However, some polyatomic molecules or clusters, which are called “superalkali” by Gutsev and Boldyrev,[55]have lower ionization energies than cesium atoms (3.89 eV).[54]Studies have also shown the formation of an electron donor–acceptor endohedral complex with superalkali inside C60[56]and Si12C12[57]nanocage.Their nonlinear optical properties are significantly improved.Liuet al.[29]systematically studied the electronic structure, electronic spectra, and optical nonlinearity of cyclo[18]carbon.They also investigated the properties of the Li@C18complex and its potential application in an optical molecular switch.[43]It has also been shown that C18molecules have strong electron acceptor properties.[33]Therefore, stable complexes can form between C18and electron donor species, which implies a strong capability of charge transfer within complexes and excellent optical properties.Therefore,investigating the structure and properties of superalkali-doped C18is worthwhile.In this work, we report systematic theoretical studies on the structure and properties of superalkalineM3O(M=Li,Na)-doped cyclo[18]carbons.

    2.Computational methods

    An extensive structural search for C18M3O (M= Li,Na) was conducted based on the two low-energy isomers of cyclo[18]carbon; namely, the alternating bond length structure and the transition state structure with equal bond length.[9,14,16,19]Superalkaline moleculesM3O (M=Li, Na)were placed on the inner/outer edges of the ring and in different regions above the ring.Geometry optimization was performed at the M06-2X/def2-TZVP level for these different initial structures by using the Gaussian 09 software package.[58]Single-point energy calculations were performed at the CCSD(T)/def2-TZVP level to confirm the lowest energy structure.Vibrational frequency analyses were conducted on optimized structures to determine whether they are at the minimum or saddle point on the potential energy surface.Zero-point energy and the counterpoise procedure for basis set superposition error (BSSE) were utilized to calculate energies.On the basis of the results of Gaussian 09,Mayer bond order[59–61]and localized orbital locator (LOL)analysis[62–64]were performed using Multiwfn 3.8.[65]Electrostatic potential (ESP) analysis was performed using Visual Molecular Dynamics (VMD) software[66]in combination with Multiwfn.Meanwhile,ωB97XD is reliable and robust for studying photophysical properties and optical nonlinearity of C18molecule and its analogs.[29,34,43,46]Therefore,ωB97XD is considered to be capable of describing the optical properties of the C18M3O system.Electron excitations were studied by using the time-dependent density functional theory (TD-DFT) method at theωB97XD/def2-TZVP level.Charge-transfer spectra(CTS)were plotted based on the results of TD-DFT.[58]The (hyper)polarizability of C18M3O complex was calculated by coupled-perturbed Kohn–Sham(CPKS) method at theωB97XD/aug-cc-pVTZ level.[46,67–70]Polarizability,the first hyperpolarizability,and the second hyperpolarizability were analyzed by Multiwfn and VMD.For the parameters of describing the nonlinear optical properties,we follow the formulas for calculating the response properties to electric field provided in Refs.[34,43].

    3.Results and discussion

    The most stable structures of C18M3O (M=Li, Na) are shown in Fig.1.Compared with the isolated cyclo[18]carbon,the C18ring in C18Na3O has higher structural deformation than that in C18Li3O.TheM3O moiety is not entrapped in the cyclo[18]carbon and is located some distance above the carbon ring.For C18Li3O, the distance between O atom and the center of C18is about 0.99 ?A.The projection of the oxygen atom on the C18plane is almost located in the geometric center of the optimized C18ring.However,for C18Na3O,the projection of the oxygen atom deviates far from the point.The four atoms of the Li3O moiety are no longer coplanar and three Li atoms are close to the C18ring.This finding may be attributed to the attraction between Li atoms and C18ring resulting from charge transfer,as discussed later on.The Li3plane is almost parallel to the C18plane.For C18Na3O,the Na3plane is at an angle to the C18plane.The three shortest distances of Li–C are in the range from 2.24 ?A to 2.27 ?A.The values of Na–C are in the range from 2.62 ?A to 2.68 ?A.

    Fig.1.Top and side views of the structure of C18M3O(M=Li,Na).

    Fig.2.Bond lengths(?A)of C18Li3O and C18Na3O.The lengths of pristine C18,Li3O and Na3O are given for comparison.

    Alternating C–C bond lengths (Fig.2) are also found in C18Li3O and C18Na3O.The C–C bond lengths of the isolated cyclo[18]carbon are 1.223 ?A and 1.344 ?A at the present level of theory.Compared with the values of the pristine C18ring,C18M3O has short C–C bonds that become shorter and long C–C bonds that become longer.Little difference can be found between theM–O bond length of C18M3O and the free-stateM3O.

    The binding energy (Eb) ofM3O to C18ring can be defined as follows:

    whereE(C18M3O) represents the energy of the most stable structure of C18M3O.E(C18) andE(M3O) represent the single-point energies of C18andM3O moieties, respectively,based on the ground-state structure of C18M3O.The obtainedEbvalues of Li3O and Na3O are 3.675 eV and 3.315 eV, respectively.Large binding energies suggest strong interactions betweenM3O and the C18ring.

