• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金屬有機骨架化合物催化合成不對稱有機碳酸酯

    2010-12-11 09:35:48周印羲梁曙光宋金良吳天斌胡素琴劉會貞韓布興
    物理化學(xué)學(xué)報 2010年4期
    關(guān)鍵詞:酯交換碳酸乙酯

    周印羲 梁曙光 宋金良 吳天斌 胡素琴劉會貞 姜 濤 韓布興

    (中國科學(xué)院化學(xué)研究所,分子科學(xué)中心,北京分子科學(xué)國家實驗室,北京 100190)

    金屬有機骨架化合物催化合成不對稱有機碳酸酯

    周印羲 梁曙光 宋金良 吳天斌 胡素琴劉會貞 姜 濤*韓布興*

    (中國科學(xué)院化學(xué)研究所,分子科學(xué)中心,北京分子科學(xué)國家實驗室,北京 100190)

    金屬有機骨架化合物(MOFs)是通過過渡金屬和有機配體的自組裝形成的一類新型材料,具有高表面積、多孔性、孔尺寸可調(diào)等優(yōu)點,在催化、分離和氣體儲存等方面得到廣泛應(yīng)用.用三種不同方法制備了金屬有機骨架化合物,并用掃描電鏡(SEM)、X射線衍射(XRD)和紅外(IR)光譜等方法進行了表征.結(jié)果表明,用不同方法制備的MOFs表現(xiàn)出不同的結(jié)構(gòu)和形貌,用直接混合法制備的MOFs是有效的催化碳酸二乙酯與醇酯交換制備有機碳酸酯的多相催化劑.系統(tǒng)地考察了反應(yīng)時間、反應(yīng)溫度、催化劑用量和底物摩爾比對反應(yīng)的影響,結(jié)果表明,碳酸二乙酯與芳香醇、脂環(huán)醇、脂肪醇和雜環(huán)醇均能以100%選擇性高產(chǎn)率地合成有機碳酸酯,固體催化劑經(jīng)簡單離心分離可重復(fù)使用至少2次.

    金屬有機骨架化合物;配位聚合物;酯交換;碳酸二乙酯;不對稱碳酸酯

    Organic carbonates[1]are an important class of compounds in chemistry because they have many applications as intermediates for the synthesis of fine chemicals[2]and pharmaceuticals[3],and have also been utilized as plasticizers,lubricants[4],and solvents[5]. Because high toxic and harmful reagents,such as phosgene or halo formates,were involved,most procedures for the synthesis of these compounds are not environmentally acceptable[6-7].Alternative synthesis methods for organic carbonates have been developed in recent years,such as the coupling of alcohol,CO2, and alkyl halidesin the presence ofCs2CO3[8-9].However,these reactions produce stoichiometric amounts of salts or use stoichiometric amounts of base as the catalysts and reagents,reducing the atomic economy of the reactions.The synthesis of dimethyl carbonate(DMC)and diethyl carbonate(DEC)[10-12]has attracted considerable attention,as they are environmentally friendly substitutes to phosgene.Recently,the synthesis of unsymmetrical organic carbonates by transesterification of DEC with alcohols has been successfully achieved by solid base catalysts,such as MCM-41-TBD (TBD,1,5,7-triazabicyclo[4.4.0]dec-5-ene), Mg/La metal oxide,CsF/α-Al2O3,and nanocrystalline MgO[13-16]. But the activity of some of the solid catalysts was not high enough and long reaction time was required to reach high yield.

    Metal-organic frameworks(MOFs)are a new class of crystalline porous coordination polymers that are formed by copolymerization of multidentate organic ligands with transition metal ions or metal ion clusters,leading in most cases to three-dimensional(3D)extended networks with channels and cavities of molecular dimensions[17-21].Due to their zeolite-like properties,such as high surface areas,microporosity,well-defined structures,and the ability to tune pore size on 0.1 nm scale,many applications have recently been developed in separation[22],catalysis[23],magnetism[24],and storage of gases[25-26].Among these applications, the catalytic property of MOFs is most fascinating.Many reactions have been reported using MOFs as the catalysts or the supports of catalysts[27-33].For example,MOFs and quaternary ammonium salts has excellent synergetic effect in promoting the cycloaddition of CO2with epoxides to produce five-membered cyclic carbonates under mild reaction conditions[34].

    In general,transesterification is catalyzed by acids or bases,in either homogeneous or heterogeneous systems[35].However,acid catalysts were less successfully applied in the reaction.Recent research on MOFs showed that the dissociation or removal of the terminal coordinated molecules from metal ions could yield more empty frameworks and leave Lewis acid sites on the surface,which haspotentialapplication in catalysis[36-37].In this work, we utilize MOFs as an acid catalyst for the transesterification reaction of DEC with alcohols(Scheme 1).Good yield of asymmetrical organic carbonates with high selectivity were achieved under moderate conditions.As a heterogeneous catalyst,MOFs could be recovered simply and reused at least two times without obvious loss of its catalytic activity.

    Scheme 1 Synthesis of organic carbonates from alcohols and diethyl carbonate

    1 Experimental

    1.1 Chemicals and instruments

    Diethyl carbonate(>99%)was purchased from Alfa Aesar. Other reagents,such as alcohols,Zn(NO3)2·6H2O,triethylamine, and 1,4-benzenedicarboxylic acid(H2BDC),were analytical grade and purchased from Beijing Chemical Reagents Company.All chemicals were used without further purification.

