• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    寬帶隙p區(qū)金屬氧化物/氫氧化物對苯的光催化降解

    2010-03-06 04:44:30李朝暉付賢智
    物理化學(xué)學(xué)報(bào) 2010年4期
    關(guān)鍵詞:省部氫氧化物福州大學(xué)

    李朝暉 劉 平 付賢智

    (福州大學(xué)光催化研究所,省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地,福州 350002)

    Benzene has severe health and environmental consequences due to its high toxicity and confirmed carcinogenicity[1-3].A recent study has shown that a long-term exposure to a very low levels (volume fraction less than 1×10-6)of benzene can reduce blood cell counts in human being.Workers exposed to benzene fumes, runintoanincreasedriskofleukemiaandbone-marrowtoxicity[4]. Benzene is also ubiquitous as an air pollutant from cigarette smoke,gasoline vapors,paint,industrial exhaust gases,and automobile emissions.The benzene pollution has already become one of the main environmental problems facing humanity. Therefore,the development of an efficient,cost-effective and environmentally sustainable technology in treating benzene and its derivatives is indispensable.

    Semiconductor photocatalysis for environmental remediation has received increasingly interest since it is environmentally friendly,capable of performing at room temperature and can treat organic pollutants at extremely low concentrations[5-13].The photocatalytic reactions occur over the semiconductor photocatalysts are initiated by the photo-generated electrons and holes that are captured subsequently by the surface adsorbed species. The capture of photo-generated charge carriers induce the formation of very reactive radicals such as O-·20,O·2,HO·2,HO·and so on,leading to the final decomposition of organic pollutants[6].

    Due to its high stability,non-toxicity,cheapness as well as its appropriate electronic band positions capable of oxidizing most organic pollutants,titanium dioxide(TiO2)has become the most widely used semiconductor photocatalyst in heterogeneous photocatalysis.Although TiO2-based photocatalytic oxidation(PCO) has been established to be one of the most promising technologies for the environment remediation and has been successful in treating a wide variety of volatile organic compounds(VOCs), PCO meets with limited success in the treatment of aromatic compounds like benzene due to the deactivation of TiO2resulted from the accumulation of the stable reaction intermediates on the surface[14-15].Loading of noble metals like Pt,Pd,or Rh over TiO2has been used to enhance its performance for photocatalytic oxidation of benzene in gas phase.However,these noble-metalloaded TiO2photocatalysts suffer from the problem of stability due to the oxidation of the noble metal nanoparticles on the surface of TiO2[16-18].Adding sufficient amount of H2O in the reaction feed gas can improve the efficiency of TiO2photocatalyst toward the complete oxidization of benzene to a certain degree[19-20].Our recent studies have also demonstrated that the introduction of magnetic field[21]or H2[22-23]into the photochemical reaction system can greatly improve the efficiency of Pt/TiO2for the photodecomposition of benzene at room temperature.However,it is not easy to realize such a complicated hybrid system for photocatalytic air purification.Therefore the development of photocatalysts with high performance for benzene degradation is indispensable in view of the application of photocatalysis for benzene treatment,yet it remains a great challenge till now.

    Recently,a series of wide band gap p-block metal oxides/hydroxides with superior performance for photocatalytic degradation of benzene have been developed in our institute[24-29].These wide band gap p-block metal oxides/hydroxides are a series of promising photocatalysts for benzene degradation.The preparations of these p-block metal oxides/hydroxides,their photocatalytic activity and mechanism for benzene degradation as well as the structure-activity relationship are summarized in this review.

    1 Preparations and photocatalytic activity for benzene degradation

    1.1 Binary p-block metal oxides/hydroxides β-Ga2O3, In(OH)3and InOOH

    Porous binary gallium oxide β-Ga2O3can be prepared via the hydrolysis of gallium nitrate in ammonia solution followed by a heat treatment at 600℃[24].The XRD pattern of the as-prepared β-Ga2O3is shown in Fig.1.The as-prepared β-Ga2O3exhibits stepwise adsorption and desorption(type IV isotherm)in the N2-sorption isotherm,indicative of a porous solid.The BET specific surface area is 80 m2·g-1and the average pore size is 7.3 nm with a narrow distribution of pore size for the as-prepared β-Ga2O3.With a band gap of 4.7 eV,β-Ga2O3can be excited with 254 nm UV irradiation.The as-prepared β-Ga2O3is highly photoactive for mineralizing benzene and its derivatives like toluene and ethylbenzene to CO2under 254 nm UV irradiation.For an initial benzene concentration of 450 μL·L-1,β-Ga2O3shows a high conversion rate of 42%and can maintain its reactivity during the prolonged operation of 80 h.In the meantime about 1070 μL·L-1of CO2can be produced over β-Ga2O3,indicating that 95%of benzene converted has been mineralized to CO2over β-Ga2O3(Fig.2)[24].

    Binary p-block metal hydroxide In(OH)3also shows high photocatalytic performance for benzene degradation under 254 nm UV irradiation.Porous In(OH)3can be prepared by hydrolysis of In(NO3)3in an aqueous solution of ammonium followed by a thermal treatment at 120℃.The BET specific surface area for the as-prepared In(OH)3is 120 m2·g-1.For an initial benzene concentration of 1300 μL·L-1,the conversion of benzene and the mineralization rate over In(OH)3can maintain at 25%and 40%,respectively,even after 30 h photocatalytic reaction(Fig.3)[25].

    Fig.1 X-ray diffraction(XRD)pattern of the as-synthesized Ga2O3sample[24]

    Fig.2 (a)Conversion of C6H6and(b)the amount of produced CO2over the Ga2O3as a function of reaction time(t)with TiO2(P25)as a reference[24]

    Oxyhydroxide InOOH can be prepared via a facile solvothermal process from In(NO3)3in a water/ethylenediamine(1∶6)solution.The XRD pattern of the as-prepared InOOH is shown in Fig.4.The average particle size is about 20 nm and the BET specific surface area is about 55 m2·g-1for the as-prepared InOOH. With a band gap energy of 3.7 eV,InOOH can be excited by 300 nm UV irradiation.For an initial benzene concentration of 260 μL·L-1,the conversion of benzene over InOOH can reach 7.5%.In addition,the amount of the produced CO2is about 50 μL·L-1,corresponding to a benzene mineralization ratio of more than 50%.The photocatalytic activity can be maintained for more than 30 h,during which no noticeable deactivation is observed(Fig.5)[26].

