• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    最大熵法分析寡聚核苷酸鏈內(nèi)碰撞的熒光相關(guān)光譜

    2010-12-11 09:36:16尹延?xùn)|周曉雪趙新生
    物理化學(xué)學(xué)報(bào) 2010年4期
    關(guān)鍵詞:法分析指數(shù)函數(shù)核苷酸

    尹延?xùn)| 周曉雪 趙新生

    (北京大學(xué)化學(xué)與分子工程學(xué)院化學(xué)生物學(xué)系,分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京 100871)

    最大熵法分析寡聚核苷酸鏈內(nèi)碰撞的熒光相關(guān)光譜

    尹延?xùn)| 周曉雪 趙新生*

    (北京大學(xué)化學(xué)與分子工程學(xué)院化學(xué)生物學(xué)系,分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京 100871)

    準(zhǔn)確地由熒光相關(guān)光譜(FCS)的實(shí)驗(yàn)數(shù)據(jù)提取動(dòng)力學(xué)信息一直是一個(gè)挑戰(zhàn).本文對(duì)比了三種主要的方法:依賴于模型的多指數(shù)函數(shù)法,經(jīng)驗(yàn)的拓展指數(shù)函數(shù)法和不依賴于模型的最大熵法.多指數(shù)函數(shù)法的物理意義直接但在復(fù)雜體系中難以應(yīng)用和解釋.拓展指數(shù)函數(shù)法簡(jiǎn)單易行但其物理意義含混不清.最大熵法不依賴于具體的物理模型但擬合結(jié)果對(duì)實(shí)驗(yàn)噪音很敏感.經(jīng)研究我們發(fā)現(xiàn)一個(gè)好的選擇是將最大熵法和多指數(shù)函數(shù)法結(jié)合在一起使用.對(duì)寡聚核苷酸鏈內(nèi)碰撞熒光相關(guān)光譜的研究發(fā)現(xiàn),在單鏈DNA中可以形成堿基對(duì)時(shí),有兩個(gè)并行的鏈內(nèi)碰撞反應(yīng).以前的拓展指數(shù)函數(shù)法分析則不能提供這樣的信息.我們建議在熒光相關(guān)光譜研究中審慎地使用最大熵法.

    熒光相關(guān)光譜;弛豫時(shí)間分布;拓展指數(shù)函數(shù);最大熵法;寡聚核苷酸;光致電子轉(zhuǎn)移

    Fluorescence correlation spectroscopy(FCS)has become an established tool in the study of diffusion,photophysics and photochemistry,and conformational dynamics of bio-molecules in a time range from sub-microsecond to millisecond[1].The accurate mathematical formula for an FCS curve is well-known[1].In practice,however,it is often found that for a complicated system the fitting of the experimental data by the accurate formula is questionable due to the lack of necessary information to uniquely confine and define the fitting parameters.To surmount such difficulties,the stretched exponential function is usually employed to fit the non-exponential decay data of unknown systems[2-5].Although often numerically successful,the parameters drawn from the fit can only indicate the extent of heterogeneity and complexity,while the physical significance is often vague and sometimes misleading.

    Maximum entropy method(MEM)is a general strategy for data analysis when information is extremely limited.By preserving the maximum uncertainty in the estimation of parameters consistent with the data,MEM provides a model-free fitting to resolve corresponding distributions.It was first introduced and developed for the reconstruction of astronomical images[6]and has been applied later on many dynamical problems,including the lifetimedistributioninfluorescencemeasurements[7]andthemolecular size distribution in FCS experiment on diffusion[8].Enlightened by previous work[6-8],we now test the reliability of MEM applied to the analysis of FCS data when chemical reactions are involved.We will show that due to inevitable fluctuation in the experimental data,MEM also can not unequivocally recover the relaxation time distribution of the chemical reactions.Nevertheless,assisted by MEM more dynamic information can be extracted from the experimental FCS curves than the stretched exponential method does.

    Intra-chain collision is a fundamental motion of biomolecules. All biochemical reactions based on the conformational change of the biomolecules involve intra-chain collision.Oligonucleotide is a good model for the investigation of the dynamics of intra-chain collision,and there are a large number of studies about the mechanism of hairpin DNA folding and DNA hybridization using FCS technique[3,5,9-10].It is believed that the hairpin folding includes loop formation as an initial step and successive propagation of base-pairing for the stem.The work by Sauer′s group focused on the loop formation process through applying quenching of MR121(an oxazine fluorophore)by guanosine[4]through photoinduced electron transfer(PET).It is found that the single-stranded DNA(ssDNA)without complementary nucleotides exhibits mono-exponential decay and non-exponential decay appears upon the incorporation of as little as one complementary base pair.Analysis with the stretched exponential function shows a small β value for ssDNA carrying one base pair and an even smaller one when two base pairs exist,where β is associated with the heterogeneity of the system.However,the origin of the small β value and the mechanism remain unclear.To clarify the question left over from their paper,we carried out FCS study of a similar system based on quenching of tetramethyrhodamine (TMR)by guanosine[11-12]through PET.Assisted by MEM,we find that the relaxation time distribution has two peaks.The fast peak is assigned to the collision without base pair formation, while the slow one is believed to be associated with base pairing.

    1 Theoretical background

    For a molecule diffusing freely in a solution and having n independent chemical reactions,the FCS curve probed by a focused Gaussian laser beam has the form[1]:

    In Eq.(1),GD(t)is the contribution from diffusion,GR(t)is the contribution from the chemical reactions.

    where〈N〉is the average number of the molecule in the laser focal volume,τDis the characteristic diffusion time across the focal point,τiis the eigen value on the relaxation time of the ith eigen vector of the coupled master equations of reactions,and αiis the weighting factor for the ith eigen vector.