    1.2 Catalyst preparation

    MOFs were prepared by three different methods.(A)Liquidliquid diffusion method:Zn(NO3)2·6H2O(1.6 mmol)and H2BDC (0.8 mmol)were dissolved in 16 mL of N,N-dimethylformamide (DMF)and triethylamine(6.4 mmol)was dissolved in 10 mL of ethanol.The vial full of the former solution was loaded in a big vial full of the latter solution,and sealed.With the diffusion of triethylamine solution,MOFs appeared and grew slowly.After three days,the precipitate was collected by centrifugation and washed with 10 mL of DMF and 10 mL of ethyl ether in turn for 2 times.The solids were dried at 90℃ in vacuum and then stored in a vacuum desiccator to avoid moisture adsorption.(B) Solvothermal method:the procedures are similar to those developed by Zhao et al.[38].Zn(NO3)2·6H2O(1.6 mmol)and H2BDC (0.8 mmol)were dissolved in 16 mL of DMF under stirring to form a gel solution.The solution was sealed in an autoclave,and kept at 160℃for three days.The precipitate was collected by centrifugation and the followed steps were the same as those in method A.(C)“Direct mixing”method[39]:Zn(NO3)2·6H2O(4 mmol),and H2BDC(2 mmol)were dissolved in 40 mL of DMF and MOFs was precipitated with the addition of triethylamine (16 mmol)under vigorous stirring.After 2 h,the precipitate was collected by filtration and other steps were the same as those in method A.The catalysts prepared using the three methods were denoted as MOFs-A,MOFs-B,and MOFs-C,respectively.

    1.3 Catalyst characterization

    X-ray diffraction(XRD)measurements were conducted on an X-ray diffractometer(D/MAX-RC,Japan)operated at 40 kV and 200 mA with Cu Kα(λ=0.154 nm)radiation.FT-IR spectra were recorded on a spectrometer(Bruker Tensor 27,Germany)and the sample was prepared by the KBr pellet method.Scanning electron microscopy(SEM)images were taken using an instrument (Hitachi S-4300,Japan)operated at 15 kV.Thermogravimetric (TG)analysis of MOFs was performed on a thermogravimetric analysis system(Netzsch STA 409 PC/PG,Germany)in N2atmosphere at a heating rate of 20℃·min-1.The BET surface area measurement and pore analysis were carried out by N2adsorption at 77 K with use of Micromeritics ASAP 2020 V3.00 H (USA)surface area analyser.The sample was degassed at 250℃for 12 h under vacuum before the measurement.

    1.4 Catalytic reactions

    Typical reaction procedures for the reactions of diethyl car-bonate(DEC)with alcohols were as follows:2 mmol of alcohol, 33 mmol(4 mL)of DEC,and 0.25%(w)(based on total mass of reactants)of catalyst were charged into a flask of 10 mL equipped with a magnetic stirring bar and a reflux condenser.The mixture was heated up to 130℃and stirred until the completion of the reaction.After the reaction,the reaction mixture was centrifuged to separate the catalyst.The products were analyzed by a gas chromatography(GC,Agilent 6820,USA)equipped with a flame-ionized detector(FID)and a capillary column(PEG-20M, 0.25 mm in diameter,30 m in length).The structure of the products was identified by GC-MS(Shimadzu QP2010,Japan).

    n-Pentanol was employed as the internal standard for quantitive calculation.The conversion of alcohol and yield of asymmetrical carbonate were calculated using the following equations:

    where c is the conversion,y is the yield of asymmetrical carbonate,misis the mass of internal standard,Miis the molecular weight of component i,Aiis the peak area of component i,Aisis the peak area of internal standard,fiis the response factor of component i,and n0is the initial moles of alcohol.The selectivity to asymmetrical carbonate can be obtained from the ratio of yield to conversion.

    2 Results and discussion

    2.1 Catalyst screening

    MOFs prepared via different methods were used to catalyze the transesterification reaction of DEC with benzyl alcohol to produce benzyl ethyl carbonate(BEC).The results are summarized in Table 1.The reaction could not proceed in the absence of a catalyst(Entry 1).When the precursors for the MOFs or ZnO were used as the catalysts for the reaction,poor yield of the objective product was achieved or no reaction occurred(Entries 2-4).The activity of MOFs prepared by different methods was compared.The reactions did not occur in the presence of MOFs-A or MOFs-B(Entries 5,6),while high yield(95.1%)was achieved when MOFs-C was used(Entry 7)as the catalyst.

    The effect of the amount of MOFs-C on the yield of BEC wasalso studied.As shown in Table 1(Entries 7-11),high yield of BEC was also achieved,even if a very small amount of MOFs-C was used.When the amount of MOFs-C was 0.25%(w),the conversion of benzyl alcohol exhibited a maximum and did not change significantly with the amount of MOFs-C.Moreover, MOFs-C showed high selectivity and no byproduct was detected.These results indicated that MOFs prepared via“direct mixing”method were highly active and selective for the synthesis of BEC from DEC and benzyl alcohol.

    Table 1 Reaction of diethyl carbonate(DEC)and benzyl alcohol with different catalystsa

    Fig.1 SEM images of MOFs prepared via different methods(A)diffusion method;(B)solvothermal method;(C)“direct mixing”method

    As discussed above,the MOFs were synthesized by different methods,including diffusion method,solvothermal synthesis, and“direct mixing”method.The obtained samples were characterized with SEM,XRD,and IR techniques.MOFs prepared via the three methods are completely different in morphology and microstructure.SEM images of MOFs are shown in Fig.1.As shown in image C,uniform nanocrystals were synthesized by“direct mixing”method,which is in good agreement with the resultsin literature[39].However,MOFs-A and MOFs-B were composed of large sheetlike structures.Although MOFs prepared via the three methods were completely different in morphology and microstructure,similar crystalline structures were obtained,as demonstrated by XRD patterns in Fig.2.IR spectra in Fig.3 indi-cated that all MOFs showed strong characteristic absorptions for the symmetric and asymmetric vibrations of BDC(1610-1550 cm-1and 1420-1335 cm-1).Unlike MOFs-A and MOFs-B,MOFs-C did not show absorption of protonated BDC(1715-1680 cm-1), confirming the complete deprotonation of H2BDC by NEt3.The BET surface areas of the three catalysts were 63,607,and 698 m2·g-1for MOFs-A,MOFs-B,and MOFs-C,respectively.The pore volume/average pore diameter were 0.03 cm3·g-1/28 nm, 0.03 cm3·g-1/4 nm,and 0.3 cm3·g-1/12 nm for MOFs-A,MOFs-B,and MOFs-C,respectively.From the procedures to prepare MOFs,the“direct mixing”method produced more ligands instantly,which is a suitable method for fast synthesis of MOFs. Therefore,the high activity of MOFs-C should be attributed to the small size and high surface of MOFs-C.