    1.2 Ternary p-block metal semiconductors Sr2Sb2O7, ZnGa2O4and Zn2GeO4

    Besides the binary p-block metal oxides/hydroxides,the photocatalytic activity for benzene degradation can also be found over ternary p-block metal oxides with more diversified composition and structure.

    Nanocrystalline Sr2Sb2O7prepared via a facile hydrothermal method is found to show high activity for benzene degradation. AlthoughSr2Sb2O7preparedviaaconventionalsolidstatereaction method(Sr2Sb2O7(SSR))has been reported to be a photocatalyst for water splitting[30]and the degradation of organic dyes[31],it shows very low activity for benzene degradation due to its low specific surface area.To extend its application for photocatalytic degradation of benzene,we developed for the first time a facile method in the preparation of nanocrystalline Sr2Sb2O7directly from commercial Sb2O5.The XRD patterns of the obtained products under different pH values are shown in Fig.6.It is found that the reaction pH plays an important role in the final product and only under highly basic condition can nanocrystalline Sr2Sb2O7be obtained.The hydrothermal prepared nanocrystalline Sr2Sb2O7consists entirely of small particles with average size at around 6 nm and has a relatively large BET specific surface area of about 24.8 m2·g-1,much higher than Sr2Sb2O7prepared via the solid state reaction(1.4 m2·g-1).The N2-sorption isotherm indicates that the as-prepared Sr2Sb2O7is a mesoporous solid with a narrow distribution of pore size at ca 4.0 nm.The as-prepared nanocrystalline Sr2Sb2O7show high photocatalytic performance for the degradation of benzene.For an initial ben-zene concentration of 220 μL·L-1,the conversion of benzene is about 24%and more than 160 μL·L-1of CO2is produced in the meantime,corresponding to a high mineralization ratio of about 50%.Both the conversion ratio and the mineral-ization ratio are higher than those over solid state prepared Sr2Sb2O7(4%,30 μL· L-1).The high conversion and mineralization ratio can be maintained for more than 40 h,during which no obvious deactivation is observed(Fig.7)[27].

    Fig.3 Photocatalytic oxidation conversion of henzene(A) and production of CO2(B)over the catalyst in dry O2[25](a)In(OH)3,(b)TiO2;curve(c)was a control experiment with In(OH)3without irradiation,and(d)was a control experiment without In(OH)3under 254 nm irradiation;the initial benzene volume fraction:1300 μL·L-1

    Fig.4 XRD pattern of the as-prepared InOOH[26]

    Fig.5 (A)Conversion of benzene and(B)the amount of produced CO2over InOOH and P25 for decomposing benzene as a function of reaction time under UV illumination(λ=300 nm)[26]

    Fig.6 XRD pattern of the samples prepared at 180℃for 48 h with different pH values[27](●)Sr1.36Sb2O6,(*)SrSb2O6,(▼)Sr2Sb2O7

    Fig.7 Conversion of C6H6and the amount of produced CO2 over the Sr2Sb2O7(180℃,48 h,[OH-]=2 mol·L-1)as a function of reaction time,with TiO2(P25)and Sr2Sb2O7(SSR)as references[27](■)(●)(▲)the conversion of C6H6over the Sr2Sb2O7,TiO2,and Sr2Sb2O7(SSR) respectively;(□)(○)(Δ)the amount of produced CO2over the Sr2Sb2O7,TiO2, and Sr2Sb2O7(SSR)respectively;Sr2Sb2O7(SSR)refers to the sample prepared via a solid state reaction.

    Nanocrystalline ZnGa2O4with a specific surface area of about 36.7 m2·g-1can be prepared via a co-precipitation method from Zn(NO3)2and Ga(NO3)3followed by a heat treatment at 600℃. The XRD pattern of the as-prepared ZnGa2O4is shown Fig.8. For an initial benzene concentration of 220 μL·L-1,the conversion of benzene over the thus-prepared ZnGa2O4is about 12.0% and more than 100 μL·L-1of CO2can be produced,corresponding to a mineralization ratio of about 63%(Fig.9)[28].With an aim at enhancing its activity,ZnGa2O4with an extremely high specific surface area of 201 m2·g-1has been prepared from Zn(NO3)2and Ga(NO3)3via a hydrothermal treatment at 80℃.The increase of the specific surface area leads to a significant enhancement of the photocatalytic activity for benzene degradation.The conversion ratio of benzene can be increased to as high as 41%and the produced CO2can reach 500 μL·L-1for an initial benzene concentration of 300 μL·L-1,which is much higher than Pt/TiO2(Fig.10)[32].

    Another ternary p-block metal oxides with high photocatalytic performance for benzene degradation is Zn2GeO4.Nanorods of Zn2GeO4can be prepared from GeO2and Zn(Ac)2under the assistance of surfactant cetyltrimethylammonium bromide(CTAB) via a facile hydrothermal method and the XRD pattern is shown in Fig.11.The SEM images reveal that the as-prepared sample contains a large quantity of nanorods 20-50 nm in width and 150-600nminlength(Fig.12).Under254nmUVirradiations,for an initial benzene concentration of 300 μL·L-1,the benzene conversion and CO2concentration over the as-prepared Zn2GeO4nanorods can be maintained steady at ca 21%and ca 280 μL·L-1, respectively,which corresponding to a high mineralization ratio of ca 75%(Fig.13)[29].