    Fig.3.Natural charge populations of C18Li3O and C18Na3O.The values of isolated Li3O and Na3O are given for comparison.

    The calculated natural charge populations of C18Li3O and C18Na3O are shown in Fig.3.Their charge transfers are similar.The oxygen atom and C18ring are negatively charged,whereas alkali atoms lose electrons.The oxygen atom obtains about two-thirds of the transferred electrons.The remaining one-third of the transferred electrons are transferred to cyclo[18]carbon,resulting in a negatively charged ring.The C18ring obtains about 0.9eand 1.0echarges from Li3O and Na3O, respectively.The charge transfer betweenM3O and C18forms stable [M3O]+[C18]-ionic complexes.This result supports the previous statement that the C18molecule is a good electron acceptor.[33]Na atoms lose more electrons than Li atoms do.The negative charges are not evenly distributed on carbon atoms of the C18ring.Few carbon atoms located far away from Li and Na carry a positive charge of no more than 0.08e.Other atoms near alkali atoms are negatively charged.The threeMatoms possess almost identical charges in C18M3O.However,for isolatedM3O,significant differences can be found between Li3O and Na3O.The charges are evenly distributed on Li atoms.However, the number of charges of the two Na atoms is remarkably larger than that of the other Na atom.This finding indicates that the charge redistribution of Na3O is greater than that of the Li3O after doping into cyclo[18]carbon.

    Fig.4.Deformation electron densities of C18Li3O and C18Na3O(isovalue=0.15|e|).

    Fig.5.Isosurface maps of the ESP for C18Li3O and C18Na3O.Red and blue colors correspond to positive and negative parts of ESP,respectively.

    The deformation electron density of C18M3O is shown in Fig.4.A large number of electrons are predominantly distributed in two carbon atoms of the C18ring, indicating the covalent characteristics of the C–C bond.The alternating electron density also reveals the alternating bond strength between two carbon atoms, which is consistent with the analysis of bond length.Many electrons are distributed around the oxygen atom, indicating the existence of an ionic chemical bonding between alkali and oxygen atoms.This observation is confirmed by the result of natural charge population analysis.The charge transfer fromM3O to C18results in an electric field between the two moieties.ESP analysis[71]is an effective tool to understand the interaction betweenM3O(M=Li,Na)and C18.On the basis of the ESP map in Fig.5,the regions around alkali atoms are positive ESP,whereas the circular regions surrounding the C18ring and oxygen atom show negative values.The maximum ESP is near the alkali atoms,whereas the minimum ESP appears near the oxygen atom.Several local potential minimum points are distributed on the periphery of the C18ring.The distribution pattern of ESP sufficiently reflects intermolecular electrostatic interaction betweenM3O and C18.

    Figure 6 shows the Mayer bond order of C18Li3O and C18Na3O to further reveal the nature of theM3O–C18interaction and the bonding situation in the system.The bond orders between O and alkali atoms are no more than 0.41, indicating that the O–M covalent bond does not exist.This finding also confirms the results of population analysis and deformation electron density sections.The bond orders of C–M are less than 0.08,indicating that the chemical bond does not exist.This result probably occurred because the transferred electrons fromM3O are decentralized on other carbon atoms(Fig.3).The C18ring still exhibits alternating C–C bond orders.Most short bonds roughly satisfy double bonds, except for some bonds that deviate from 2.0.The orders of all long C–C bonds are larger than those of pristine cyclo[18]carbon.[16]

    Fig.6.Mayer bond orders of C18Li3O and C18Na3O.

    Fig.7.The localized orbital locator of C18Li3O.

    The LOL has useful real space functions in the range of 0–1 to unravel the delocalization ofπelectrons of the system.Given that the two planes of C18ring and Li3moiety are almost parallel to each other,only the color-fill mapped LOL of C18Li3O is shown in Fig.7.Vast regions between Li3O and C18ring have LOL values much smaller than 0.5, indicating the absence of covalent bonds.We discussed earlier that they bind together by electrostatic attraction.A large LOL value(>0.5)in the middle of the C–C bond indicates a strong covalent bond and exhibits alternating characteristics.The regions of the short C–C bonds are evidently broader than those of the long C–C bond.This result indicates that theπ-electron delocalization of long C–C bonds is more difficult than that of short ones.Figure 7(b) shows the LOL–πmap of the Li3O at 1.4 Bohr above the C18ring plane.Regions with a value larger than 0.5 are spherically distributed around the O atom.The values in the middle of the O–Li are small.These results further reveal that the O–M is not a covalent bond but an ionic bond.LOL based onπmolecular orbitals can reflect the delocalization ofπelectrons in C18M3O (Fig.S1).The inside isosurface of the C18ring is broader than the outside ones for in-plane occupiedπmolecular orbitals,indicating that the delocalization over theπregion inside the ring occurred somewhat easily.The out-of-plane orbitals centering onM3O are not perpendicular to C18ring; instead, they tilt outward the C18ring slightly.