    The catalytic activity of MOFs-C in the transesterification reaction of benzyl alcohol with DEC was compared with those of MCM-41-TBD,Mg/La mixed oxides,supported fluorides,and nanocrystalline MgO and the results are listed in Table 2.It can be known from the data in the table that MOFs-C had very high activity compared with other catalysts.

    Fig.2 XRD patterns of MOFs prepared via different methods(A)diffusion method,(B)solvothermal method,(C)“direct mixing”method

    Fig.3 IR spectra of MOFs prepared via different methods(A)diffusion method,(B)solvothermal method,(C)“direct mixing”method

    2.2 Effects of reaction conditions

    Based on the above results,the effects of reaction conditions on the transesterification reaction of DEC with benzyl alcohol were investigated using MOFs-C as the catalyst.Fig.4 shows the effect of reaction time on the yield of BEC.The yield of BEC increased rapidly within 30 min,and then remained unchanged. Nearly complete conversion could be achieved with 100%selectivity within 60 min.The selectivity obviously remained unchanged even if the reaction time was prolonged.

    The effect of reaction temperature on the yield and selectivity of BEC is shown in Fig.5.The yield of BEC increased rapidly with increasing the temperature from 110 to 130℃.At 130℃, the yield of BEC reached a maximum of 97.3%.However,further increase in temperature was not favorable to the formationof BEC,which was possible due to heat decomposition of the product or the escape of DEC from the reactor because the boiling point of DEC was only 126.8℃.The selectivity decreased by about 3%when temperature was increased from 130 to 140℃because of the formation of byproducts.

    Table 2 Comparison of MOFs-C with other heterogeneous catalysts for catalyzing the reaction between benzyl alcohol and DECa

    Fig.4 Effect of reaction time on the yield of benzyl ethyl carbonate(BEC)over MOFs-Creaction conditions:benzyl alcohol,2 mmol;DEC,4 mL(33 mmol); MOFs-C,0.25%(w);temperature,130℃

    Fig.5 Effect of reaction temperature on the yield and selectivity of BEC over MOFs-Creaction conditions:benzyl alcohol,2 mmol;DEC,4 mL(33 mmol); MOFs-C,0.25%(w);reaction time,60 min

    Fig.6 Kinetic plots of BEC formation from transesterification of DEC with benzyl alcohol

    2.3 Catalyst leaching test

    Fig.7 XRD patterns of fresh and reused(2nd)MOFs-C

    A leaching experiment was performed to figure out weather the reaction takes place homogeneously or heterogeneously.The kinetic plot of the reaction of DEC with benzyl alcohol over MOFs-C at 130℃was compared with that of another reaction where the reaction was stopped after 10 min,and then continued after filtering out the solid catalyst.The results are shown in Fig. 6.There was no further increase in the BEC yield after the solid catalyst was separated out,demonstrating that MOFs-C was a heterogeneous catalyst for the transesterification reaction.Furthermore,only 3.5%yield of BEC was obtained at 130℃for 60 min when Zn(NO3)2·6H2O was used as a homogenous catalyst (Table 1,Entry 2).This confirmed indirectly that the active site in MOFs-C is not soluble in the reaction mixture.

    2.4 Catalyst recycling

    Apart from the catalytic activity,the stability of the catalyst isanother important aspect.After the completion of the reaction, the catalyst was centrifugated,washed with ethyl ether,and dried under vacuum.The transesterification reaction over the recovered catalyst gave similar result as that of the fresh catalyst (Table 1,Entries 10,12,13).The slight decrease in the conversion was attributed to the small loss of the catalyst during the recovery.

    Table 3 Reactions of DEC with different alcohols using MOFs-C as the catalysta

    Scheme 2 Possible mechanism of transesterification of DEC with alcohol

    The XRD pattern of the recovered catalyst,as shown in Fig.7, agreed with that of the fresh one.Although the intensity of the diffraction peaks weakened,2θ angle of diffraction peaks did not change significantly,indicating that the catalyst remained its crystalline structure after being used.

    2.5 Other substrates

    The above results indicated that BEC can be obtained in high yield by the transesterification reaction of DEC and benzyl alcohol in the presence of MOFs-C.The catalyst was also used for the transesterification reactions of DEC with other alcohols under the optimized conditions.The results are summarized in Table 3.MOFs-C were applicable to a variety of alcohols including aromatic,cyclic,heterocyclic,and aliphatic compounds, to produce corresponding asymmetrical organic carbonates in moderate to high yields with 100%selectivity.Because of microporosity of MOFs-C,the steric hindrance to the reactive hydroxyl group is a limiting factor.Longer time was required to obtain reasonable yield of the objective product.Phenolic OH has not been carboxylated under similar reaction conditions. Phenol was transformed to phenyl ethyl ether.

    2.6 Mechanism

    A possible mechanism was proposed based on a typical transesterification process,where the more nucleophilic reagent displaces the less nucleophilic one,or the less volatile compound displaces the more volatile one when both of the reagents have similar nucleophilicity.In the present process,the nucleophilic displacement of the ethoxy by a second molecule of the alcoholic reagent probably led to the corresponding unsymmetrical carbonate.As shown in Scheme 2,DEC was chemisorbed on Lewis acid site in MOFs-C to yield EtO-and EtOCO+ion species firstly.Subsequent attack of EtO-on the alcohol gave the RO-species,which combined with EtOCO+to yield the product and restored the catalyst.

    3 Conclusions

    In conclusion,MOFs prepared with“direct mixing”method is a very effective heterogeneous catalyst for the transesterification reaction of diethyl carbonate with alcohols.Asymmetrical organic carbonates can be produced with moderate to high yields and 100%selectivity when diethyl carbonate reacts with aromatic,cyclic,heterocyclic,or aliphatic alcohol.The solid catalyst can be recovered simply by centrifugation and reused for at least two cycles.