    Fig.8 XRD pattern of the nanocrystalline ZnGa2O4[28]

    Fig.9 Conversion of C6H6and the amount of produced CO2 over the nanocrystalline ZnGa2O4as a function of reaction time,with TiO2(P25)as references[28](▲)(●)the conversion of C6H6over the ZnGa2O4and TiO2respectively, (Δ)(○)the amount of produced CO2over the ZnGa2O4and TiO2respectively

    2 Structure-activity relationship

    Fig.10 Photocatalytic conversion of benzene(a)and the amount of produced CO2(b)over ZnGa2O4hydrothermal prepared under 80,120,160,200℃,TiO2and Pt/TiO2[32]

    Fig.11 XRD patterns of Zn2GeO4nanorods and bulk Zn2GeO4particles[29]

    The band gap,crystallinity,and the specific surface area are important factors that can influence the photocatalytic activity of the semiconductor photocatalysts.However,the activity of some p-block metal oxide photocatalysts can not be simply explained in terms of the above factors.A study on three crystalline phase of Ga2O3reveals that the intrinsic crystallographic structure,especially the geometric structure of the M—O polyhedron(M=pblock metal)can influence the photocatalytic activity of these wide band gap semiconductors as well[33].The crystal structure of α-Ga2O3and β-Ga2O3(Fig.14)and the calculations using the crystallographic data regarding the atom positions reveal that α-Ga2O3is constituted only by distorted octahedron GaO6with a dipole moment of 14.0×10-30C·m,while β-Ga2O3contains both distorted GaO6octahedron(7.3×10-30C·m)and GaO4tetrahedron(2.3×10-30C·m).It is believed that the dipole moment induced by the distorted polyhedron can create a local electric field inside the distorted polyhedron,which can promote the separation of the photo-generated electron-hole pairs[34].Although both α-Ga2O3and β-Ga2O3contain distorted polyhedron in their structure,α-Ga2O3contains only distorted octahedron,while β-Ga2O3has both heavily distorted octahedron and tetrahedron in its structure.The coexistence of two different kinds of electric fields might have synergic effects in promoting the separation of photoexcited electron-hole pairs.Therefore,α-Ga2O3shows a lower photocatalytic activity than β-Ga2O3(Table 1).This promo-moting effect is confirmed by the time-resolved photoluminescence(PL)measurements.The PL measurements reveal that the lifetime of the photogenerated electron-hole pairs on β-Ga2O3is longer than that on α-Ga2O3(Fig.15 and Table 2).The existence of the relationship between the geometric structure and the photocatalytic activity among these semiconductor photocatalysts provides some guideline in our development of new wide band gap p-block metal semiconductor photocatalysts.

    Fig.12 Structural characterization and general morphologies of Zn2GeO4nanorods[29](a)SEM image,(b)TEM image,(c)TEM image of a Zn2GeO4nanorod, (d)HRTEM image of area e1 in(c),(e)enlarged image of area f1 in(d), (f)SAED pattern recorded along the zone axis[110]of the Zn2GeO4nanorods

    Fig.13 (a)Photocatalytic conversion of benzene and(b)amount of produced CO2in the stream over the Zn2GeO4nanorods against the reaction time,with TiO2(Degussa P25)as a reference catalyst[29]

    Fig.14 Three-dimensional crystal structures of α-Ga2O3and β-Ga2O3with a unit cell[33]

    3 Mechanism for benzene degradation

    All the above mentioned wide band gap p-block metal oxides/ hydroxides show high stability for benzene degradation,while TiO2deactivate very quickly.Their obvious different behavior implies that these p-block metal oxides/hydroxides and TiO2may have different routes in the photocatalytic degradation of benzene.

    Generally,it is believed that the degradation of benzene over TiO2under dry air proceeds preferentially via a direct-hole-oxidation route.Such a direct-hole-oxidation process would pro-duce benzene cationic radical,which react further with an incoming benzene molecule,leading to the polymerization of benzene on the catalyst surface and the deactivation of TiO2during the degradation of benzene[35].The deposition of the stable intermediates can be confirmed by the color change of TiO2from the original white to dark brown after the photocatalytic reaction.In addition to this,the FT-IR spectrum of used TiO2indicates the formation of the stable intermediates by showing three new peaks at 1483,1686,and 1711 cm-1(Fig.16).On the contrary,no color change has been observed after photocatalytic benzene degradation for the p-block metal oxides/hydroxides, like InOOH.Besides this,no new peaks appear on the FT-IR spectrum over these p-block metal oxides/hydroxides,indicating that no stable intermediates have been deposited on the surface of these photocatalysts(Fig.16).All these phenomena imply that the degradation of benzene over these p-block metal oxides/hydroxides may proceed preferentially via the HO·radical route.Photocatalysts proceed via the HO·radical degradation route may have long term stability since the HO·radical route could significantly suppress the polymerization of benzene on the catalyst surface.

    Table 1 Hydrocarbon removal rate and CO2production rate over different photocatalysts[33]

    Fig.15 Photoluminescence decay curves of the gallium oxide catalysts[33]

    Table 2 Lifetimes(τ)and relative amplitudes of timeresolved photoluminescence of the gallium oxide catalysts at 77 K[33]

    The generation of HO·radicals over these p-block metal oxides/hydroxides is credible since they all have proper band structure.The calculations of their band position based on the following equation:ECB=X-Ec-0.5Egis-0.4 V(vs NHE)[36]reveal that the edge of their conduction band are all negative than that of E°(O2/O-·20)(-0.33 V vs NHE),while the edge of their valence band(EVB)are positive than that of E°(HO·/OH-)(2.38 V vs NHE)[37].These suggest that the photogenerated electrons on these p-block metal oxides/hydroxides can reduce O2to give O-·20, while the photogenerated holes can oxidize OH-to give HO· when illuminated.The ESR spin-trap with DMPO technique confirmed the production of both O-·20and HO·over all these pblock metal oxides/hydroxides.In addition to this,it is observed that the intensities of the signal corresponding to the DMPOHO·radical produced over the p-block metal oxides/hydroxides (for example,InOOH)are much stronger than those over P25 (Fig.17).This indicates that under similar condition,more HO· radicals can be produced over irradiated p-block metal oxides/ hydroxides than over P25[26].This again confirms the above assumption that the degradation of benzene over p-block metal oxides/hydroxides may proceeds preferentially via the HO·radical route,while that over P25 may proceed via the direct-hole oxidation route.