    When there is heterogeneity in the system,the eigen values will spread out from the discrete ones,and Eq.(3)should be modified to

    where α(τ)is the distribution function of the eigen values,which in principle can be found from the fit of the experimental data by minimizing χ2,an estimation on the goodness of the fit, defined by

    where M is the number of FCS data points and rjis the deviation of the jth data point from the fitting.However,it is often the case that the same criterion of χ2is satisfied by more than one α(τ),especially when the data have larger noise.Therefore,the uniqueness of α(τ)is not guaranteed and the physical meaning of so reconstructed α(τ)is equivocal[13].

    One way to surmount the difficulty is to introduce the stretched exponential function[13]:

    where β is associated with the heterogeneity of the system e.g., the static disorder,and τ0is the eigen value on the relaxation time.Then,the mean relaxation time can be calculated through

    where Γ(β-1)is the gamma function.It is found that this simple function can often fit FCS curves satisfactorily and is widely applied in FCS data analysis.However,its physical picture is rather vague,and the same problem exists if one try to recover α(τ)from Eq.(6).

    Here,we determine α(τ)in Eq.(4)by implementing MEM.According to the maximum entropy principle,the most probable distribution is the one with the maximum information entropy (S),which describes the uncertainty of the system and is defined as

    where

    We apply the widely used MEM algorithm proposed by Skilling and Bryan[6]to search for the α(τ)that has the maximum S and minimum χ2.

    2 Materials and methods

    2.1 Computer simulation

    We carried out comparative studies on the three major fitting methods using computer simulation.Certain distribution functions,α(τ),were pre-assumed to generate FCS curves according to Eq.(1)by incorporating“experimental”noise.Then,we fit the simulated FCS curves by multiple exponential decay function (MultiExp),stretched exponential function(StreExp),and MEM-based distribution function(MemExp)separately to see how well these methods could fit the simulated curves and whether Mem-Exp could recover the pre-assumed distributions.The parameters used in our simulation were chosen based on actual experimental conditions.For instance,the characteristic diffusion time, τD,was set to 200 μs and the pre-assumed α(τ)was distributed from 0.01 to 100 μs.The noise was added at each t by generating a random number from a Gaussian distribution with its standard deviation proportional to the modified Koppel error value[14]. The MemExp fitting was facilitated by adopting a web-available program,MemExp[15-16].

    2.2 FCS measurement

    Synthetic 9-base oligonucleotide sequences labeled with a 5′-TMR were purchased from Sangon Company,China.The sequences and their abbreviations used in this paper are listed in Table 1.

    As described previously[12],FCS measurements were conducted on a home-built dual-channel inverse fluorescence microscope equipped with a CW Ya-Ge laser(532 nm)(SUW Tech. China)as excitation source.The laser beam was collimated and focused into the sample solution through an oil-immersion objective(100×,NA 1.4,Nikon,Japan)by a dichroic beam splitter(Z532/633,Chroma Technology,USA).The laser power was kept low at 30 μW before entering the aperture of the objective to minimize the triplet state formation of TMR.The emitted fluorescence was collected by the same objective,passed through appropriate filters(595-50,Chroma Technology,USA),and focused through a 30-μm-diameter pinhole.The fluorescence photonsweredividedintotwo channels by a non-polarizing 50/50 splitter(XF121,Omegafilters,USA),then focused onto two avalanche photodiodes(APDs,SPCM-AQR-14,Perkin-Elmer,USA). The signals of the two APDs were recorded in cross correlation mode using a computer implemented correlator(Flex02-12D, www.correlator.com,China).About 40 μL sample solution was sealed between a chamber cover(GraceBio,Sigma,USA)and a cover glass,which had been carefully cleaned in a piraha solution(V(30%H2O2)∶V(H2SO4)=7∶3)for more than 30 min at above 90℃.The concentration of oligonucleotides labeled by TMR was 10 nmol·L-1for the FCS measurements.

    Table 1 Abbreviations of oligoncleotides

    All measurements were performed at room temperature(25℃) in aqueous solution of 100 mmol·L-1NaCl,0.01%Tween 20 (Sigma,Germany)and 1×TE,which was diluted from 20×TE (Molecular Probes,USA),pH 7.5,containing 0.2 mol·L-1Tris-HCl,0.02 mol·L-1ethylene diamine tetraacetic acid(EDTA). Water(18.2 MΩ·cm)used in all experiments was treated through PALL.The procedure of fitting the experimental data was the same as that described in Sec.2.1.

    3 Results and discussion

    3.1 Comparisononfittingmethodsthroughsimulation

    First,we generated simulated FCS curves by mono-exponential decay function of different relaxation time for chemical reactions at different noise levels defined by

    where Fiis the FCS curve without noise and Diis that at a certain noise level.We fitted the curves with MultiExp,StreExp, and MemExp,respectively.At each noise level,50 random noise added FCS curves were produced and fitted.A set of the fitting results are shown in Fig.1.To clearly show the major feature of chemical reaction,here and later the contribution by the diffusion(Eq.(2))is removed from the FCS curves.When there was no any noise,all the three methods recovered the preset relaxation time well.β in StreExp was close to 1 and the width in MemExp was very narrow.As the noise level increased,the fitting parameters would fluctuate around the true values,the higher the noise level the wider the fluctuation.In some cases,the β value in StreExp could be obviously smaller than 1,and the width in MemExp could be quite broad.The mean value of the peak of the relaxation time distribution and its standard deviation(shown as the error bar)and the mean value of the width and itsstandarddeviation(shownastheerrorbar)inMemExparepresented in Fig.2.We conclude that the peak can be quite faithfully recovered by MemExp even at high noise level,while the interpretation on the width should be cautious.