    1 Shaikh,A.A.G.;Sivaram,S.Chem.Rev.,1996,96:951

    2 Ono,Y.Appl.Catal.A-Gen.,1997,155:133

    3 Parrish,J.P.;Salvatore,R.N.;Jung,K.W.Tetrahedron,2000,56: 8207

    4 Gryglewicz,S.;Oko,F.A.;Gryglewicz,G.Ind.Eng.Chem.Res., 2003,42:5007

    5 Mizia,F.;Rivetti,F.Use of organic carbonates as solvents for the washing metal surface.US,6565663[P].2003-5-20

    6 Burk,R.M.;Roof,M.B.Tetrahedron Lett.,1993,34:395

    7 Bertolini,G.;Pavich,G.;Vergani,B.J.Org.Chem.,1998,63: 6031

    8 Kim,S.I.;Chu,F.;Dueno,E.E.;Jung,K.W.J.Org.Chem.,1999, 64:4578

    9 Salvatore,R.N.;Flanders,V.L.;Ha,D.;Jung,K.W.Org.Lett., 2000,2:2797

    10 Ono,Y.Catal.Today,1997,35:15

    11 Delledonne,D.;Rivetti,F.;Romano,U.Appl.Catal.A-Gen., 2001,221:241

    12 Tundo,P.;Selva,M.Acc.Chem.Res.,2002,35:706

    13 Carloni,S.;De Vos,D.E.;Jacobs,P.A.;Maggi,R.;Sartori,G.; Sartorio,R.J.Catal.,2002,205:199

    14 Veldurthy,B.;Figueras,F.Chem.Commun.,2004:734

    15 Veldurthy,B.;Clacens,J.M.;Figueras,F.Eur.J.Org.Chem., 2005,10:1972

    16 Kantam,M.L.;Pal,U.;Sreedhar,B.;Choudary,B.M.Adv.Synth. Catal.,2007,349:1671

    17 Rowsell,J.L.C.;Yaghi,O.M.Microporous Mesoporous Mat., 2004,73:3

    18 Yaghi,O.M.;O′Keeffe,M.;Ockwig,N.W.;Chae,H.K.; Eddaoudi,M.;Kim,J.Nature,2003,423:705

    19 Cheetham,A.K.;Ferey,G.;Loiseau,T.Angew.Chem.Int.Edit., 1999,38:3268

    20 Ferey,G.;Mellot-Draznieks,C.;Serre,C.;Millange,F.Acc.Chem. Res.,2005,38:217

    21 Lin,W.B.;Wang,Z.Y.;Ma,L.J.Am.Chem.Soc.,1999,121: 11249

    22 Chen,B.;Liang,C.;Yang,J.;Contreras,D.S.;Clancy,Y.L.; Lobkovsky,E.B.;Yaghi,O.M.;Dai,S.Angew.Chem.Int.Edit., 2006,45:1390

    23 Lor,B.G.;Puebla,G.;Iglesias,M.;Monge,M.A.;Valero,C.R.; Snejko,N.Chem.Mater.,2005,17:2568

    24 Kahn,O.Acc.Chem.Res.,2000,33:647

    25 Li,Y.;Yang,R.T.Langmuir,2007,23:12937

    26 Morris,R.E.;Wheatley,P.S.Angew.Chem.Int.Edit.,2008,47: 4966

    27 Hasegawa,S.;Horike,S.;Matsuda,R.;Furukawa,S.;Mochizuki, K.;Kinoshita,Y.;Kitagawa,S.J.Am.Chem.Soc.,2007,129: 2607

    28 Horcajada,P.;Surblé,S.;Serre,C.;Hong,D.Y.;Seo,Y.K.; Chang,J.S.;Grenéche,J.M.;Margiolaki,I.;Férey,G.Chem. Commun.,2007:2820

    29 Dewa,T.;Saiki,T.;Aoyama,Y.J.Am.Chem.Soc.,2001,123: 502

    30 Cho,S.H.;Ma,B.;Nguyen,S.T.;Hupp,J.T.;Albrecht-Schmitt, T.E.Chem.Commum.,2006:2563

    31 Sabo,M.;Henschel,A.;Fr?de,H.;Klemm,E.;Kaskel,S.J.Mater. Chem.,2007,17:3827

    32 Seo,J.S.;Whang,D.;Lee,H.;Jun,S.I.;Oh,J.;Jeon,Y.J.;Kim, K.Nature,2000,404:982

    33 Xamena,F.X.L.I.;Casanova,O.;Tailleur,R.G.;Garcia,H.; Corma,A.J.Catal.,2008,255:220

    34 Song,J.L.;Zhang,Z.F.;Hu,S.Q.;Wu,T.B.;Jiang,T.;Han,B. X.Green Chem.,2009,11:1031

    35 Meyer,U.;Hoelderichm,W.F.Appl.Catal.A-Gen.,1999,178: 159

    36 Reineke,T.M.;Eddaoudi,M.;O′Keeffe,M.;Yaghi,O.M.Angew. Chem.Int.Edit.,1999,38:2590

    37 Reineke,T.M.;Eddaoudi,M.;Fehr,M.;Kelley,D.;Yaghi,O.M. J.Am.Chem.Soc.,1999,121:1651

    38 Sun,J.Y.;Weng,L.H.;Zhou,Y.M.;Chen,J.X.;Chen,Z.X.;Liu, Z.C.;Zhao,D.Y.Angew.Chem.Int.Edit.,2002,41:4471

    39 Huang,L.M.;Wang,H.T.;Chen,J.X.;Wang,Z.B.;Sun,J.Y.; Zhao,D.Y.;Yan,Y.S.Microporous Mesoporous Mat.,2003,58: 105

    November 18,2009;Revised:December 24,2009;Published on Web:February 4,2010.