    Fig.16 FT-IR spectra of used and fresh P25 and InOOH(inset)[26]

    Fig.17 DMPO spin-trapping ESR spectra(a)in aqueous dispersion for DMPO-·OH and(b)in methanol dispersion for DMPO-O-·20[26]

    The degradation preferentially via the HO·radical route over these p-block metal oxides/hydroxides can be attributed to their peculiar structure.The intrinsic wide band gap of these p-block metal oxides/hydroxides endow the photogenerated holes with strong oxidation ability and make them thermodynamically more favorable to react with chemi-adsorbed H2O or the surface hydroxyl group to produce HO·radicals.On the other hand,the highly dispersive conduction band due to the hybridizations of the orbitals usually observed over these p-block metal oxides/ hydroxides can promote the mobility of the photoexcited electrons,leading to enhanced charge separation.All these characteristics are favorable for the generation of the HO·radicals over these p-block metal oxides/hydroxides when illuminated. Therefore the degradation of benzene over these p-block metal oxides/hydroxides can proceed preferentially via HO·radical route and hence a high stability is observed.

    The possible benzene degradation mechanism over these wide band gap p-block metal oxides/hydroxides is illustrated in Scheme 1.When illuminated,these p-block metal oxides/hydroxides can be efficiently excited to create electron-hole pairs. The photogenerated electrons and holes are long-lived enough to react with adsorbed H2O or surface hydroxyl group to produce HO·radicals.Since the water content in the feed gas is maintained at such a low level(<5 μL·L-1),H2O involved in the genera tion of the HO·radicals must come from the photocatalytic reaction itself.The photocatalytic degradation of benzene over these p-block metal oxides/hydroxides can proceed preferentially via the HO·radical.In this way,no polymerized intermedistes can be deposited and these p-block metal oxides/ hydroxides can maintain a clean surface and a higher stability in the photodegradation of benzene.

    Scheme 1 Possible mechanism of the photocatalytic degradation of benzene over wide band gap p-block metal oxides/hydroxides

    4 Conclusions and outlook

    Wide band gap p-block metal oxides/hydroxides can be a promising new generation of photocatalysts for benzene degradation.Their superior photocatalytic performance for benzene degradation may be attributed to their peculiar structures and their mechanism different from TiO2in the degradation of benzene.A limitation for the application of these wide band gap pblock metal oxides/hydroxides in the practical environmental remediation is their wide band gap since they can only adsorb the UV energy,which account for only ca 4%of the solar energy. Since the ultimate goal of photocatalysis is to use the solar light, the application of the photocatalysis of these wide band gap semiconductors in the visible light region is important.The extension of the adsorption of these wide band gap semiconductors to the visible light region is still going on in our laboratory.

    1 Hudak,A.;Ungvary,G.Toxicology,1978,11:55

    2 Caprino,L.;Togna,G.I.Environ.Health Perspect.,1998,106: 115

    3 Bird,M.G.;Greim,H.;Snyder,R.;Rice,J.M.Chem.-Biol. Interact.,2005,153:1

    4 Lan,Q.;Zhang,L.;Li,G.;Vermeulen,R.V.;Weinberg,R.S.; Dosemeci,M.;Rappaport,S.M.;Shen,M.;Alter,B.P.;Wu,Y.; Kopp,W.;Waidyanatha,S.;Rabkin,C.;Guo,W.;Chanock,S.; Hayes,R.B.;Linet,M.;Kim,S.;Yin,S.;Rothman,N.;Smith,M. T.Science,2004,306:1774