    The electronic absorption spectrum can reflect electronic transition behavior in the C18M3O system.As observed from Fig.8,three absorption peaks exist for C18Li3O,in which two peaks are located at about 430 nm and 720 nm in the visible light region.The other one is a weak absorption at about 970 nm in the far infrared region.The spectrum of C18Na3O is different from that of C18Li3O,showing two absorption peaks at about 424 nm and 725 nm.The absorption range of the C18Li3O is wider than that of the C18Na3O,but its absorption intensity is much weaker than that of the latter.

    Fig.8.Simulated absorption spectra and charge-transfer spectra of C18Li3O and C18Na3O.Gaussian broaden for the full width at halfmaximum(FWHM)of 2800 cm-1 was employed.

    Luet al.proposed a concept called CTS[43,46]to further reveal the nature of electron excitation from the charge redistribution within the fragment and charge transfer between two fragments of C18moiety andM3O.It can graphically present the contribution of charge redistribution.The colored CTSs are shown in Fig.8.For C18Li3O, the contribution for the electron excitation overwhelmingly originates from the electron redistribution inside the C18moiety, while the contribution of Li3O group is almost negligible.The electron transfers from Li3O to C18have a significant proportion.In contrast,the nature of electron excitation of C18Na3O is different from that of the C18Li3O because many excitations of the former in the range of 340 nm–470 nm originate from the electron redistribution inside the Na3O.The contribution of electron transfers from Na3O to C18to the absorption spectrum is also non-negligible.

    Hole–electron analysis can intuitively reveal the excitation characteristics of electrons in a system.[29]The isosurface maps of hole and electron distributions related to their maximum absorptions of C18Li3O and C18Na3O are collectively given in the supplementary material (Fig.S2).As discussed earlier, the charges of three Na atoms are not equal before Na3O doping into cyclo[18]carbon.The charge transfer within the Na3O (charge redistribution) results in hole and electron distributions.Figure S2 shows that the absorption peak(397 nm) that corresponds to electron excitation (S0→S47)originates from electron redistribution inside the Na3O.This situation is not observed for C18Li3O.Thus, C18Na3O and C18Li3O have different electron excitations.

    Polarizability and hyperpolarizability are the response characteristics of a molecule to an external electric field.Polarizability reflects the change in the dipole moment caused by applying one unit of electric field and hyperpolarizability represents the nonlinear polarization effect.Table 1 shows the calculated isotropic average polarizability (αiso), the projection of the first hyperpolarizability on the molecular dipole(βvec), and the average of the second hyperpolarizability (γ||)of C18M3O(M=Li,Na)under electric fields at different frequencies (λ= ∞; 1907 nm and 1460 nm).The calculated static and dynamic(hyper)polarizability of free C18ring at the present theory level are given in the table.The corresponding results of Ref.[29] are also listed for comparison.Our results are very close to those of Ref.[29].Theαiso(∞)values of C18M3O (M=Li, Na) are 1.20 and 1.25 times that of the free C18ring(293.9 a.u.).[29]Theβvecof the cyclo[18]carbon is zero due to its the centrosymmetric structure.However,the introduction ofM3O causes a considerable magnitude of staticβvec.C18Li3O and C18Na3O present a larger staticγ||(λ=∞)than the pristine C18ring(140909 a.u.).[29]

    No significant difference is observed between static and dynamic polarizability (αiso).αisochanges slightly with frequency.Table 1 shows that the hyperpolarizability values(βvecandγ||)for C18Li3O decrease rapidly with the frequency of the external electric field.Atλ=1907 nm and 1460 nm,C18Li3O hasγ||values of 115 and 5.8 times, respectively, which are higher than those of pristine C18ring.[29]Theβvecvalues are 32.4 and 2.8 times,respectively,and theγ||values are 14.6 and 4.7 times,respectively,which are as much as the static values at the two frequencies.C18Na3O also exhibits a strong polarization resonance effect under the dynamic external field at a low frequency becauseβvecis 46 and 47 times higher,andγ||is 723 and 21 times higher than the static values atλ=1907 nm and 1460 nm,respectively.

    Table 1.Polarizabilities,the first-and the second-order hyperpolarizabilities(in a.u.) of C18Li3O,C18Na3O,and free C18 ring in zero-frequency limit case (λ = ∞) and frequency-dependent case (λ = 1907 nm and 1460 nm).The corresponding results of C18 of Ref.[29]are also listed.