    Synthesis of Asymmetrical Organic Carbonates Catalyzed by Metal Organic Frameworks

    ZHOU Yin-Xi LIANG Shu-Guang SONG Jin-Liang WU Tian-Bin HU Su-Qin LIU Hui-Zhen JIANG Tao*HAN Bu-Xing*
    (Beijing National Laboratory for Molecular Sciences,Centre for Molecular Science,Institute of Chemistry, Chinese Academy of Sciences,Beijing 100190,P.R.China)

    Metal organic frameworks(MOFs)are a new class of materials that are formed by the copolymerization of organic ligands with transition metals.Because of their properties such as high surface areas,microporosity,and the ability to tune pore size,many applications have recently been developed in catalysis,separation,and gas storage.We prepared MOFs by three different methods and characterized them with scanning electron microscopy(SEM),X-ray diffraction(XRD),and infrared(IR)spectroscopy.MOFs prepared via the three methods are completely different in morphology and microstructure.We demonstrate that the MOFs prepared via the“direct mixing”method are very effective heterogeneous catalyst for the transesterification of diethyl carbonate with alcohols to prepare organic carbonates.We studied the effects of the amount of MOFs,the reaction time,and the reaction temperature on product yield.Asymmetric organic carbonates can be produced with moderate to high yields and 100%selectivity via the reaction of diethyl carbonate with aromatic,cyclic,heterocyclic,or aliphatic alcohols.The solid catalyst can be recovered simply by centrifugation and reused for at least two cycles.

    Metal organic framework;Coordination polymer;Transesterification;Diethyl carbonate; Asymmetrical organic carbonate

    *Corresponding authors.Email:Jiangt@iccas.ac.cn,Hanbx@iccas.ac.cn;Tel/Fax:+86-10-62562821.

    The project was supported by the National Natural Science Foundation of China(20932002,20733010),National Key Basic Research Program of China(973)(2006CB202504),and Chinese Academy of Sciences Fund(KJCX2.YW.H16).

    國家自然科學(xué)基金(20932002,20733010),國家重點基礎(chǔ)研究發(fā)展規(guī)劃項目(973)(2006CB202504)和中國科學(xué)院基金(KJCX2.YW.H16)資助韓布興,北京大學(xué)化學(xué)與分子工程學(xué)院兼職教授.