    5 Mills,A.;Davies,R.H.;Worsley,D.Chem.Soc.Rev.,1993,22: 417

    6 Hoffman,M.R.;Martin,S.T.;Choi,W.;Bahnemann,D.W. Chem.Rev.,1995,95:69

    7 Fujishima,A.;Rao,T.N.;Tryk,D.A.J.Photochem.Photobiol.C, 2000,1:1

    8 Linsebigler,L.;Lu,G.;Yates Jr.,J.T.Chem.Rev.,1995,95:735

    9 Fujishima,A.;Hashimoto,K.;Watanabe,T.Photocatalysis fundamentals and applications.1st ed.Tokyo:BKC,1999

    10 Kaneko,M.;Okura,I.Photocatalysis,science and technology, Berlin:Springer,2002

    11 Serpone,N.;Pelizzetti,E.Photocatalysis:fundamentals and applications.New York:Wiley,1989

    12 Ollis,D.F.;Al-Ekabi,H.Photocatalytic purification and treatment of water and air.Amsterdam:Elsevier,1993

    13 Fox,M.A.;Dulay,M.T.Chem.Rev.,1993,93:341

    14 Mendez-Roman,R.;Cardona-Martinez,N.Catal.Today,1998, 40:353

    15 Martra,G.;Coluccia,S.;Marchese,L.;Augugliaro,V.;Loddo,V.; Palmisano,L.;Schiavello,M.Catal.Today,1999,53:695

    16 Fu,X.Z.;Zeltner,W.A.;Anderson,M.C.Appl.Catal.B: Environ.,1995,6:209

    17 Einaga,H.;Futamura,S.;Ibusuki,T.Environ.Sci.Technol.,2001, 35:1880

    18 Einaga,H.;Futamura,S.;Ibusuki,T.Environ.Sci.Technol.,2004, 38:285

    19 Sitkiewitz,S.;Heller,A.New J.Chem.,1996,20:233

    20 Einaga,H.;Futamura,S.;Ibusuki,T.Phys.Chem.Chem.Phys., 1999,1:4903

    21 Zhang,W.;Wang,X.X.;Fu,X.Z.Chem.Commun.,2003:2196

    22 Chen,Y.L.;Li,D.Z.;Wang,X.C.;Wang,X.X.;Fu,X.Z.Chem. Commun.,2004:2304

    23 Chen,Y.L.;Li,D.Z.;Wang,X.C.;Wang,X.X.;Fu,X.Z.New J. Chem.,2005,29:1514

    24 Hou,Y.D.;Wang,X.C.;Wu,L.;Ding,Z.X.;Fu,X.Z.Environ. Sci.Technol.,2006,40:5799

    25 Yan,T.J.;Long,J.L.;Chen,Y.S.;Wang,X.X.;Li,D.Z.;Fu,X. Z.C.R.Chim.,2008,11:101

    26 Li,Z.H.;Xie,Z.P.;Zhang,Y.F.;Wu,L.;Wang,X.X.;Fu,X.Z. J.Phys.Chem.C,2007,111:18348

    27 Xue,H.;Li,Z.H.;Wu,L.;Ding,Z.X;Wang,X.X.;Fu,X.Z. J.Phys.Chem.C,2008,112:5850

    28 Chen,X.;Xue,H.;Li,Z.H.;Wu,L.;Wang,X.X.;Fu,X.Z. J.Phys.Chem.C,2008,112:20393

    29 Huang,J.H.;Wang,X.C.;Hou,Y.D.;Chen,X.F.;Wu,L.;Fu,X. Z.Environ.Sci.Technol.,2008,42:7387

    30 Sato,J.;Saito,N.;Nishiyama,H.;Inoue,Y.J.Photochem. Photobio.A:Chem.,2002,148:85

    31 Lin,X.P.;Huang,F.Q.;Wang,W.D.;Wang Y.M.;Xia,Y.J.; Shi,J.L.Appl.Catal.A:Gen.,2006,313:218

    32 Zhang,X.;Huang,J.;Ding,K.;Hou,Y.;Wang,X.;Fu,X.Environ. Sci.Technol.,2009,43:5947

    33 Hou,Y.;Wu,L.;Wang,X.;Ding,Z.;Li,Z.;Fu,X.J.Catal., 2007,250:12

    34 Sato,J.;Kobayashi,H.;Inoue,Y.J.Phys.Chem.B,2003,107: 7970

    35 d′Hennezel,O.;Pichat,P.;Ollis,D.F.J.Photochem.Photobiol.A: Chem,1998,118:197

    36 Butler,M.A.;Ginley,D.S.J.Electrochem.Soc.,1978,125:228

    37 Bard,A.J.;Parsons,R.;Jordan,J.Standard potentials in aqueous solution.New York:Marcel Dekker,1985

    猜你喜歡
    省部氫氧化物福州大學(xué)
