• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    酞菁氧釩分子及納米簇在高定向石墨表面的自組裝

    2010-12-11 09:35:58王永鋒張鑫然葉迎春梁德建
    物理化學(xué)學(xué)報 2010年4期
    關(guān)鍵詞:酞菁定向石墨

    王永鋒 張鑫然 葉迎春 梁德建 王 遠(yuǎn) 吳 凱

    (北京大學(xué)化學(xué)與分子工程學(xué)院,分子動態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國家重點實驗室,北京分子科學(xué)國家實驗室,北京 100871)

    酞菁氧釩分子及納米簇在高定向石墨表面的自組裝

    王永鋒 張鑫然 葉迎春 梁德建 王 遠(yuǎn)*吳 凱*

    (北京大學(xué)化學(xué)與分子工程學(xué)院,分子動態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國家重點實驗室,北京分子科學(xué)國家實驗室,北京 100871)

    報導(dǎo)了酞菁氧釩(VOPc)分子及其納米簇在高定向石墨(HOPG)表面的自組裝.在室溫下,將HOPG浸入含有VOPc納米簇(2-20 nm)和VOPc分子(約為10-3g·L-1)的1,2-二氯乙烷膠體溶液中,VOPc分子在HOPG表面自組裝形成單分子層(SAM),VOPc納米簇在上述SAM表面進(jìn)行尺寸選擇性自組裝.組裝于VOPc單分子層表面的納米簇的粒徑為(4.60±0.47)nm.掃描隧道顯微鏡研究表明,隨著酞菁氧釩膠體溶液濃度由2.5×10-2g·L-1增至2.5×10-1g·L-1,組裝于SAM表面的VOPc納米粒子的數(shù)量逐漸增多,最終形成稠密的單層粒子組裝體.本文提供的自組裝結(jié)構(gòu)及方法在發(fā)展光電功能體系等方面具有潛在應(yīng)用價值.

    自組裝;酞菁氧釩;納米粒子;高定向石墨;掃描隧道顯微鏡;VOPc

    Assembly of nanoparticles is of significance in the fabrication of novel nanostructured materials and devices.Great efforts have been made to fabricate ordered nanostructures using inorganic semiconductor nanoparticles for developing functional systems such as photonic materials,high-density magnetic data storage devices,microchip reactors and sensors[1-8].

    In contrast with many inorganic semiconductors,organic semiconductors,such as phthalocyanines(Pcs),have narrow band gaps that limit their spectral sensitivities to corresponding regions and facilitate their use as photoconductors in visible and near-infrared diode laser-based devices[9-11].Pcs are a very important class of organic functional dye with many applications due to their photochemical,photophysical and electrochemical properties,biological functions,high stability and innocuity. They mainly have two characteristic light absorption bands: Soret band(300-400 nm)and Q-band(600-800 nm).The molecular structure of VOPc is shown in Fig.1.Pcs colloidal particles or thin films have been widely applied in xerographic technologies as the charge generation materials[12-14],and are also promising for applications in light emitting devices[15-16],photodetectors[17],image sensors[18],solar cells[19-20],gas sensors[21-22], optical recorders[23-24],and nonlinear optical materials[25-26].

    Traditionally,colloidal particles of photoconductive Pcs are produced,in both industry and laboratory,by complicated milling techniques that give a wide particle-size distribution (20-500 nm).To narrow the size distribution,Jenekhe and Yi[17]used phase-separation induced aggregation of metallophthalocyanines in blends with a polymer as a new approach to obtain oxotitanium phthalocyanine(TiOPc)nanospheres of 70-110 nm in diameter with a good photoconductivity.Actually prior to this we already reported the preparation of stable water colloidal solutions containing much smaller VOPc nanoparticles with average diameters of 2.3-26 nm[27-28],and the VOPc nanoparticles separated from the aqueous colloidal solution exhibited promising charge-generation properties in a dual-layer photoreceptor[29].

    Very recently,we reported the preparation of stable C2H4Cl2colloidal solutions of highly concentrated solvent-stabilized VOPc and TiOPc nanoparticles without any additives[29-31].The stability of the nanoparticles was attributed to the solvation of the nanoparticle surfaces and the repulsive electrostatic forces between the positively charged nanoparticles[29,31].The VOPc nanoparticles were then embedded in polycarbonate resins to form single-layered photoreceptors on Al substrates that exhibited satisfying xerographic properties in the positively charged mode.According to the light-assisted scanning tunneling spectroscopy(STS)measurements,we proposed thatlight-induced enhancement of the electron tunneling through the VOPc nanoparticle/insulator junctions was responsible for the excellent photoconductivity of the prepared single-layered photoreceptors in the absence of other charge transport materials.