    O643

    猜你喜歡
    酯交換碳酸乙酯
    什么!碳酸飲料要斷供了?
    豉香型白酒中三種高級脂肪酸乙酯在蒸餾及原酒貯存過程中變化規(guī)律的研究
    釀酒科技(2022年8期)2022-08-20 10:25:04
    冒泡的可樂
    工業(yè)酶法和化學(xué)法酯交換在油脂改性應(yīng)用中的比較
    中國油脂(2020年5期)2020-05-16 11:23:52
    “碳酸鈉與碳酸氫鈉”知識梳理
    醬油中氨基甲酸乙酯檢測方法的研究
    丁酸乙酯對卷煙煙氣的影響
    煙草科技(2015年8期)2015-12-20 08:27:06
    咖啡酸苯乙酯對順鉑所致大鼠腎損傷的保護作用及機制
    鑭石型碳酸鐠釹向堿式碳酸鐠釹的相轉(zhuǎn)變反應(yīng)特征及其應(yīng)用
    無溶劑體系下表面活性劑修飾的豬胰脂酶催化酯交換反應(yīng)的研究
    老司机影院成人| 欧美97在线视频| 大片免费播放器 马上看| 久久久国产成人免费| 国产av一区二区精品久久| 久久综合国产亚洲精品| 99热网站在线观看| 美女大奶头黄色视频| 少妇精品久久久久久久| 国产亚洲精品一区二区www | 99久久精品国产亚洲精品| 老司机影院毛片| 日韩欧美国产一区二区入口| 黑人操中国人逼视频| 18禁裸乳无遮挡动漫免费视频| 桃红色精品国产亚洲av| 久久av网站| 亚洲国产成人一精品久久久| 夜夜骑夜夜射夜夜干| 日韩大片免费观看网站| 国产精品av久久久久免费| 男女午夜视频在线观看| 欧美日韩亚洲高清精品| 精品高清国产在线一区| 欧美日韩一级在线毛片| 欧美午夜高清在线| 久久久精品区二区三区| 久久国产亚洲av麻豆专区| 美女脱内裤让男人舔精品视频| 一个人免费看片子| 国产精品99久久99久久久不卡| 国产99久久九九免费精品| 精品国产一区二区久久| a级片在线免费高清观看视频| 国产亚洲精品第一综合不卡| 久久人人爽人人片av| 国产av国产精品国产| 超色免费av| 午夜福利,免费看| 在线观看www视频免费| 亚洲av成人一区二区三| 欧美精品av麻豆av| 在线av久久热| a级毛片在线看网站| 五月开心婷婷网| 18禁国产床啪视频网站| 波多野结衣av一区二区av| a 毛片基地| 亚洲 欧美一区二区三区| 大片免费播放器 马上看| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品乱久久久久久| 久久久国产成人免费| 精品国产一区二区久久| 少妇人妻久久综合中文| 黄片大片在线免费观看| 欧美日韩视频精品一区| 69精品国产乱码久久久| 欧美日韩成人在线一区二区| 90打野战视频偷拍视频| 人妻一区二区av| 午夜福利一区二区在线看| 三上悠亚av全集在线观看| 咕卡用的链子| 午夜激情av网站| 老熟妇仑乱视频hdxx| 亚洲免费av在线视频| 母亲3免费完整高清在线观看| 国产成人精品久久二区二区91| 日韩欧美免费精品| 99re6热这里在线精品视频| 久久狼人影院| 日本五十路高清| 超碰97精品在线观看| 亚洲国产精品成人久久小说| 欧美乱码精品一区二区三区| 午夜激情久久久久久久| 极品人妻少妇av视频| 欧美精品一区二区免费开放| 永久免费av网站大全| 女人久久www免费人成看片| 91麻豆精品激情在线观看国产 | 不卡一级毛片| av不卡在线播放| 国精品久久久久久国模美| 一本色道久久久久久精品综合| 亚洲人成电影免费在线| 大香蕉久久成人网| 人成视频在线观看免费观看| 国产精品av久久久久免费| 女人久久www免费人成看片| 99国产精品免费福利视频| 人妻 亚洲 视频| 在线观看人妻少妇| 久久久久久人人人人人| 热re99久久精品国产66热6| 王馨瑶露胸无遮挡在线观看| 搡老乐熟女国产| 9色porny在线观看| 黄色怎么调成土黄色| 制服人妻中文乱码| 欧美另类一区| 最新在线观看一区二区三区| 69av精品久久久久久 | 精品少妇一区二区三区视频日本电影| 狂野欧美激情性bbbbbb| 不卡一级毛片| 国产伦理片在线播放av一区| 人妻 亚洲 视频| 精品一品国产午夜福利视频| 天天躁夜夜躁狠狠躁躁| 精品国产超薄肉色丝袜足j| 亚洲专区字幕在线| 制服人妻中文乱码| 一本色道久久久久久精品综合| 国产麻豆69| 99精品久久久久人妻精品| 黑丝袜美女国产一区| 99国产精品免费福利视频| 亚洲av美国av| 两个人免费观看高清视频| 国产一区有黄有色的免费视频| 亚洲欧美日韩另类电影网站| 91精品国产国语对白视频| 亚洲国产精品一区三区| 欧美日韩亚洲国产一区二区在线观看 | 国产精品99久久99久久久不卡| 一级片'在线观看视频| 99久久国产精品久久久| 日本猛色少妇xxxxx猛交久久| 亚洲av电影在线观看一区二区三区| 中文字幕最新亚洲高清| 国产在视频线精品| 国产精品国产三级国产专区5o| 免费黄频网站在线观看国产| 久久精品熟女亚洲av麻豆精品| 欧美97在线视频| 日本五十路高清| 极品少妇高潮喷水抽搐| 国产免费现黄频在线看| 久久精品人人爽人人爽视色| 久久99一区二区三区| 视频区图区小说| 精品久久蜜臀av无| 亚洲欧美清纯卡通| 999久久久国产精品视频| 高清视频免费观看一区二区| 国产亚洲精品久久久久5区| 国产麻豆69| 色综合欧美亚洲国产小说| 中国国产av一级| 国产一区二区 视频在线| 精品高清国产在线一区| 美女福利国产在线| 一区二区三区乱码不卡18| 婷婷色av中文字幕| 亚洲国产欧美日韩在线播放| 12—13女人毛片做爰片一| 久久久久久人人人人人| 丝袜美足系列| av电影中文网址| 老司机影院成人| 国产精品一区二区精品视频观看| 欧美精品亚洲一区二区| 久久久久国产精品人妻一区二区| 一边摸一边做爽爽视频免费| 亚洲精品在线美女| 成人av一区二区三区在线看 | 波多野结衣一区麻豆| 亚洲美女黄色视频免费看| 三上悠亚av全集在线观看| 中文字幕最新亚洲高清| 一级毛片精品| 国产精品熟女久久久久浪| 日韩一区二区三区影片| 飞空精品影院首页| 免费在线观看影片大全网站| 另类精品久久| 亚洲国产欧美日韩在线播放| 韩国精品一区二区三区| 精品亚洲成国产av| 