    福州大學(xué)馬克思主義學(xué)院
    福州大學(xué)繼續(xù)教育學(xué)院
    重型機(jī)械裝備省部共建協(xié)同創(chuàng)新中心簡介
    陜西中藥資源產(chǎn)業(yè)化省部共建協(xié)同創(chuàng)新中心
    黑龍江省人民政府辦公廳關(guān)于印發(fā)黑龍江省合理膳食行動(dòng)省部合作項(xiàng)目實(shí)施方案的通知
    4個(gè)涉煤省部共建協(xié)同創(chuàng)新中心獲認(rèn)定
    中國煤炭(2019年10期)2019-01-19 08:52:17
    福州大學(xué)喜迎建校60周年
    層狀雙氫氧化物處理工業(yè)廢水的研究進(jìn)展
    氫氧化物鹽插層材料的制備和表征
    層狀雙氫氧化物表面負(fù)載TiO2的光催化性能
    啦啦啦在线免费观看视频4| 嫁个100分男人电影在线观看| 日韩一卡2卡3卡4卡2021年| 国产精品 欧美亚洲| 丝袜美足系列| 中文字幕制服av| 久久狼人影院| 亚洲一码二码三码区别大吗| 亚洲avbb在线观看| 亚洲色图av天堂| 嫩草影视91久久| 一区福利在线观看| 久久亚洲真实| 男女高潮啪啪啪动态图| 侵犯人妻中文字幕一二三四区| 新久久久久国产一级毛片| 日韩三级视频一区二区三区| 欧美日韩一级在线毛片| 亚洲精品久久午夜乱码| 亚洲国产欧美日韩在线播放| 欧美黄色片欧美黄色片| 欧美成狂野欧美在线观看| 丰满人妻熟妇乱又伦精品不卡| 欧美国产精品va在线观看不卡| 99久久人妻综合| 久久久水蜜桃国产精品网| 日韩大码丰满熟妇| 久久久久久久久免费视频了| 国产成人欧美| 岛国毛片在线播放| 国产成人av教育| 看免费av毛片| 18禁观看日本| 国产一区二区三区在线臀色熟女 | 欧美色视频一区免费| 亚洲精品国产色婷婷电影| 无限看片的www在线观看| 亚洲av成人不卡在线观看播放网| 天天添夜夜摸| 久久久国产成人精品二区 | 成人国产一区最新在线观看| 国产成人精品在线电影| e午夜精品久久久久久久| 精品高清国产在线一区| 极品少妇高潮喷水抽搐| 国产伦人伦偷精品视频| 美女扒开内裤让男人捅视频| 亚洲五月色婷婷综合| 亚洲片人在线观看| 在线观看午夜福利视频| 国产高清国产精品国产三级| 国产视频一区二区在线看| 久久久精品免费免费高清| 狠狠狠狠99中文字幕| 十分钟在线观看高清视频www| 99久久99久久久精品蜜桃| 久久久久久人人人人人| 国产成人精品在线电影| 可以免费在线观看a视频的电影网站| 亚洲午夜理论影院| 精品亚洲成国产av| 在线看a的网站| 久久久久视频综合| 老司机在亚洲福利影院| 一进一出好大好爽视频| 欧美日韩视频精品一区| 男男h啪啪无遮挡| 日韩免费av在线播放| 精品人妻熟女毛片av久久网站| 青草久久国产| 啦啦啦视频在线资源免费观看| 美女视频免费永久观看网站| 国产三级黄色录像| 欧美丝袜亚洲另类 | 久久青草综合色| 999精品在线视频| 高清视频免费观看一区二区| av福利片在线| 精品久久久精品久久久| 日韩精品免费视频一区二区三区| 色精品久久人妻99蜜桃| 国产成人av激情在线播放| 日本黄色视频三级网站网址 | 久久性视频一级片| 人妻丰满熟妇av一区二区三区 | 免费人成视频x8x8入口观看| 夫妻午夜视频| 美女视频免费永久观看网站| 亚洲av日韩精品久久久久久密| 国产欧美日韩综合在线一区二区| 亚洲一区二区三区不卡视频| 欧美在线黄色| 嫁个100分男人电影在线观看| 伦理电影免费视频| 亚洲熟女毛片儿| 国产精品国产av在线观看| 电影成人av| 色尼玛亚洲综合影院| a级毛片黄视频| 亚洲欧美色中文字幕在线| 精品国产乱码久久久久久男人| 女人被狂操c到高潮| xxxhd国产人妻xxx| 少妇的丰满在线观看| 国产亚洲欧美在线一区二区| 69av精品久久久久久| 精品熟女少妇八av免费久了| 丰满人妻熟妇乱又伦精品不卡| 午夜91福利影院| 老熟妇乱子伦视频在线观看| 久久久久国产精品人妻aⅴ院 | 亚洲国产看品久久| 国产精品免费一区二区三区在线 | 精品一区二区三区四区五区乱码| 高清在线国产一区| 超碰成人久久| 午夜视频精品福利| 久久精品aⅴ一区二区三区四区| 国产亚洲欧美在线一区二区| 十八禁人妻一区二区| 女人被狂操c到高潮| 亚洲 欧美一区二区三区| 国产亚洲精品久久久久久毛片 | 大码成人一级视频| 黄色毛片三级朝国网站| 99re在线观看精品视频| 亚洲色图 男人天堂 中文字幕| 啦啦啦视频在线资源免费观看| av中文乱码字幕在线| 狠狠狠狠99中文字幕| 国产高清videossex| 亚洲精品国产区一区二| 极品教师在线免费播放| 欧美中文综合在线视频| 午夜精品国产一区二区电影| 天天操日日干夜夜撸| 国产精品一区二区在线不卡| 人人妻,人人澡人人爽秒播| 天堂中文最新版在线下载| 国产精品免费大片| 精品国产超薄肉色丝袜足j| 国产亚洲欧美在线一区二区| 国内久久婷婷六月综合欲色啪| 亚洲精品在线美女| 国产亚洲精品久久久久5区| 国产亚洲欧美精品永久| 美女视频免费永久观看网站| 日本a在线网址| 国产精品一区二区在线不卡| www.自偷自拍.com| 午夜福利在线观看吧| 人人妻人人添人人爽欧美一区卜| 在线观看一区二区三区激情| 又大又爽又粗| 日日摸夜夜添夜夜添小说| 涩涩av久久男人的天堂| 啪啪无遮挡十八禁网站| 美女福利国产在线| 免费黄频网站在线观看国产| 亚洲av电影在线进入| 精品久久久久久电影网| 欧美乱码精品一区二区三区| 无遮挡黄片免费观看| 一级,二级,三级黄色视频| 人人妻人人添人人爽欧美一区卜| 日韩精品免费视频一区二区三区| 女警被强在线播放| 久热爱精品视频在线9| 捣出白浆h1v1| 人妻久久中文字幕网| 亚洲三区欧美一区| 精品免费久久久久久久清纯 | 国产免费现黄频在线看| 亚洲精品国产色婷婷电影| 日韩免费av在线播放| 高清黄色对白视频在线免费看| 9色porny在线观看| 午夜免费成人在线视频| 丝袜人妻中文字幕| 欧美精品啪啪一区二区三区| 大香蕉久久网| 老司机午夜福利在线观看视频| 黑人巨大精品欧美一区二区mp4| 在线免费观看的www视频| 日本wwww免费看| 