    In the next,we produced simulated FCS curves by continuous relaxation time distributions.The pre-assumed distributions are taken to be multiple Gaussian function in logarithm of time,

    For each distribution,we generated 20 simulated FCS curves with random noise added at the level comparable to our experimental situation and fitted them with MultiExp,StreExp,and MemExp,respectively.We found that all the three methods could fit the curves equally well,with an example illustrated in Fig.3.The left column of Fig.3 shows the pre-assumed distribution,the recovered distribution by MemExp when there was no noise,a couple of typical good and bad recovered distributions by MemExp when noise was added.We found that MultiExp would offer quite accurate position for the peak,and StreExp could qualitatively indicate the complexity of the system through the β value.However,MultiExp could not provide the information on the width of the distribution and StreExp could not help to tell and to differentiate possible components.Mem-Exp,on the other hand,could identify the components without pre-assumed models.When there was one or two Gaussian components,MemExp could predict both peak and width reasonably well for most random noise curves,but for the cases with three components,the width of the recovered distributions would often obviously deviate from the input.Also it is worth mentioning that both MutiExp and MemExp could provide weighting factors quite well for different components,but Stre-Exp did not have such information directly available.

    To summarize the results on our simulation,it is concluded that with the existence of experimental noise,some of the fitting parameters could deviate severely from the true values in all the three methods,and one should be cautious when interpreting the physical significance of β in StreExp and the width in MemExp. Indeed,a faithful recovery of all aspects of a relaxation time distribution from a FCS curve still imposes great challenge. Nevertheless,it seems to us that MemExp stands out as the best.

    Fig.1 Simulated mono-exponential decay FCS curves and their fita)A set of the FCS curves generated at noise level comparable to our experimental situation and the fitting by MemExp.The quality of fit by MultiExp and StreExp was the same as that by MemExp.b)The relaxation time distribution recovered by MemExp from the fit in a).

    Fig.2 Statistics on the parameters for the MemExp fitting on mono-exponential decay FCS curves at different noise levelsa-d)The mean value of the peak of the relaxation time distribution and its standard deviation when relaxation time was 100,10,1,0.1 μs,respectively. e-h)The mean value of the width of the relaxation time distribution and its standard deviation when relaxation time was 100,10,1,0.1 μs,respectively.

    3.2 Fitting of experimental FCS in ssDNAs

    The experimentally obtained FCS curves of the four ssDNAs listed in Table 1 are shown in Fig.4.The time scale of the reaction was well separated from that of translational diffusion, which allowed us to remove the diffusion component thoroughly through the fitting.All data in Fig.4 display fast decay occurring on microsecond time scale.With a low excitation power(30 μW)in our experiment,the influence of triplet state formation and other possible photophysical process of TMR were fairly avoided,and the decay came mainly from the quenching of TMR by guanosine at the other end of ssDNA due to the intrachain collision[12].It is clearly seen that with the increase of the matched base pair,the decay slows down and the amplitude en-hances at the same time.

    Fig.3 MemExp fit of continuously distributed α(τ)a-c)pre-assumed and recovered distributions.Solid curves are pre-assumed distributions,triangles are recovery by MemExp with no noise,circles are a typical good recovery when noise is added,and squares are one of the worst recoveries at the same noise level.Straight lines with the error bars are the results by MultiExp.d-f)the FCS curves corresponding to the left with a typical fit.All the fittings had the comparable quality.The input parameters were τ1=2 μs,σ1= 0.2,A1=0.1 for the mono-peak distribution,τ1=0.3 μs,τ2=2 μs,σ1=σ2=0.2,A1=A2= 0.1 for the double-peak distribution,and τ1=2 μs,τ2=10 μs,τ3=50 μs,σ1=0.2, σ2=0.3,σ3=0.2,A1=A3=0.1,A2=0.15 for the three-peak distribution.

    As the same as in simulation,all the three methods,MutiExp, StreExp,and MemExp,offered fitting with comparable quality. The fit by MemExp is shown in Fig.4.The fitting parameters from StreExp are listed in Table 2,and those from MultiExp are listed in Table 3.The relaxation time distributions extracted from MemExp are shown in Fig.5.

    The StreExp fit showed the same trend as that in the literature[4]:the mean relaxation time increases from 0CG to 1CG-1 and 1CG-2,and to 2CG,because the base pairing slows down the intra-chain collision.However,our β values are quite different from the one with a similar ssDNA structure in Ref.[4],partly because our FCS curves consist of the contribution from the singlet-triplet transition of TMR and partly because the β value is strongly dependent on the experimental random noise based on experience of simulation in Sec.3.1.

    The MemExp fit predicts that all FCS curves contain two major kinetic components(Fig.5).The dominant peak at 0.37 μs in the relaxation time distribution of 0CG came from the G-quenching of TMR by intra-chain collision,and the minor one at 2.4 μs is assigned to the relaxation of the singlet-triplet transition of TMR,because it still existed when there was no dG to quench TMR,and when laser power was increased this contribution would increase as expected for a singlet-triplet transition (data not shown).The fast peak in other three oligonucleotides should also come from the G-quenching of TMR as in 0CG.It is interesting to observe the progressive increase of the weighting factor for the slow component as the number of CG pair increased.Because the contribution from the singlet-triplet transition of TMR should remain constant at a constant laser power, the different weighting factors among different oligonucleotides indicate a reaction path in which the base pairing plays an important role.

    Guided by the results from the MemExp fit,we applied doubleexponential fit to the experimental FCS data and the fittings were equally good.As illustrated in Fig.5,the MultiExp fit provided consistent results with MemExp in terms of the peakposition and relative amplitude.