久久国产精品男人的天堂亚洲| 久久亚洲国产成人精品v| 亚洲av美国av| 久久人妻熟女aⅴ| 亚洲欧美成人综合另类久久久| 久久ye,这里只有精品| a 毛片基地| 成年动漫av网址| 成年美女黄网站色视频大全免费| 国产国语露脸激情在线看| 操美女的视频在线观看| 免费久久久久久久精品成人欧美视频| 制服人妻中文乱码| 亚洲成人手机| 久久久久网色| 国产精品国产三级国产专区5o| 在线亚洲精品国产二区图片欧美| 精品人妻一区二区三区麻豆| 啦啦啦免费观看视频1| 另类亚洲欧美激情| 成年人免费黄色播放视频| 叶爱在线成人免费视频播放| 两性夫妻黄色片| 亚洲avbb在线观看| 9热在线视频观看99| 精品一区二区三卡| 久热这里只有精品99| 亚洲久久久国产精品| 成在线人永久免费视频| 亚洲黑人精品在线| 精品熟女少妇八av免费久了| 一本色道久久久久久精品综合| 成人影院久久| 色播在线永久视频| 欧美激情久久久久久爽电影 | 国产亚洲欧美在线一区二区| 91国产中文字幕| 午夜久久久在线观看| av不卡在线播放| 97精品久久久久久久久久精品| 午夜视频精品福利| 日本91视频免费播放| 男女床上黄色一级片免费看| 国产有黄有色有爽视频| 亚洲激情五月婷婷啪啪| av福利片在线| 成人三级做爰电影| 50天的宝宝边吃奶边哭怎么回事| 一区二区三区乱码不卡18| 黄色视频在线播放观看不卡| 婷婷成人精品国产| tube8黄色片| 亚洲av美国av| 中文字幕人妻丝袜制服| 又大又爽又粗| 老司机午夜十八禁免费视频| 国产亚洲午夜精品一区二区久久| av国产精品久久久久影院| 国产精品熟女久久久久浪| 国产精品久久久久久精品古装| videos熟女内射| 蜜桃在线观看..| av有码第一页| 亚洲精品日韩在线中文字幕| 免费在线观看黄色视频的| 欧美另类一区| 午夜激情av网站| 国产深夜福利视频在线观看| 午夜福利,免费看| 亚洲欧美一区二区三区黑人| 亚洲熟女精品中文字幕| 日本猛色少妇xxxxx猛交久久| 91精品伊人久久大香线蕉| 色婷婷久久久亚洲欧美| 久久久国产欧美日韩av| 成人亚洲精品一区在线观看| 久久免费观看电影| 日本wwww免费看| av在线播放精品| 国产日韩欧美视频二区| 天天影视国产精品| 岛国毛片在线播放| 一级,二级,三级黄色视频| 两人在一起打扑克的视频| 脱女人内裤的视频| 亚洲熟女毛片儿| 美女午夜性视频免费| 国产亚洲欧美在线一区二区| 又大又爽又粗| 法律面前人人平等表现在哪些方面 | 色播在线永久视频| 亚洲精品中文字幕在线视频| avwww免费| 黑丝袜美女国产一区| bbb黄色大片| 黄片播放在线免费| 亚洲精品成人av观看孕妇| 午夜福利视频在线观看免费| 亚洲精品国产精品久久久不卡| 亚洲色图 男人天堂 中文字幕| 久久久国产一区二区| 丰满少妇做爰视频| 久久久久久免费高清国产稀缺| h视频一区二区三区| 亚洲av电影在线进入| 免费人妻精品一区二区三区视频| 人人妻人人添人人爽欧美一区卜| 午夜精品国产一区二区电影| 一二三四社区在线视频社区8| 精品国产一区二区三区久久久樱花| 久久性视频一级片| 色综合欧美亚洲国产小说| 亚洲av成人一区二区三| 亚洲专区国产一区二区| 国产野战对白在线观看| 岛国毛片在线播放| 亚洲精华国产精华精| 亚洲第一欧美日韩一区二区三区 | 亚洲av欧美aⅴ国产| 日韩一卡2卡3卡4卡2021年| 91老司机精品| 一本大道久久a久久精品| 欧美日韩亚洲高清精品| 国产91精品成人一区二区三区 | 久久久久久久久久久久大奶| 国产精品免费大片| 久久久精品区二区三区| 少妇被粗大的猛进出69影院| 久久九九热精品免费| 国精品久久久久久国模美| 9热在线视频观看99| 男人添女人高潮全过程视频| 亚洲国产欧美一区二区综合| 欧美少妇被猛烈插入视频| 中文字幕精品免费在线观看视频| 午夜精品国产一区二区电影| 欧美黄色片欧美黄色片| 满18在线观看网站| 夜夜夜夜夜久久久久| 国产精品一区二区免费欧美 | 女人久久www免费人成看片| 亚洲av国产av综合av卡| 91麻豆av在线| 咕卡用的链子| 999久久久国产精品视频| 欧美黄色片欧美黄色片| 亚洲精品久久久久久婷婷小说| 亚洲国产欧美在线一区| 老司机影院成人| 人妻 亚洲 视频| 伊人亚洲综合成人网| 成人三级做爰电影| 欧美日韩av久久| 久久亚洲国产成人精品v| 青草久久国产| 欧美精品av麻豆av| a 毛片基地| 国产av一区二区精品久久| 亚洲精品久久久久久婷婷小说| 久久久精品94久久精品| 中文字幕精品免费在线观看视频| 91字幕亚洲| 久久中文看片网| a在线观看视频网站| 青春草亚洲视频在线观看| 秋霞在线观看毛片| 一区福利在线观看| 啪啪无遮挡十八禁网站| av网站在线播放免费| 欧美日韩精品网址| 亚洲男人天堂网一区| 成人国语在线视频| 国产成人a∨麻豆精品| 妹子高潮喷水视频| 男女床上黄色一级片免费看| 一区在线观看完整版| 高清欧美精品videossex| 乱人伦中国视频| 国产精品av久久久久免费| 99热网站在线观看| 国产成+人综合+亚洲专区| av线在线观看网站| 国产免费现黄频在线看| 精品国产一区二区久久| 99久久综合免费| 新久久久久国产一级毛片| 国产成人精品久久二区二区91| 777米奇影视久久| 热99国产精品久久久久久7| 久久亚洲精品不卡| 国产色视频综合| 亚洲欧美日韩高清在线视频 | 国产老妇伦熟女老妇高清| 精品国产一区二区三区四区第35| 老鸭窝网址在线观看| 91大片在线观看| 另类精品久久| 国产精品九九99| 可以免费在线观看a视频的电影网站| 国产97色在线日韩免费| 岛国在线观看网站| 精品国产一区二区三区四区第35| 久热这里只有精品99| 欧美在线一区亚洲| 欧美少妇被猛烈插入视频| 黄色 视频免费看| 国产免费福利视频在线观看| 法律面前人人平等表现在哪些方面 | 成人av一区二区三区在线看 | 99久久99久久久精品蜜桃| 国产xxxxx性猛交| 99精品久久久久人妻精品| 一区二区三区乱码不卡18| 久久精品国产亚洲av香蕉五月 | 一边摸一边做爽爽视频免费| 欧美黑人精品巨大| 69精品国产乱码久久久| 亚洲欧美一区二区三区久久| 在线观看一区二区三区激情| 天天操日日干夜夜撸| 多毛熟女@视频| 