亚洲午夜精品一区,二区,三区| 美女高潮喷水抽搐中文字幕| 欧美一级毛片孕妇| 天天躁夜夜躁狠狠躁躁| 高清毛片免费观看视频网站 | 757午夜福利合集在线观看| 美女高潮喷水抽搐中文字幕| 校园春色视频在线观看| 老熟女久久久| 欧美日韩视频精品一区| 99国产精品一区二区三区| 亚洲第一青青草原| 欧美一级毛片孕妇| 国产精品影院久久| 欧美成狂野欧美在线观看| 国产免费男女视频| 欧美激情极品国产一区二区三区| 国产精品永久免费网站| 欧美精品高潮呻吟av久久| 高清毛片免费观看视频网站 | 国产精品98久久久久久宅男小说| 香蕉丝袜av| 国产精品一区二区在线不卡| 女人高潮潮喷娇喘18禁视频| 国产av又大| 中文字幕精品免费在线观看视频| 日韩三级视频一区二区三区| 搡老乐熟女国产| 99国产极品粉嫩在线观看| 电影成人av| 热re99久久国产66热| 久久久精品免费免费高清| 日韩有码中文字幕| 777久久人妻少妇嫩草av网站| 国产亚洲欧美在线一区二区| 日韩欧美在线二视频 | 人成视频在线观看免费观看| 亚洲欧美日韩高清在线视频| 国产不卡一卡二| 精品熟女少妇八av免费久了| 黄网站色视频无遮挡免费观看| 国产有黄有色有爽视频| 99国产精品99久久久久| 午夜福利,免费看| 亚洲一区高清亚洲精品| 丝瓜视频免费看黄片| 一级,二级,三级黄色视频| 9191精品国产免费久久| 欧美日本中文国产一区发布| 久久ye,这里只有精品| 人人妻,人人澡人人爽秒播| 亚洲人成电影观看| 免费在线观看视频国产中文字幕亚洲| 五月开心婷婷网| 正在播放国产对白刺激| 日本欧美视频一区| 视频区图区小说| 一二三四在线观看免费中文在| 午夜福利免费观看在线| 黄色怎么调成土黄色| 久久精品熟女亚洲av麻豆精品| 无人区码免费观看不卡| 亚洲精品中文字幕在线视频| 高清毛片免费观看视频网站 | 国产亚洲av高清不卡| 大香蕉久久网| 精品国产乱子伦一区二区三区| 日韩免费av在线播放| 国产成人精品无人区| 一级毛片女人18水好多| av线在线观看网站| 免费在线观看完整版高清| 午夜福利在线免费观看网站| 一区二区三区精品91| 黑人猛操日本美女一级片| 欧美不卡视频在线免费观看 | 999久久久国产精品视频| 欧美日本中文国产一区发布| 欧美日韩一级在线毛片| 午夜免费鲁丝| 老司机在亚洲福利影院| 啦啦啦免费观看视频1| 俄罗斯特黄特色一大片| 国产成人欧美在线观看 | 久久久久久久精品吃奶| 国内久久婷婷六月综合欲色啪| 亚洲精品在线美女| 女性生殖器流出的白浆| av片东京热男人的天堂| 欧美日韩瑟瑟在线播放| 精品人妻在线不人妻| 高清毛片免费观看视频网站 | 老司机福利观看| 亚洲欧美日韩另类电影网站| 亚洲av成人av| 如日韩欧美国产精品一区二区三区| 欧美国产精品va在线观看不卡| 亚洲精品国产精品久久久不卡| 国产成人啪精品午夜网站| 99国产极品粉嫩在线观看| 波多野结衣一区麻豆| 国产精品98久久久久久宅男小说| 18禁美女被吸乳视频| 国产成人免费无遮挡视频| 少妇被粗大的猛进出69影院| 亚洲第一欧美日韩一区二区三区| 无遮挡黄片免费观看| 黄色片一级片一级黄色片| 欧美成人午夜精品| 亚洲av欧美aⅴ国产| 99久久99久久久精品蜜桃| 亚洲第一青青草原| svipshipincom国产片| 日本五十路高清| 亚洲av第一区精品v没综合| 亚洲欧洲精品一区二区精品久久久| 黑人巨大精品欧美一区二区蜜桃| 亚洲七黄色美女视频| 精品久久久久久久久久免费视频 | 亚洲熟妇中文字幕五十中出 | 侵犯人妻中文字幕一二三四区| 精品国产乱码久久久久久男人| av国产精品久久久久影院| 丰满的人妻完整版| 欧美日韩亚洲国产一区二区在线观看 | 999久久久国产精品视频| 在线观看免费日韩欧美大片| 欧美成人午夜精品| 久久久久久久精品吃奶| 久久精品亚洲熟妇少妇任你| 精品国产一区二区三区久久久樱花| 亚洲精品久久午夜乱码| 亚洲成av片中文字幕在线观看| 国产精品欧美亚洲77777| 啦啦啦免费观看视频1| 国产97色在线日韩免费| 国产亚洲精品第一综合不卡| 欧美黄色淫秽网站| 精品亚洲成a人片在线观看| 操出白浆在线播放| 嫩草影视91久久| 国产av又大| 亚洲五月色婷婷综合| 69av精品久久久久久| 一本综合久久免费| 黄频高清免费视频| 欧美国产精品va在线观看不卡| 日韩视频一区二区在线观看| 真人做人爱边吃奶动态| 亚洲精品美女久久av网站| 久久影院123| 日韩精品免费视频一区二区三区| 久久久国产一区二区| 国产亚洲精品第一综合不卡| 国产成人欧美在线观看 | 高清在线国产一区| 亚洲精品一二三| 国产精品 欧美亚洲| av欧美777| 中出人妻视频一区二区| 天天影视国产精品| 国产男女内射视频| 久久久精品免费免费高清| 国产精品久久电影中文字幕 | 国产精品秋霞免费鲁丝片| 下体分泌物呈黄色| 亚洲av成人av| 日本一区二区免费在线视频| 女人爽到高潮嗷嗷叫在线视频| 天天影视国产精品| 丝袜美腿诱惑在线| 久久久久视频综合| 女性被躁到高潮视频| 少妇被粗大的猛进出69影院| 视频区图区小说| av免费在线观看网站| 久久精品人人爽人人爽视色| 欧美另类亚洲清纯唯美| 国产一区二区三区视频了| 18禁美女被吸乳视频| 看免费av毛片| 久久亚洲精品不卡| 国产欧美日韩综合在线一区二区| 成年版毛片免费区| 90打野战视频偷拍视频| 欧美精品av麻豆av| 男女午夜视频在线观看| 日韩大码丰满熟妇| 夫妻午夜视频| 欧美+亚洲+日韩+国产| 日韩人妻精品一区2区三区| 久久青草综合色| 在线观看免费视频网站a站| 日韩一卡2卡3卡4卡2021年| 日韩欧美国产一区二区入口| 最新在线观看一区二区三区| 国产又爽黄色视频| 法律面前人人平等表现在哪些方面| 亚洲精品久久成人aⅴ小说| 校园春色视频在线观看| 一进一出好大好爽视频| 午夜免费鲁丝| 国产免费现黄频在线看| 成人永久免费在线观看视频| 亚洲aⅴ乱码一区二区在线播放 | 国产又色又爽无遮挡免费看| 成人18禁在线播放| 亚洲成人国产一区在线观看| 50天的宝宝边吃奶边哭怎么回事| 女性生殖器流出的白浆| 日韩免费高清中文字幕av| 欧美日韩亚洲综合一区二区三区_| 午夜91福利影院| 