    Table 2 Fitting parameters from StreExp

    Table 3 Fitting parameters from MultiExp

    3.3 A physical picture on the intra-chain collision

    The oligonuleotides in our experiment are similar to the ones used by Sauer and co-workers[4].In their work,the data are fitted by the StreExp method.Although they have made extensive discussion regarding the reaction kinetics,the physical picture embedded in different β values remains unclear.Our treatment of the data by MemExp as well as by MultiExp exhibited clear evidence for two independent processes which have not been observed by Sauer and co-workers.Conceivably,when the two ends of the ssDNA chain collide with each other,there are two path ways if it is possible to form base pairs as is in the case of 1CG-1,1CG-2,and 2CG(Fig.6).The first path way is the collision and quenching between TMR and dG bases without the chance of forming C-G base pair,and the second one is the collision and quenching when C-G base pair is formed.Obviously, the first reaction has a smaller relaxation time which gives rise to the fast peak,while the second one is much slower which makes up contribution to the second peak.In the latter,the formation of the base pair is the rate-determining step.

    Comparing the distribution functions among 0CG,1CG-1, 1CG-2,and 2CG,it is found that although the amplitude of the slow component increases substantially in 2CG due to the increased stability of the hairpin structure,the peak shift towards the longer timescale is not profound.Our data indicate that one base pair will generate a much slower collision path than that without base pair formation,but the effect of a second base pair to the reaction rate is not significant.Although the same conclusion is also reached by Sauer and co-workers through comparing their average relaxation time[4],the criterion of average relaxation time is not reliable.The average of all the components together instead of a specific one alone is not an accurate indicator for the individual component.In current case,due to the existence of the singlet-triplet transition,the average relaxation time (Tables 2 and 3)would tell us different story from that by looking into respective relaxation time of individual component(Fig. 5).The change of the average relaxation time here mainly reflects the change of the weighting factors of the two components.In this example,the advantage of MemExp over StreExp is clearly demonstrated.

    Fig.6 Schematic view of dynamic processes of intra-chain collision when base-pairing is possible

    4 Conclusions

    In this paper we compared three major fitting methods,MultiExp,StreExp,and MemExp,applied to the FCS data analysis. A good choice seems to be fitting the experimental data by MemExp first and then checking the results by MultiExp with appropriate number of exponential components based on Mem-Exp.In our example we have unraveled that two independent processes exist in the intra-chain collision of an ssDNA when base pair formation is possible.With the development of efficient MEM algorism,the MEM approach is now applied in many fields.We recommend the MEM method be implemented in FCS data analysis,although caution should be exercised in the practice.

    1 Krichevsky,O.;Bonnet,G.Rep.Prog.Phys.,2002,65:251

    2 Ying,L.M.;Wallace,M.I.;Klenerman,D.Chem.Phys.Lett., 2001,334:145

    3 Wallace,M.I.;Ying,L.M.;Balasubramanian,S.;Klenerman,D. Proc.Natl.Acad.Sci.U.S.A.,2001,98:5584

    4 Kim,J.;Doose,S.;Neuweiler,H.;Sauer,M.Nucleic Acids Res., 2006,34:2516

    5 Chen,X.D.;Zhou,Y.;Qu,P.;Zhao,X.S.J.Am.Chem.Soc., 2008,130:16947

    6 Skilling,J.;Bryan,R.K.Mon.Not.R.Astr.Soc.,1984,211:111

    7 Swaminathan,R.;Krishnamoorthy,G.;Periasamy,N.Biophys.J., 1994,67:2013

    8 Sengupta,P.;Krishnamoorthy,G.;Balaji,J.;Periasamy,N.;Maiti, S.Biophys.J.,2003,84:1977

    9 Bonnet,G.;Krichevsky,O.;Libchaber,A.Proc.Natl.Acad.Sci. U.S.A.,1998,95:8602

    10 Jung,J.;Orden,A.V.J.Am.Chem.Soc.,2006,128:1240

    11 Wang,W.J.;Chen,C.L.;Qian,M.X.;Zhao,X.S.Sens.Actuator B:Chem.,2008,129:211

    12 Qu,P.;Chen,X.D.;Zhou,X.X.;Li,X.;Zhao,X.S.Sci.China Ser.B:Chem.,2009,52:1653

    13 Berberan-Santos,M.N.;Bodunov,E.N.;Valeur,B.Chem.Phys., 2005,315:171

    14 Koppel,D.E.Phys.Rev.A,1974,10:1938

    15 Steinbach,P.J.;Ionescu,R.;Matthews,C.R.Biophys.J.,2002, 82:2244

    16 Steinbach,P.J.;Ionescu,R.;Matthews,C.R.J.Chem.Inf. Comput.Sci.,2002,42:1476

    October 26,2009;Revised:December 23,2009;Published on Web:February 5,2010.

    Maximum Entropy Method for Analyses of Fluorescence Correlation Spectra of Oligonucleotide Intra-Chain Collision

    YIN Yan-Dong ZHOU Xiao-Xue ZHAO Xin-Sheng*
    (Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,Department of Chemical Biology,College of Chemistry and Molecular Engineering, Peking University,Beijing 100871,P.R.China)

    It has been a challenge to accurately extract dynamic information from experimental fluorescence correlationspectroscopy(FCS)data.Inthispaper,wecomparethreemajorfittingmethods:the model-dependent multiple exponential function(MultiExp),the empirical stretched exponential function(StreExp),and the exponential function based on the model-free maximum entropy method(MemExp).MultiExp has straight forward physical significance but it is difficult to implement and interpret in a complex system.StreExp has simple form and is easy to use but its physical picture is obscure.MultiExp is model free but its results are sensitive to experimental noise.A good choice seems to be a combination of MemExp and MultiExp.In our example,we have unraveled that two independent processes exist in the intra-chain collision of a single-stranded DNA when base pair formation is possible,which has not been observed by previous investigators.MemExp is recommended for the FCS data analysis,although caution should be exercised in the practice.