    Some values ofβvecandγ||are negative.Luet al.explained the meaning and the reason for their different signs.[43]The molecular volume is defined as the area surrounded by the electron density isosurface and has a close positive correlation with polarizability.This conclusion is also basically applicable to different types of molecules.[72]Therefore,the positive and negative signs ofβxxxandγxxxxcan be attributed to whether the molecular volume increases or decreases when the electric field is applied,which turns the problem into how the electric field affects the electronic structure of the system.The external electric field can affect the electron distribution of molecules.As a result, the effective volume of electron density changes,and polarizability also changes.[43]

    The unit sphere representation of (hyper)polarizability can be used to visualize and comprehensively characterize the (hyper)polarizability tensor,[73]and can intuitively reflect the molecular global and local features of response properties.Figure 9 shows the unit sphere representation of (hyper)polarizability of C18M3O (M= Li, Na) under the electrostatic field.The molecular plane of C18ring is set as the xy-plane.The(hyper)polarizability of C18M3O(M=Li,Na)in the electrostatic field exhibits evident anisotropy.Thexandy- components of polarizability on the molecular plane are evidently larger than the component in the vertical direction(z-component).However, thez-component cannot be ignored because of dipole moments that result from the charge transfer between the C18ring andM3O.The tensor of all(hyper)polarizability suggests that some vector distributions(blue arrow) are perpendicular to the C18plane, indicating that the response of (hyper)polarizability in this direction is not negligible.C18Li3O and C18Na3O exhibit similar characteristics of first-order hyperpolarizability tensors.Theirx- andz-components are zero and have vanished in Figs.9(b) and 9(e).However, a significant difference is observed in terms of the second-order hyperpolarizability.Thex-component of C18Li3O is remarkably larger than that of C18Na3O.In contrast, they- andz-components of C18Na3O are much larger than those of C18Li3O.The two components of C18Li3O are small and negligible.

    Fig.9.Unit sphere representation of (hyper)polarizability for C18Li3O and C18Na3O in static electric field.The longer and redder arrow indicates a larger tensor value in the corresponding direction.

    4.Conclusion

    In this paper, we theoretically investigate the structural,electronic,electronic absorption spectrum,and nonlinear optical properties ofM3O (M=Li, Na)-doped cyclo[18]carbon.M3O and the C18ring are not coplanar.Alternating C–C bond lengths are found in the two complexes.The charge,electrostatic potential, bond order, and delocalization ofπelectrons are analyzed.Specifically, C18Li3O and C18Na3O show striking optical nonlinearity,i.e.,their first-and secondorder hyperpolarizability (βvecandγ||) increase significantly atλ=1907 nm and 1460 nm.The relevant results are expected to provide theoretical guidance for the development of advanced cyclo[18]carbon-based functional molecules.

    Acknowledgments

    Project supported by the Natural Science Foundation of Anhui Province(Grant No.1908085MA12)and the National Natural Science Foundation of China(Grant No.21703222).