少妇裸体淫交视频免费看高清 | 日韩中文字幕欧美一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久人妻综合| 国产97色在线日韩免费| 久久狼人影院| 成人18禁高潮啪啪吃奶动态图| 亚洲第一青青草原| 日日爽夜夜爽网站| 国产有黄有色有爽视频| 成年版毛片免费区| 黄片大片在线免费观看| 婷婷成人精品国产| 女警被强在线播放| 亚洲国产精品sss在线观看 | 亚洲 欧美一区二区三区| 久久久水蜜桃国产精品网| 一级毛片高清免费大全| 久久人妻福利社区极品人妻图片| 手机成人av网站| 免费看十八禁软件| 12—13女人毛片做爰片一| 热99re8久久精品国产| 精品亚洲成a人片在线观看| 中出人妻视频一区二区| 一进一出好大好爽视频| 国产精品电影一区二区三区 | 一边摸一边抽搐一进一出视频| 母亲3免费完整高清在线观看| 麻豆乱淫一区二区| 一级作爱视频免费观看| 免费看a级黄色片| 可以免费在线观看a视频的电影网站| 午夜精品久久久久久毛片777| 国产99白浆流出| 麻豆国产av国片精品| 18禁观看日本| 成年女人毛片免费观看观看9 | 色婷婷av一区二区三区视频| 99re在线观看精品视频| 成人18禁高潮啪啪吃奶动态图| 日本黄色日本黄色录像| 在线观看舔阴道视频| 亚洲av日韩在线播放| 少妇 在线观看| 成人手机av| ponron亚洲| 亚洲免费av在线视频| av在线播放免费不卡| 欧美精品av麻豆av| 国产三级黄色录像| 超碰成人久久| 超色免费av| 免费在线观看影片大全网站| 很黄的视频免费| 美女午夜性视频免费| 成人影院久久| 大香蕉久久网| 在线十欧美十亚洲十日本专区| 一级片免费观看大全| 精品一区二区三区视频在线观看免费 | 男女下面插进去视频免费观看| 亚洲精品成人av观看孕妇| 亚洲色图 男人天堂 中文字幕| 亚洲av成人不卡在线观看播放网| 欧美成人免费av一区二区三区 | 大码成人一级视频| 欧美老熟妇乱子伦牲交| 色播在线永久视频| cao死你这个sao货| 热re99久久精品国产66热6| 热99re8久久精品国产| 日本欧美视频一区| 久久人人爽av亚洲精品天堂| 黑丝袜美女国产一区| 欧美日韩av久久| 午夜精品在线福利| 涩涩av久久男人的天堂| 丰满人妻熟妇乱又伦精品不卡| 捣出白浆h1v1| 超碰成人久久| 青草久久国产| 精品亚洲成国产av| 久久午夜综合久久蜜桃| 国产成人精品在线电影| 97人妻天天添夜夜摸| 国产欧美日韩一区二区精品| 天天躁狠狠躁夜夜躁狠狠躁| 正在播放国产对白刺激| 国产免费现黄频在线看| 午夜激情av网站| 欧美日韩视频精品一区| 欧美av亚洲av综合av国产av| 国产aⅴ精品一区二区三区波| 岛国毛片在线播放| 亚洲国产精品合色在线| 欧美色视频一区免费| 村上凉子中文字幕在线| 国产高清videossex| 成人免费观看视频高清| 老司机在亚洲福利影院| 日韩有码中文字幕| 日韩精品免费视频一区二区三区| 脱女人内裤的视频| 最近最新中文字幕大全免费视频| 亚洲精品中文字幕在线视频| 久久久久视频综合| 亚洲成av片中文字幕在线观看| 欧美乱码精品一区二区三区| 丝袜人妻中文字幕| 午夜免费成人在线视频| 久久ye,这里只有精品| 90打野战视频偷拍视频| 亚洲专区国产一区二区| 国产成人一区二区三区免费视频网站| 精品视频人人做人人爽| 日日摸夜夜添夜夜添小说| 亚洲av熟女| 999久久久精品免费观看国产| 国产亚洲欧美98| 国产主播在线观看一区二区| 国产成人免费无遮挡视频| 欧美在线一区亚洲| 每晚都被弄得嗷嗷叫到高潮| 亚洲综合色网址| 人妻一区二区av| 国产成+人综合+亚洲专区| 久久久久国内视频| 极品少妇高潮喷水抽搐| 成人18禁高潮啪啪吃奶动态图| 黑丝袜美女国产一区| 在线观看免费视频日本深夜| 日本vs欧美在线观看视频| 久久久精品免费免费高清| 一级毛片高清免费大全| 麻豆av在线久日| 亚洲伊人色综图| 成人影院久久| 国产有黄有色有爽视频| 欧美日韩黄片免| 精品久久蜜臀av无| 国产欧美日韩精品亚洲av| 欧美精品啪啪一区二区三区| 中文字幕人妻熟女乱码| 久久精品aⅴ一区二区三区四区| 91精品国产国语对白视频| 日韩人妻精品一区2区三区| 日韩制服丝袜自拍偷拍| 黄色丝袜av网址大全| 久久国产精品大桥未久av| 国产精品亚洲一级av第二区| 亚洲免费av在线视频| 亚洲男人天堂网一区| 超碰成人久久| 在线观看日韩欧美| 久热这里只有精品99| 丝袜美足系列| 超色免费av| 在线视频色国产色| 夜夜躁狠狠躁天天躁| 男女免费视频国产| 亚洲专区中文字幕在线| 国产精品 欧美亚洲| 国产一区二区三区在线臀色熟女 | 人妻一区二区av| 久久精品亚洲熟妇少妇任你| 精品熟女少妇八av免费久了| 国产av一区二区精品久久| 黑人操中国人逼视频| 亚洲人成电影观看| 在线观看一区二区三区激情| 日日爽夜夜爽网站| 最新在线观看一区二区三区| 99国产精品免费福利视频| 欧美人与性动交α欧美软件| 久久香蕉激情| 久久久精品免费免费高清| 欧美日韩国产mv在线观看视频| 成人手机av| 精品一区二区三卡| 国产成人精品久久二区二区免费| 这个男人来自地球电影免费观看| 亚洲少妇的诱惑av| 夜夜躁狠狠躁天天躁| 精品福利永久在线观看| 亚洲精品在线观看二区| 精品一区二区三区av网在线观看| а√天堂www在线а√下载 | 高清av免费在线| 人人妻人人澡人人爽人人夜夜| 一区二区三区激情视频| 人妻久久中文字幕网| 久久久国产精品麻豆| 成人特级黄色片久久久久久久| 亚洲成国产人片在线观看| 亚洲精品粉嫩美女一区| 女同久久另类99精品国产91| 国产单亲对白刺激| 亚洲中文av在线| 一边摸一边做爽爽视频免费| 女人被狂操c到高潮| 国产精品九九99| 在线观看66精品国产| 国产成人欧美在线观看 | 又黄又爽又免费观看的视频| 国产欧美日韩综合在线一区二区| 1024香蕉在线观看| 亚洲国产精品合色在线| 极品人妻少妇av视频| 99re6热这里在线精品视频| 成年版毛片免费区| 国产97色在线日韩免费| 亚洲精品粉嫩美女一区| 午夜两性在线视频| 久久久国产一区二区| 极品教师在线免费播放| 国产高清视频在线播放一区|