    Fluorescence correlation spectroscopy; Relaxation time distribution; Stretched exponential function; Maximum entropy method; Oligonucleotide; Photoinduced electron transfer

    *Corresponding author.Email:zhaoxs@pku.edu.cn;Tel:+86-10-62751727.

    The project was supported by the National Natural Science Foundation of Chinca(20673002,20733001,20973015)and National Key Basic Research Program of China(973)(2006CB910304,2010CB912302).

    國(guó)家自然科學(xué)基金(20673002,20733001,20973015)和國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2006CB910304,2010CB912302)資助

    O643

    猜你喜歡
    法分析指數(shù)函數(shù)核苷酸
    單核苷酸多態(tài)性與中醫(yī)證候相關(guān)性研究進(jìn)展
    徐長(zhǎng)風(fēng):核苷酸類似物的副作用
    肝博士(2022年3期)2022-06-30 02:48:28
    冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)(2)
    冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)(1)
    冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)(1)
    冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)(2)
    Acknowledgment to reviewers—November 2018 to September 2019
    UPLC-Q-TOF-MS法分析三葉青地上部分化學(xué)成分
    中成藥(2018年6期)2018-07-11 03:01:34
    UFLC-Q-TOF-MS法分析蓬莪術(shù)有效成分
    中成藥(2018年1期)2018-02-02 07:20:05
    UPLC-Q-TOF-MS法分析吳茱萸化學(xué)成分
    中成藥(2017年6期)2017-06-13 07:30:35
    三级经典国产精品| 亚洲国产精品成人综合色| 老女人水多毛片| 免费看av在线观看网站| 亚洲五月天丁香| 午夜a级毛片| 级片在线观看| 日韩欧美免费精品| 天堂√8在线中文| 99国产极品粉嫩在线观看| 99久久九九国产精品国产免费| 国产精品久久视频播放| 免费在线观看影片大全网站| 天天一区二区日本电影三级| 最近的中文字幕免费完整| 久久99热这里只有精品18| 日韩精品青青久久久久久| 在线天堂最新版资源| 午夜福利在线观看免费完整高清在 | 一级黄色大片毛片| 亚洲精品亚洲一区二区| 国产高清不卡午夜福利| 国产成人一区二区在线| 久久久久国产精品人妻aⅴ院| 在线观看免费视频日本深夜| 亚洲一区二区三区色噜噜| 亚洲精品在线观看二区| eeuss影院久久| 在线免费观看的www视频| 有码 亚洲区| 日韩欧美免费精品| 美女内射精品一级片tv| 日本黄色视频三级网站网址| 成人av一区二区三区在线看| 一区二区三区高清视频在线| 91午夜精品亚洲一区二区三区| 亚洲美女视频黄频| 亚洲欧美日韩卡通动漫| 国产精品久久久久久久久免| 久久久久久久久久成人| 久久人人精品亚洲av| 综合色av麻豆| 夜夜夜夜夜久久久久| 18+在线观看网站| 成人毛片a级毛片在线播放| 97超视频在线观看视频| 国产亚洲精品久久久com| 午夜久久久久精精品| 亚洲经典国产精华液单| 99久久中文字幕三级久久日本| 99久久无色码亚洲精品果冻| 久久精品国产99精品国产亚洲性色| 亚洲精华国产精华液的使用体验 | 亚洲真实伦在线观看| 国产高清激情床上av| 亚洲熟妇熟女久久| 免费av毛片视频| 嫩草影院入口| 在线播放国产精品三级| 赤兔流量卡办理| 午夜视频国产福利| 91在线观看av| 精品久久久久久久久久免费视频| 午夜福利成人在线免费观看| 国产单亲对白刺激| 天堂网av新在线| 国产亚洲精品av在线| 亚洲国产精品合色在线| 麻豆久久精品国产亚洲av| 久久人人精品亚洲av| 高清日韩中文字幕在线| 日韩强制内射视频| 性色avwww在线观看| 最新在线观看一区二区三区| 国内久久婷婷六月综合欲色啪| av专区在线播放| 小说图片视频综合网站| 亚洲av美国av| 三级毛片av免费| 国产精品野战在线观看| 国产精品无大码| 免费观看人在逋| 