    猜你喜歡
    劉曉東
    例析通過構(gòu)造常數(shù)列進(jìn)行解題的基本規(guī)律
    棉花GhIQM1基因克隆及抗黃萎病功能分析
    羔羊早期斷母乳技術(shù)研究應(yīng)用的進(jìn)展
    《鐵單質(zhì)的化學(xué)性質(zhì)》教學(xué)設(shè)計
    權(quán)力“變現(xiàn)”高手的人生結(jié)局是什么?
    ——山東省某區(qū)開發(fā)區(qū)管委會原副主任劉曉東(正處級)受賄案紀(jì)實
    兩個自我的不能承受之重
    讀書(2019年9期)2019-09-23 08:15:12
    “雷擊哥”劉曉東:做有“靈魂”的氣象人
    蝴蝶發(fā)卡
    作品(2018年11期)2018-11-15 04:57:40
    光是購物卡就收了51萬元
    方圓(2018年11期)2018-07-03 05:53:52
    權(quán)力“變現(xiàn)”高手
    欧美精品一区二区大全| 久久久精品大字幕| 亚洲第一电影网av| 亚洲第一电影网av| 国产精品一二三区在线看| 成年av动漫网址| 又黄又爽又刺激的免费视频.| 赤兔流量卡办理| 亚洲在久久综合| 欧美区成人在线视频| 国产成人精品久久久久久| 村上凉子中文字幕在线| 久久中文看片网| 国产精品日韩av在线免费观看| 18禁在线播放成人免费| 卡戴珊不雅视频在线播放| 国产淫片久久久久久久久| 91精品国产九色| 九九爱精品视频在线观看| 99精品在免费线老司机午夜| 亚洲人成网站高清观看| 亚洲欧美精品综合久久99| 日韩 亚洲 欧美在线| 99久国产av精品国产电影| 中国美女看黄片| 亚洲婷婷狠狠爱综合网| 99久久精品国产国产毛片| 午夜福利视频1000在线观看| 国产亚洲精品久久久com| 一本久久中文字幕| 午夜福利视频1000在线观看| 毛片一级片免费看久久久久| 哪里可以看免费的av片| 久久精品国产亚洲av涩爱 | 联通29元200g的流量卡| 伊人久久精品亚洲午夜| 日韩人妻高清精品专区| 亚洲av免费在线观看| 91久久精品国产一区二区成人| 人妻系列 视频| 国产又黄又爽又无遮挡在线| 麻豆成人av视频| 不卡一级毛片| 3wmmmm亚洲av在线观看| 国产精品人妻久久久影院| 青春草亚洲视频在线观看| 夜夜爽天天搞| 午夜福利成人在线免费观看| 国产一级毛片在线| 精品久久久久久成人av| 乱码一卡2卡4卡精品| 成人午夜精彩视频在线观看| 国产精品99久久久久久久久| 亚洲av二区三区四区| 欧美精品一区二区大全| 亚洲自拍偷在线| 久久精品国产清高在天天线| 狂野欧美激情性xxxx在线观看| 插阴视频在线观看视频| 精品人妻熟女av久视频| 久久精品夜色国产| 日韩一区二区三区影片| 一级av片app| 高清在线视频一区二区三区 | 日韩一区二区三区影片| 国产乱人偷精品视频| 久久久欧美国产精品| 伦理电影大哥的女人| 国内揄拍国产精品人妻在线| 欧美成人a在线观看| 日本三级黄在线观看| h日本视频在线播放| 亚洲欧美成人综合另类久久久 | 久久精品国产鲁丝片午夜精品| 黄色日韩在线| 欧美精品国产亚洲| 简卡轻食公司| 麻豆一二三区av精品| 午夜福利高清视频| 我要搜黄色片| 国产精品永久免费网站| 精品不卡国产一区二区三区| 少妇的逼好多水| 午夜爱爱视频在线播放| 亚洲无线观看免费| 婷婷六月久久综合丁香| 能在线免费看毛片的网站| 久久久a久久爽久久v久久| 亚洲中文字幕日韩| 亚洲av成人av| 在线免费观看不下载黄p国产| 日韩欧美在线乱码| eeuss影院久久| 亚洲精品影视一区二区三区av| 天堂影院成人在线观看| 人体艺术视频欧美日本| 婷婷色综合大香蕉| 亚洲美女视频黄频| 人体艺术视频欧美日本| 在线国产一区二区在线| 国产亚洲精品av在线| 午夜福利在线观看免费完整高清在 | 欧美三级亚洲精品| 国产精品久久久久久亚洲av鲁大| 婷婷六月久久综合丁香| 美女xxoo啪啪120秒动态图| 国内精品宾馆在线| 高清毛片免费看| 久久久久免费精品人妻一区二区| 国产免费一级a男人的天堂| 国产高清激情床上av| 国产精品精品国产色婷婷| 麻豆国产av国片精品| 亚洲国产精品国产精品| 欧美激情国产日韩精品一区| 国内精品美女久久久久久| 亚洲欧洲国产日韩| 听说在线观看完整版免费高清| 日韩亚洲欧美综合| 亚洲图色成人| 黄色配什么色好看| 久久人人精品亚洲av| 天堂√8在线中文| 天天躁日日操中文字幕| 国产69精品久久久久777片| 亚洲丝袜综合中文字幕| 免费av不卡在线播放| 日本色播在线视频| 又粗又硬又长又爽又黄的视频 | 精品久久久久久久末码| 欧美丝袜亚洲另类| 亚洲欧美日韩高清在线视频| 亚洲经典国产精华液单| 国产av在哪里看| 中文字幕熟女人妻在线| 人妻系列 视频| 麻豆一二三区av精品| 亚洲欧美日韩无卡精品| 久久久久九九精品影院| 亚洲三级黄色毛片| 18禁黄网站禁片免费观看直播| 18禁在线无遮挡免费观看视频| 国产在线精品亚洲第一网站| 深夜a级毛片| 亚洲高清免费不卡视频| 久久久a久久爽久久v久久| .