天堂俺去俺来也www色官网| 女人久久www免费人成看片| 亚洲天堂av无毛| 国产成人a∨麻豆精品| 韩国高清视频一区二区三区| 丁香六月天网| 一级片免费观看大全| 国产成人啪精品午夜网站| 天天躁夜夜躁狠狠躁躁| 老司机影院毛片| 欧美日韩亚洲国产一区二区在线观看 | 99国产精品99久久久久| 午夜福利视频在线观看免费| 日韩人妻精品一区2区三区| 欧美久久黑人一区二区| 国产在线一区二区三区精| 在线看a的网站| 国产成人啪精品午夜网站| 亚洲精品国产av蜜桃| 久久九九热精品免费| 狂野欧美激情性bbbbbb| 久久国产精品大桥未久av| 精品少妇久久久久久888优播| 国产在线观看jvid| 亚洲欧美一区二区三区黑人| 精品国内亚洲2022精品成人 | 国产成人精品在线电影| 亚洲成国产人片在线观看| 亚洲熟女毛片儿| 久久久精品免费免费高清| 国产欧美日韩综合在线一区二区| 夜夜骑夜夜射夜夜干| 亚洲国产精品999| 中文欧美无线码| 99久久综合免费| 国产精品麻豆人妻色哟哟久久| a在线观看视频网站| 99久久综合免费| 美女午夜性视频免费| 久久免费观看电影| 大片免费播放器 马上看| 免费少妇av软件| tocl精华| 99国产精品一区二区三区| 十八禁网站免费在线| 大片电影免费在线观看免费| 久久久精品区二区三区| 免费高清在线观看日韩| 首页视频小说图片口味搜索| 亚洲精品一卡2卡三卡4卡5卡 | 99国产精品一区二区蜜桃av | 亚洲成人国产一区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品国产综合久久久| 男人添女人高潮全过程视频| 日本av免费视频播放| 超碰成人久久| 99国产精品免费福利视频| 精品欧美一区二区三区在线| 日韩一区二区三区影片| 国产av精品麻豆| 久久影院123| 日韩欧美国产一区二区入口| 亚洲精品日韩在线中文字幕| 亚洲成人国产一区在线观看| 精品国产超薄肉色丝袜足j| 黄色视频不卡| 黑人猛操日本美女一级片| 黑人巨大精品欧美一区二区mp4| 久久国产精品大桥未久av| 精品第一国产精品| 亚洲欧美色中文字幕在线| 最黄视频免费看| 97精品久久久久久久久久精品| 久久国产精品大桥未久av| 中文字幕最新亚洲高清| 午夜免费成人在线视频| 亚洲精品日韩在线中文字幕| 国产成+人综合+亚洲专区| 十八禁网站免费在线| 大片电影免费在线观看免费| 少妇粗大呻吟视频| 母亲3免费完整高清在线观看| 精品少妇内射三级| 一本一本久久a久久精品综合妖精| 大码成人一级视频| 国产在线一区二区三区精| 香蕉国产在线看| 久久久久国产精品人妻一区二区| 国内毛片毛片毛片毛片毛片| 亚洲精品日韩在线中文字幕| 一级毛片精品| 中文字幕人妻丝袜一区二区| 国产精品 欧美亚洲| 亚洲第一av免费看| 两人在一起打扑克的视频| 蜜桃国产av成人99| 在线看a的网站| 亚洲成人手机| 久久久久精品人妻al黑| 久久久久精品国产欧美久久久 | 十八禁网站网址无遮挡| 一级毛片电影观看| 免费少妇av软件| 日韩大片免费观看网站| 午夜视频精品福利| 国产精品偷伦视频观看了| 亚洲欧美精品综合一区二区三区| 欧美激情高清一区二区三区| 黄色毛片三级朝国网站| 男女床上黄色一级片免费看| 国产精品免费大片| 亚洲少妇的诱惑av| 免费在线观看黄色视频的| 精品国产超薄肉色丝袜足j| 老鸭窝网址在线观看| 五月天丁香电影| 最近中文字幕2019免费版| 丁香六月欧美| 在线精品无人区一区二区三| av天堂久久9| 久久久精品免费免费高清| √禁漫天堂资源中文www| 免费黄频网站在线观看国产| 老司机午夜十八禁免费视频| 老熟女久久久| 人人妻人人澡人人看| 欧美亚洲日本最大视频资源| 免费观看av网站的网址| av电影中文网址| 香蕉丝袜av| 男人爽女人下面视频在线观看| 99精国产麻豆久久婷婷| 国产1区2区3区精品| 捣出白浆h1v1| 淫妇啪啪啪对白视频 | 大陆偷拍与自拍| 一区二区三区四区激情视频| 亚洲国产精品999| 中文字幕最新亚洲高清| 在线观看免费视频网站a站| 亚洲成国产人片在线观看| 亚洲成人免费av在线播放| 菩萨蛮人人尽说江南好唐韦庄| 老熟妇仑乱视频hdxx| 中文字幕人妻熟女乱码| 999精品在线视频| 国产一区二区三区av在线| 午夜两性在线视频| 亚洲人成电影观看| 一级黄色大片毛片| a级毛片在线看网站| 欧美日韩精品网址| 母亲3免费完整高清在线观看| 色老头精品视频在线观看| 亚洲精品中文字幕一二三四区 | 大片免费播放器 马上看| 五月开心婷婷网| 亚洲色图综合在线观看| 亚洲av美国av| 制服人妻中文乱码| a级片在线免费高清观看视频| 丰满人妻熟妇乱又伦精品不卡| 国产一卡二卡三卡精品| 亚洲精品久久午夜乱码| 国产一区二区激情短视频 | 中文字幕人妻丝袜制服| 国产精品99久久99久久久不卡| a在线观看视频网站| 每晚都被弄得嗷嗷叫到高潮| 精品一区二区三区四区五区乱码| 日韩 欧美 亚洲 中文字幕| 亚洲国产精品一区三区| 19禁男女啪啪无遮挡网站| 少妇猛男粗大的猛烈进出视频| 女人久久www免费人成看片| 欧美乱码精品一区二区三区| 免费观看av网站的网址| 亚洲自偷自拍图片 自拍| 免费女性裸体啪啪无遮挡网站| 欧美日韩av久久| 久久九九热精品免费| 12—13女人毛片做爰片一| 中文字幕人妻熟女乱码| 午夜免费成人在线视频| 中文字幕色久视频| 国产精品久久久人人做人人爽| 黄色a级毛片大全视频| 国产欧美亚洲国产| 国产成人a∨麻豆精品| 国产一区二区三区在线臀色熟女 | 啦啦啦在线免费观看视频4| 久久久水蜜桃国产精品网| 国产免费视频播放在线视频| 日韩熟女老妇一区二区性免费视频| 男男h啪啪无遮挡| 久久女婷五月综合色啪小说| 色播在线永久视频| 久久中文字幕一级| 女性被躁到高潮视频| 最近最新免费中文字幕在线| 一边摸一边做爽爽视频免费| 免费人妻精品一区二区三区视频| 在线观看www视频免费| 如日韩欧美国产精品一区二区三区| 一区二区三区激情视频| 1024视频免费在线观看| 欧美日韩福利视频一区二区| 国产精品1区2区在线观看. | 久久久久国产一级毛片高清牌| 少妇精品久久久久久久| 大片电影免费在线观看免费| 午夜福利乱码中文字幕|