亚洲成a人片在线一区二区| 久久亚洲国产成人精品v| 欧美日本亚洲视频在线播放| 成人午夜高清在线视频| 丝袜喷水一区| 亚洲第一区二区三区不卡| 国产精品国产三级国产av玫瑰| 一本久久中文字幕| 少妇的逼水好多| 午夜福利在线在线| 亚洲av熟女| 色av中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 国产精品一区二区性色av| 免费高清视频大片| 99热这里只有是精品在线观看| 国产精品不卡视频一区二区| 草草在线视频免费看| videossex国产| 亚洲不卡免费看| 婷婷精品国产亚洲av| 亚洲综合色惰| 美女 人体艺术 gogo| 国产精品人妻久久久久久| av天堂在线播放| 一级毛片久久久久久久久女| 国产av一区在线观看免费| 成年女人看的毛片在线观看| 亚洲内射少妇av| 亚洲欧美中文字幕日韩二区| 天天一区二区日本电影三级| 搡女人真爽免费视频火全软件 | 美女被艹到高潮喷水动态| 日韩欧美 国产精品| 91久久精品国产一区二区三区| 国产日本99.免费观看| 日韩成人伦理影院| 久久99热这里只有精品18| 国内精品宾馆在线| 99久久精品一区二区三区| av天堂在线播放| 男女之事视频高清在线观看| 久久久久久久亚洲中文字幕| 一区二区三区高清视频在线| 91在线精品国自产拍蜜月| 亚洲久久久久久中文字幕| 高清午夜精品一区二区三区 | 日本欧美国产在线视频| 在线播放无遮挡| 国产三级在线视频| 欧美zozozo另类| av黄色大香蕉| 国产女主播在线喷水免费视频网站 | 极品教师在线视频| 你懂的网址亚洲精品在线观看 | 少妇丰满av| 久久午夜福利片| av黄色大香蕉| 蜜臀久久99精品久久宅男| 日韩成人av中文字幕在线观看 | 国产男靠女视频免费网站| 日韩制服骚丝袜av| 亚洲熟妇熟女久久| 国产精品精品国产色婷婷| 欧美日韩乱码在线| 成人无遮挡网站| 桃色一区二区三区在线观看| 美女被艹到高潮喷水动态| 特级一级黄色大片| 国产高潮美女av| 久久久久久久久大av| 日本爱情动作片www.在线观看 | 悠悠久久av| 国产精品,欧美在线| av在线播放精品| 亚洲一区高清亚洲精品| 两性午夜刺激爽爽歪歪视频在线观看| ponron亚洲| 久久人人爽人人爽人人片va| 麻豆av噜噜一区二区三区| 91在线观看av| 精品人妻偷拍中文字幕| 黄片wwwwww| 丰满的人妻完整版| 亚洲精华国产精华液的使用体验 | 成人av在线播放网站| 成人综合一区亚洲| 亚洲成人av在线免费| 国产精品福利在线免费观看| 少妇人妻一区二区三区视频| 欧美一区二区国产精品久久精品| 欧美一区二区亚洲| 在现免费观看毛片| 欧洲精品卡2卡3卡4卡5卡区| 久久久久国产精品人妻aⅴ院| 黄片wwwwww| а√天堂www在线а√下载| 99热这里只有是精品在线观看| 亚洲成av人片在线播放无| 午夜福利高清视频| 天堂√8在线中文| 亚洲av免费高清在线观看| 老司机午夜福利在线观看视频| 中文在线观看免费www的网站| 色综合色国产| 亚洲美女视频黄频| 亚洲精品影视一区二区三区av| 如何舔出高潮| 熟妇人妻久久中文字幕3abv| 久久久午夜欧美精品| 欧美性感艳星| 成人鲁丝片一二三区免费| 麻豆一二三区av精品| 国产成人精品久久久久久| 国内揄拍国产精品人妻在线| 精品免费久久久久久久清纯| 三级毛片av免费| 日本一本二区三区精品| 成人美女网站在线观看视频| 午夜爱爱视频在线播放| 老师上课跳d突然被开到最大视频| 国产熟女欧美一区二区| 永久网站在线| 免费不卡的大黄色大毛片视频在线观看 | 久久精品国产亚洲av涩爱 | 久久精品国产清高在天天线| 天天躁日日操中文字幕| 亚洲精品乱码久久久v下载方式| 免费av不卡在线播放| av国产免费在线观看| 美女内射精品一级片tv| 淫妇啪啪啪对白视频| 在线观看免费视频日本深夜| 久久久久久伊人网av| 99久久精品国产国产毛片| 午夜精品国产一区二区电影 | 91久久精品国产一区二区成人| 女的被弄到高潮叫床怎么办| 人妻制服诱惑在线中文字幕| 一区福利在线观看| 一个人观看的视频www高清免费观看| 欧美成人免费av一区二区三区| 亚洲欧美日韩东京热| 少妇人妻一区二区三区视频| 少妇裸体淫交视频免费看高清| 啦啦啦啦在线视频资源| 国产伦在线观看视频一区| 国产av在哪里看| 国产精品精品国产色婷婷| 亚洲一区高清亚洲精品| 一个人看视频在线观看www免费| 一级a爱片免费观看的视频| 亚洲av免费在线观看| 国产成人aa在线观看| 成人欧美大片| 高清午夜精品一区二区三区 | 免费黄网站久久成人精品| 国产aⅴ精品一区二区三区波| 网址你懂的国产日韩在线| 久久久久久久久大av| 国产亚洲av嫩草精品影院| 亚洲av成人精品一区久久| 欧美三级亚洲精品| 亚州av有码| 亚洲va在线va天堂va国产| 精品久久久噜噜| 精品一区二区三区人妻视频| 国产精品三级大全| 少妇人妻精品综合一区二区 | 国产成人aa在线观看| 中文字幕久久专区| av在线蜜桃| 九九热线精品视视频播放| 国产中年淑女户外野战色| 欧美潮喷喷水| 国产爱豆传媒在线观看| 男女边吃奶边做爰视频| 亚洲婷婷狠狠爱综合网| 国产精品永久免费网站| 99久久九九国产精品国产免费| 午夜a级毛片| 国内少妇人妻偷人精品xxx网站| 国产一区二区三区av在线 | 亚洲国产精品国产精品| 亚洲精品成人久久久久久| 能在线免费观看的黄片| 你懂的网址亚洲精品在线观看 | 久久久久久大精品| 亚洲欧美日韩高清在线视频| 久久久成人免费电影| 国产日本99.