国产精品久久| 精华霜和精华液先用哪个| 久久99热这里只有精品18| 国产黄色小视频在线观看| 人妻系列 视频| 日韩大尺度精品在线看网址| 亚洲最大成人中文| 在线观看av片永久免费下载| 色综合亚洲欧美另类图片| 综合色丁香网| 成人性生交大片免费视频hd| 丝袜喷水一区| 美女脱内裤让男人舔精品视频 | av卡一久久| 免费黄网站久久成人精品| 日本熟妇午夜| 精品午夜福利在线看| 久久精品国产亚洲网站| 免费av不卡在线播放| 麻豆乱淫一区二区| 岛国毛片在线播放| 99在线人妻在线中文字幕| 啦啦啦啦在线视频资源| 国产亚洲精品久久久久久毛片| 亚洲欧洲日产国产| 亚洲国产精品久久男人天堂| 日韩一本色道免费dvd| 两个人视频免费观看高清| 老师上课跳d突然被开到最大视频| 久久久久久九九精品二区国产| 国产黄片视频在线免费观看| 成人欧美大片| 国产蜜桃级精品一区二区三区| 国产片特级美女逼逼视频| 亚洲,欧美,日韩| 免费av毛片视频| 成人性生交大片免费视频hd| 在线观看66精品国产| 有码 亚洲区| 嘟嘟电影网在线观看| 国产精品久久久久久久电影| av视频在线观看入口| 99热这里只有是精品50| 深夜a级毛片| 亚洲精品国产av成人精品| 亚洲精华国产精华液的使用体验 | 国产大屁股一区二区在线视频| 日韩一本色道免费dvd| 亚洲国产精品成人综合色| 精品久久久噜噜| 亚洲自拍偷在线| 日本一二三区视频观看| 少妇高潮的动态图| 国产成人福利小说| 亚洲天堂国产精品一区在线| 91av网一区二区| 美女cb高潮喷水在线观看| 久久亚洲国产成人精品v| 美女国产视频在线观看| 久久久国产成人精品二区| 久久精品91蜜桃| 欧美性感艳星| 亚洲三级黄色毛片| 国产成人91sexporn| 最近的中文字幕免费完整| 看十八女毛片水多多多| 99九九线精品视频在线观看视频| 99精品在免费线老司机午夜| 99久久中文字幕三级久久日本| 免费在线观看成人毛片| 国产一级毛片七仙女欲春2| 青青草视频在线视频观看| 精品人妻一区二区三区麻豆| 亚洲欧美日韩无卡精品| 成人性生交大片免费视频hd| .国产精品久久| 综合色av麻豆| 中文字幕人妻熟人妻熟丝袜美| 2022亚洲国产成人精品| 男插女下体视频免费在线播放| av在线亚洲专区| 国产私拍福利视频在线观看| 国产69精品久久久久777片| 亚洲欧美精品自产自拍| 卡戴珊不雅视频在线播放| 国产在线男女| 国产国拍精品亚洲av在线观看| 成人亚洲精品av一区二区| 在线观看av片永久免费下载| 亚洲最大成人手机在线| 在线观看66精品国产| 乱人视频在线观看| 联通29元200g的流量卡| 亚洲av.av天堂| 国产69精品久久久久777片| 国产成人精品久久久久久| 两个人视频免费观看高清| 国产欧美日韩精品一区二区| 亚州av有码| 蜜桃亚洲精品一区二区三区| 日日啪夜夜撸| 在线免费十八禁| 网址你懂的国产日韩在线| 国产精品爽爽va在线观看网站| 亚洲天堂国产精品一区在线| 美女大奶头视频| 国产片特级美女逼逼视频| 网址你懂的国产日韩在线| 乱人视频在线观看| 久久这里有精品视频免费| 九九久久精品国产亚洲av麻豆| 精品无人区乱码1区二区| 亚洲电影在线观看av| 国产黄片视频在线免费观看| 91狼人影院| 亚洲熟妇中文字幕五十中出| 老女人水多毛片| 精华霜和精华液先用哪个| 三级毛片av免费| 插逼视频在线观看| av卡一久久| 伦精品一区二区三区| 国产国拍精品亚洲av在线观看| 国产精品永久免费网站| 国产不卡一卡二| 人妻系列 视频| 人妻夜夜爽99麻豆av| 一区二区三区免费毛片| 老熟妇乱子伦视频在线观看| 狠狠狠狠99中文字幕| 亚洲av中文字字幕乱码综合| 国产国拍精品亚洲av在线观看| 99久久人妻综合| 欧美日韩在线观看h| 成人性生交大片免费视频hd| 精品熟女少妇av免费看| 一级毛片我不卡| 久久精品国产亚洲av涩爱 | 少妇高潮的动态图| 亚洲av第一区精品v没综合| 波多野结衣巨乳人妻| 亚洲精品色激情综合| 一卡2卡三卡四卡精品乱码亚洲| 日韩精品青青久久久久久| 国内精品宾馆在线| 欧美三级亚洲精品| 男人的好看免费观看在线视频| 黄色一级大片看看| 青青草视频在线视频观看| 亚洲av中文字字幕乱码综合| 久久中文看片网| 欧美3d第一页| 日本成人三级电影网站| 男人舔女人下体高潮全视频| 三级国产精品欧美在线观看| 日韩制服骚丝袜av| 亚洲国产精品成人综合色| 国产亚洲av片在线观看秒播厂 | 亚洲自拍偷在线| 在线免费观看的www视频| 一进一出抽搐动态| 99久久成人亚洲精品观看| 亚洲一区二区三区色噜噜| 美女xxoo啪啪120秒动态图| 日本撒尿小便嘘嘘汇集6| 一级黄色大片毛片| 亚洲国产欧美在线一区| 久久久国产成人免费| 99精品在免费线老司机午夜| 波野结衣二区三区在线| 国产精品99久久久久久久久| 国产成人精品久久久久久| 国国产精品蜜臀av免费| 99热全是精品| 国产免费男女视频| 国产高清激情床上av| 99热精品在线国产| 我的老师免费观看完整版| 亚洲内射少妇av| 亚洲人与动物交配视频| 色综合色国产| 一进一出抽搐gif免费好疼| 精品免费久久久久久久清纯| 欧美成人免费av一区二区三区| 少妇熟女aⅴ在线视频| avwww免费| 日韩高清综合在线| 精品久久久久久久久久免费视频| 亚洲一区二区三区色噜噜| 亚洲精品粉嫩美女一区| 日本黄色片子视频| 日日摸夜夜添夜夜添av毛片| 久久欧美精品欧美久久欧美| 偷拍熟女少妇极品色| 中文字幕免费在线视频6| 两性午夜刺激爽爽歪歪视频在线观看| 成人国产麻豆网| 久久久久九九精品影院| 国产午夜精品一二区理论片| 成人三级黄色视频| 嫩草影院入口| 女的被弄到高潮叫床怎么办| 插逼视频在线观看| 亚洲av成人av| 久久九九热精品免费| 99热这里只有是精品50| 国产成人精品久久久久久| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有精品一区| 亚洲国产高清在线一区二区三| 九色成人免费人妻av| 91精品国产九色| 国产免费一级a男人的天堂| 校园人妻丝袜中文字幕| 老女人水多毛片| 久久人人精品亚洲av| 亚洲最大成人手机在线| 久久久久国产网址| 亚洲国产欧美人成| 一本精品99久久精品77| 村上凉子中文字幕在线| 亚洲精品久久国产高清桃花| 日本一本二区三区精品| 只有这里有精品99| 黄色配什么色好看| 国产精品一区二区三区四区免费观看| 此物有八面人人有两片| 亚洲国产精品成人综合色| 大又大粗又爽又黄少妇毛片口| 国产午夜精品久久久久久一区二区三区| 亚洲精品影视一区二区三区av| 免费av观看视频| 国产精品一及| 国产一级毛片在线| 午夜福利高清视频| 性插视频无遮挡在线免费观看| 国产精品不卡视频一区二区| 国产精品,欧美在线| 国产69精品久久久久777片| 麻豆久久精品国产亚洲av| 91久久精品国产一区二区成人| 国产精品人妻久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av卡一久久| 国产伦一二天堂av在线观看| 国产成人精品婷婷| 亚洲图色成人| 久久国产乱子免费精品| 国产成人aa在线观看| 人体艺术视频欧美日本| 一区二区三区四区激情视频 | 哪里可以看免费的av片| 看黄色毛片网站| 精品久久国产蜜桃| 国产伦理片在线播放av一区 | 国产午夜精品一二区理论片| 我要搜黄色片| 国语自产精品视频在线第100页| 毛片一级片免费看久久久久| 免费观看在线日韩| 国产成人aa在线观看| 99国产极品粉嫩在线观看| 美女高潮的动态| 亚洲精品日韩av片在线观看| 国产精品久久电影中文字幕| 亚洲av男天堂| 国产探花在线观看一区二区| 中国国产av一级| 一个人看视频在线观看www免费| 成人午夜高清在线视频| 国产熟女欧美一区二区| 国产真实乱freesex| 国产三级中文精品| 中出人妻视频一区二区| www.色视频.com| 国产在线精品亚洲第一网站| 丰满乱子伦码专区| 国产成人freesex在线| 欧美激情在线99| av天堂中文字幕网| 精品一区二区三区视频在线| av天堂在线播放| 啦啦啦啦在线视频资源| 婷婷六月久久综合丁香| 中文字幕久久专区| 青春草亚洲视频在线观看| 天天一区二区日本电影三级| 日韩高清综合在线| 22中文网久久字幕| 欧美丝袜亚洲另类| 婷婷色综合大香蕉| 国产亚洲av片在线观看秒播厂 | 日韩av不卡免费在线播放| 久久99热6这里只有精品| 3wmmmm亚洲av在线观看| 十八禁国产超污无遮挡网站| 综合色av麻豆| 婷婷亚洲欧美| 给我免费播放毛片高清在线观看| 此物有八面人人有两片| 成人亚洲精品av一区二区| 高清日韩中文字幕在线| 久久这里有精品视频免费| 免费看美女性在线毛片视频| av天堂中文字幕网| 精品人妻熟女av久视频| 18禁黄网站禁片免费观看直播| 国内久久婷婷六月综合欲色啪| 精品午夜福利在线看| 久久久久久久久中文| 