免费观看| 国内精品美女久久久久久| 成人午夜高清在线视频| 国产精品99久久久久久久久| 国产精品一区二区三区四区久久| 欧洲精品卡2卡3卡4卡5卡区| 国产精品福利在线免费观看| 麻豆乱淫一区二区| 22中文网久久字幕| 一本一本综合久久| av天堂中文字幕网| 我要搜黄色片| 赤兔流量卡办理| 97超视频在线观看视频| 久久久久精品国产欧美久久久| av国产免费在线观看| 最近的中文字幕免费完整| 小说图片视频综合网站| av卡一久久| 久久久久免费精品人妻一区二区| 丰满乱子伦码专区| 午夜精品一区二区三区免费看| 少妇被粗大猛烈的视频| 亚洲精品456在线播放app| 国内少妇人妻偷人精品xxx网站| 男人的好看免费观看在线视频| 久久久久国产网址| 亚洲av第一区精品v没综合| av专区在线播放| 国产精品免费一区二区三区在线| 亚洲国产精品国产精品| 丰满的人妻完整版| 国产精品久久电影中文字幕| 久久精品国产自在天天线| 中文字幕精品亚洲无线码一区| 寂寞人妻少妇视频99o| 免费搜索国产男女视频| 免费看光身美女| 露出奶头的视频| 真实男女啪啪啪动态图| 欧美日韩一区二区视频在线观看视频在线 | 你懂的网址亚洲精品在线观看 | 小蜜桃在线观看免费完整版高清| 99视频精品全部免费 在线| 香蕉av资源在线| 欧美在线一区亚洲| 晚上一个人看的免费电影| 成人精品一区二区免费| 午夜福利在线在线| 亚洲aⅴ乱码一区二区在线播放| 乱码一卡2卡4卡精品| 日本免费一区二区三区高清不卡| 亚洲性夜色夜夜综合| 国内精品久久久久精免费| 男女做爰动态图高潮gif福利片| 久久久国产成人精品二区| 天天躁夜夜躁狠狠久久av| 国内精品宾馆在线| 国产午夜福利久久久久久| 日韩高清综合在线| 国产视频一区二区在线看| 欧美在线一区亚洲| 伦理电影大哥的女人| 校园人妻丝袜中文字幕| 国产伦一二天堂av在线观看| 综合色丁香网| 国产精品亚洲美女久久久| 色综合站精品国产| a级一级毛片免费在线观看| 国产av不卡久久| 日本一本二区三区精品| 国产男人的电影天堂91| 国产成人a区在线观看| 丰满人妻一区二区三区视频av| 亚洲精品乱码久久久v下载方式| 少妇被粗大猛烈的视频| 校园春色视频在线观看| avwww免费| 亚洲av不卡在线观看| 亚洲成人精品中文字幕电影| 女人被狂操c到高潮| 国产av在哪里看| 韩国av在线不卡| 91午夜精品亚洲一区二区三区| 亚洲国产色片| 久久热精品热| 日本撒尿小便嘘嘘汇集6| 日本免费一区二区三区高清不卡| 在现免费观看毛片| 12—13女人毛片做爰片一| 毛片女人毛片| 成人av一区二区三区在线看| 最近在线观看免费完整版| 国产极品精品免费视频能看的| 俺也久久电影网| 九九在线视频观看精品| 久久国内精品自在自线图片| 免费在线观看影片大全网站| 三级毛片av免费| 欧美+亚洲+日韩+国产| 少妇人妻精品综合一区二区 | 久久精品国产自在天天线| 人妻久久中文字幕网| 美女免费视频网站| 欧美高清性xxxxhd video| 久久精品夜夜夜夜夜久久蜜豆| 色av中文字幕| 99热网站在线观看| 成人美女网站在线观看视频| 国产精品三级大全| 日日摸夜夜添夜夜添av毛片| 一夜夜www| 日韩国内少妇激情av| 一区二区三区四区激情视频 | eeuss影院久久| 特大巨黑吊av在线直播| avwww免费| 国产精品永久免费网站| 国产精品免费一区二区三区在线| 亚洲在线观看片| 长腿黑丝高跟| av专区在线播放| 成年女人永久免费观看视频| 搡老熟女国产l中国老女人| 18禁在线播放成人免费| 日韩国内少妇激情av| 最近中文字幕高清免费大全6| 两性午夜刺激爽爽歪歪视频在线观看| 欧美激情在线99| 欧美不卡视频在线免费观看| av卡一久久| 在线观看免费视频日本深夜| 亚洲四区av| 在线天堂最新版资源| 免费观看的影片在线观看| av.在线天堂| 99久国产av精品国产电影| 三级国产精品欧美在线观看| 在线免费观看不下载黄p国产| 此物有八面人人有两片| 桃色一区二区三区在线观看| 男人舔女人下体高潮全视频| 直男gayav资源| av免费在线看不卡| 国产av麻豆久久久久久久| 国产精品日韩av在线免费观看| 成人精品一区二区免费| 我要搜黄色片| 色综合色国产| 俺也久久电影网| 悠悠久久av| 国产美女午夜福利| 午夜福利18| 校园春色视频在线观看| 久久久成人免费电影| 观看免费一级毛片| 欧美一区二区国产精品久久精品| 亚洲无线观看免费| 91久久精品国产一区二区成人| 成人亚洲欧美一区二区av| 国产精华一区二区三区| 国内少妇人妻偷人精品xxx网站| 午夜激情福利司机影院| 亚洲成人中文字幕在线播放| 内地一区二区视频在线| 国产三级中文精品| 成人鲁丝片一二三区免费| 精品久久久久久久久亚洲| 欧美极品一区二区三区四区| 日韩欧美三级三区| 