国产精品免费一区二区三区在线| 国产av一区在线观看免费| 波多野结衣高清作品| 国产午夜精品一二区理论片| 69av精品久久久久久| 国产熟女欧美一区二区| 中文字幕精品亚洲无线码一区| 日本色播在线视频| 最近最新中文字幕大全电影3| 男女边吃奶边做爰视频| 亚洲最大成人中文| 毛片女人毛片| 国产精品福利在线免费观看| 精品久久久久久久久久久久久| 国产成年人精品一区二区| 中文字幕av在线有码专区| 两个人视频免费观看高清| 在线天堂最新版资源| 51国产日韩欧美| 狠狠狠狠99中文字幕| 免费无遮挡裸体视频| 久久九九热精品免费| 午夜福利在线在线| 色尼玛亚洲综合影院| 国产国拍精品亚洲av在线观看| 国产午夜精品论理片| videossex国产| 边亲边吃奶的免费视频| 亚洲精品456在线播放app| 久久久成人免费电影| 成人欧美大片| 欧美激情在线99| 寂寞人妻少妇视频99o| 欧美色欧美亚洲另类二区| 搡女人真爽免费视频火全软件| 欧美一级a爱片免费观看看| 九色成人免费人妻av| 欧美激情国产日韩精品一区| 亚洲精品国产av成人精品| 波多野结衣高清无吗| 欧美另类亚洲清纯唯美| 国产成人精品婷婷| 日韩国内少妇激情av| 国产精华一区二区三区| 久久99蜜桃精品久久| 精品人妻一区二区三区麻豆| 国产一区二区三区在线臀色熟女| 国语自产精品视频在线第100页| av女优亚洲男人天堂| 国产真实伦视频高清在线观看| 精品久久久久久久久久久久久| 久久久久久久午夜电影| h日本视频在线播放| 亚洲欧美中文字幕日韩二区| 少妇被粗大猛烈的视频| 99热精品在线国产| 欧美激情在线99| 12—13女人毛片做爰片一| 极品教师在线视频| 国产成年人精品一区二区| 麻豆成人av视频| 男人的好看免费观看在线视频| 国产极品天堂在线| 久久精品国产鲁丝片午夜精品| 色综合站精品国产| 波野结衣二区三区在线| 午夜激情福利司机影院| www.色视频.com| 国产色婷婷99| 嫩草影院新地址| 色哟哟哟哟哟哟| 久久草成人影院| 波多野结衣高清作品| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲四区av| 国产午夜精品久久久久久一区二区三区| 国产综合懂色| 免费观看人在逋| 国产极品精品免费视频能看的| 啦啦啦啦在线视频资源| av又黄又爽大尺度在线免费看 | 亚洲第一区二区三区不卡| 成人鲁丝片一二三区免费| 爱豆传媒免费全集在线观看| 麻豆成人av视频| 日本欧美国产在线视频| 欧美日韩精品成人综合77777| 精品久久久噜噜| 两个人视频免费观看高清| 12—13女人毛片做爰片一| 中文字幕免费在线视频6| 成年女人永久免费观看视频| .国产精品久久| 人妻系列 视频| 丰满人妻一区二区三区视频av| 久久久久免费精品人妻一区二区| 毛片女人毛片| 国产一区二区在线观看日韩| a级一级毛片免费在线观看| 亚洲婷婷狠狠爱综合网| 亚洲精品乱码久久久久久按摩| 在线播放国产精品三级| 欧美一区二区亚洲| 三级国产精品欧美在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国国产精品蜜臀av免费| 精品不卡国产一区二区三区| 免费看av在线观看网站| 国产av不卡久久| 黄色一级大片看看| 51国产日韩欧美| 我的女老师完整版在线观看| 亚洲,欧美,日韩| 精品一区二区三区视频在线| 亚洲欧美成人综合另类久久久 | 国产真实伦视频高清在线观看| 国产色婷婷99| 国产成人a∨麻豆精品| 99国产极品粉嫩在线观看| 日本一本二区三区精品| 久久6这里有精品| 亚洲精品亚洲一区二区| 老师上课跳d突然被开到最大视频| 在线观看美女被高潮喷水网站| 精品一区二区三区人妻视频| 人妻久久中文字幕网| 久久久久久大精品| 欧美区成人在线视频| 嘟嘟电影网在线观看| 成年女人永久免费观看视频| 99视频精品全部免费 在线| 一级av片app| 亚洲欧洲日产国产| 99视频精品全部免费 在线| 国产一级毛片在线| 国产一区二区激情短视频| 欧美日韩综合久久久久久| 成人二区视频| 国产一区二区在线av高清观看| 欧美日韩综合久久久久久| 国产精品伦人一区二区| 亚洲内射少妇av| 欧美日韩综合久久久久久| 亚洲精品456在线播放app| 国产精品日韩av在线免费观看| 中文亚洲av片在线观看爽| 女的被弄到高潮叫床怎么办| a级毛片a级免费在线| 成年女人看的毛片在线观看| 亚洲人成网站在线播| 一级二级三级毛片免费看| 99久久久亚洲精品蜜臀av| 亚洲第一电影网av| 一夜夜www| 男人舔奶头视频| 日本一本二区三区精品| 国产成人a∨麻豆精品| 亚洲自拍偷在线| 精品久久久久久久人妻蜜臀av|