亚洲av中文字字幕乱码综合| 偷拍熟女少妇极品色| 日本熟妇午夜| 国产精品久久视频播放| 身体一侧抽搐| a级毛色黄片| 搡老岳熟女国产| 特级一级黄色大片| 欧美性猛交╳xxx乱大交人| 精品一区二区三区av网在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美中文字幕日韩二区| 成人高潮视频无遮挡免费网站| 国产黄a三级三级三级人| 天堂影院成人在线观看| av国产免费在线观看| 免费看av在线观看网站| 亚洲人成网站在线播放欧美日韩| 免费搜索国产男女视频| 国产v大片淫在线免费观看| 午夜影院日韩av| 久久久久性生活片| 精品人妻偷拍中文字幕| 成人av在线播放网站| 国产一级毛片七仙女欲春2| 综合色丁香网| 乱码一卡2卡4卡精品| 亚洲av.av天堂| 又爽又黄a免费视频| 久久精品久久久久久噜噜老黄 | 日本与韩国留学比较| 久99久视频精品免费| 亚洲国产高清在线一区二区三| 欧美成人a在线观看| 日韩,欧美,国产一区二区三区 | 此物有八面人人有两片| 麻豆国产av国片精品| 久久精品91蜜桃| 国产成人影院久久av| h日本视频在线播放| 亚洲七黄色美女视频| 熟妇人妻久久中文字幕3abv| 最近视频中文字幕2019在线8| 成人欧美大片| 麻豆国产97在线/欧美| 又黄又爽又刺激的免费视频.| 草草在线视频免费看| 午夜精品国产一区二区电影 | 亚洲人成网站在线观看播放| 国产欧美日韩精品亚洲av| 久久久a久久爽久久v久久| 国产精品久久久久久精品电影| 精品久久久久久成人av| 五月伊人婷婷丁香| 91精品国产九色| 精品人妻视频免费看| 国产视频内射| 精品人妻视频免费看| 91精品国产九色| 欧美日韩精品成人综合77777| 少妇人妻精品综合一区二区 | av在线亚洲专区| 亚洲精华国产精华液的使用体验 | 91麻豆精品激情在线观看国产| 九九爱精品视频在线观看| 日韩中字成人| 欧美中文日本在线观看视频| 亚洲乱码一区二区免费版| 一级黄片播放器| 天天躁夜夜躁狠狠久久av| 一进一出抽搐动态| 久久久久久九九精品二区国产| 午夜激情福利司机影院| 亚洲精品一区av在线观看| 桃色一区二区三区在线观看| 人人妻人人澡欧美一区二区| 国产人妻一区二区三区在| 不卡一级毛片| 一本一本综合久久| 免费观看精品视频网站| 亚洲精品一卡2卡三卡4卡5卡| 色播亚洲综合网| 亚洲av五月六月丁香网| 男女视频在线观看网站免费| 欧美绝顶高潮抽搐喷水| 精品免费久久久久久久清纯| 大香蕉久久网| 六月丁香七月| 亚洲经典国产精华液单| 99riav亚洲国产免费| 夜夜看夜夜爽夜夜摸| 亚洲熟妇中文字幕五十中出| 黄色欧美视频在线观看| 高清日韩中文字幕在线| 天堂影院成人在线观看| 亚洲一区二区三区色噜噜| 少妇的逼好多水| 免费一级毛片在线播放高清视频| 免费av毛片视频| 国产69精品久久久久777片| 欧美又色又爽又黄视频| 在线看三级毛片| 免费看a级黄色片| 欧美成人免费av一区二区三区| 亚洲专区国产一区二区| 深爱激情五月婷婷| 国内精品久久久久精免费| 高清日韩中文字幕在线| 中文在线观看免费www的网站| 欧美又色又爽又黄视频| 男女视频在线观看网站免费| 欧美激情国产日韩精品一区| 日韩精品有码人妻一区| 内地一区二区视频在线| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲欧美日韩高清专用| 三级经典国产精品| 女生性感内裤真人,穿戴方法视频| 亚洲av成人精品一区久久| 男人舔女人下体高潮全视频| 欧美高清性xxxxhd video| 欧美一区二区精品小视频在线| 亚洲欧美日韩高清专用| 天天躁夜夜躁狠狠久久av| 乱系列少妇在线播放| 日韩成人伦理影院| 男女之事视频高清在线观看| 国产伦一二天堂av在线观看| 亚洲精品国产成人久久av| 麻豆一二三区av精品| or卡值多少钱| 国产伦在线观看视频一区| 亚洲最大成人av| 麻豆一二三区av精品| 欧美性猛交╳xxx乱大交人| 亚洲av一区综合| 国产伦一二天堂av在线观看| 日韩欧美免费精品| 久久久久久久久中文| 超碰av人人做人人爽久久| 国产免费男女视频| 成人无遮挡网站| av.在线天堂| 久久久国产成人免费| 大型黄色视频在线免费观看| 亚洲国产色片| 亚洲激情五月婷婷啪啪| 久久6这里有精品| 国内久久婷婷六月综合欲色啪| 亚洲综合色惰| 亚洲av成人精品一区久久| 国产国拍精品亚洲av在线观看| 中文字幕av在线有码专区| 99在线人妻在线中文字幕| 亚洲人成网站在线观看播放| 免费看美女性在线毛片视频| 一个人看视频在线观看www免费| 亚洲七黄色美女视频| h日本视频在线播放| 最后的刺客免费高清国语| 国产精品一区二区性色av| 秋霞在线观看毛片| 国产 一区精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲自偷自拍三级| 国产伦精品一区二区三区四那| 俄罗斯特黄特色一大片| 久久鲁丝午夜福利片| 中国美女看黄片| 国产精品综合久久久久久久免费| 蜜桃亚洲精品一区二区三区| 91麻豆精品激情在线观看国产| 在线观看美女被高潮喷水网站|