    Fig.1 Schematic molecular structure of VOPc

    To explore the surface structure and electronic properties of SAMs at the atomic and molecular levels,scanning tunneling microscopy(STM)has been widely used.This technique has greatly enhanced our understanding of the assemblies of phthalocyanines and their derivatives on various substrates.CuPc on polycrystalline silver was first studied by Gimzewski et al.[32]. Lippel and co-workers[33]reported the first STM observation of the internal structure of an isolated Pc molecule.In the systematic studies on various metal-coordinated Pcs such as CuPc,CoPc, NiPc,FePc,and VOPc on Au(111)surface under ultra-high vacuum(UHV)conditions,Hipps et al.[34-36]observed in STM images a depression at the molecular centers of NiPc and CuPc, and a protrusion at the molecular centers of FePc and CoPc, showing the possibility of molecular identification with STM. Bai and co-workers[37-39]reported copper(II)octaalkoxyl-substituted phthalocyanine(CuPcOC8)layers formed on HOPG, CuPc layers on n-alkane-adsorbed and tridedycelamine-adsorbed HOPG.Itaya and collaborators investigated highly ordered arrays of water-soluble 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porhine tetrakis(p-toluenesulfonate) (TMPyP)on iodine-modified Pt(100)[40]and sulfur-modified Au (111)[41]electrodes in solution.They also obtained highly ordered molecular arrays of wateinsoluble 5,10,15,20-tetraphenyl-21H, 23H-porphine cobalt(II)and copper(II)(CoTPP and CuTPP)on Au(111)surface[42].Itaya et al.[43]further studied the electrocatalytic activity of oxygen at CoPc-and CuPc-covered Au(111) surfaces.In a further step,Ho et al.[44-45]carefully measured the electronic density of states(DOS)of metal-CuPc-metal junctions and vibronic states of individual CuPc molecules.

    Although Pc SAMs have been extensively studied by STM, non-substituted Pc SAMs,such as methal-free pathalocyanine (H2Pc),metal phthalocyanine(MPc)or metal oxide phthalocyanine(MOPc),have never been realized from solution sources on HOPG at room temperature.The main difficulty was that the solubility of these molecules in most solvents was extremely low.Up to date,unmodified Pcs could only be imaged at low temperatures or on pre-modified HOPG[46].

    In this paper,we report the successful room-temperature selfassembly of the VOPc molecules and size-selective assembly of the VOPc nanoparticles on HOPG from prepared VOPc/C2H4Cl2colloidalsolutions containing VOPc nanoparticles(2-20 nm)and dissolved VOPc molecules.The assembled VOPc nanoparticles are found to exist on top of the VOPc SAM and have a very narrow size-distribution,(4.60±0.47)nm,with a standard deviation of ca 10%.

    1 Experimental

    1.1 Preparation of the organic sols of solventstabilized VOPc nanoparticles

    Starting material of VOPc powder(B-VOPc)was kindly supplied by Professor Lianming Yang at the Institute of Chemistry, Chinese Academy of Sciences.Elemental analyses showed that the composition of the powder was in accord with that of theoretical values.Water was purified through an Ultrapure Water System(Beijing Epoch Company).C2H4Cl2was purchased from Beijing Chemical Corporation and redistilled before use.

    Details for the preparation and characterization of the stable VOPc/C2H4Cl2colloidal solution were described in our previous report[29],in which the C2H4Cl2-stabilized VOPc nanoparticles had a size distribution of 2-20 nm.The VOPc nanoparticle concentration in the colloidal solution could be as high as 100 g·L-1, while the dissolved VOPc molecule content was about 1×10-3g· L-1.The X-ray powder diffraction pattern of these VOPc nanoparticles showed diffraction peaks at Bragg angles(2θ)of 7.4°, 10.2°,12.6°,22.6°,24.2°,25.5°,and 28.7°for the prepared nanoscopic VOPc powder[29],indicating that theywere in phase II crystal form,and the small particle size caused the broadening of the diffraction peaks[47].

    1.2 Preparation of the VOPc assemblies and STM characterization

    The HOPG substrate(ZYH grade,purchased from Digital Instruments)was freshly prepared by peeling-off its top layers with an adhesive tape[48].It was then vertically immersed for about 16 h in the VOPc sols of different concentrations(from 2.5×10-4to 10 g·L-1)described in preceding section.This would generate the assemblies of the VOPc molecules and nanoparticles on the HOPG substrate.After dried in vacuum,the self-assembly on HOPG was immediately introduced into an ultra-high vacuum (UHV)chamber.STM images of the samples were collected with an Omicron variable temperature STM in UHV with a base pressure of ca 7×10-9Pa.Tungsten tips were used to take the measurements.In imaging,constant current mode was employed.All experiments were taken at room temperature.Some measurements were double-checked with a Nanoscope IIIA SPM(Digital Instruments)using Pt/Ir tips.

    2 Results and discussion

    2.1 Assemblies of VOPc molecules and nanoparticles

    Fig.2(a)shows the STM images of the VOPc nanoparticles dispersed on the HOPG substrate.This sample was prepared by dropping on to the HOPG substrate a small amount of the colloidal solution containing VOPc nanoparticles,which gave rise to either isolated or congregated VOPc nanoparticles.Uncontrolled aggregation of the VOPc nanoparticles on the substrate is difficult for their further characterization and utilization.

    Fig.2(b)shows the assembled VOPc nanoparticles dispersed on the surface,prepared by the method described in Section 1.2. A closer look at the surface structure revealed that these VOPc nanoparticles were actually seated on a molecular layer of VOPc.This molecular assembling structure with a unit size of ca 1.50 nm(Fig.2(c)),sampled from the circled area marked in Fig. 2(b),is very similar to that obtained by molecular beam epitaxy (MBE)of VOPc molecules on gold[49-50].The VOPc SAM should be monolayer because the height of the film is around 0.25 nm, which is the typical height of a Pc molecule on surfaces.Note that in our experiment,the HOPG substrate was simply dipped in the VOPc colloidal solution containing dissolved VOPc molecules.This is actually the first example for a VOPc self-assembled monolayer(SAM)from a colloidal solution.

    Fig.2 STM images of VOPc species on HOPG(a)randomly dispersed and piled VOPc particles on HOPG(Vsample=1.1 V,I=0.10 nA;200 nm×200 nm);(b)assemblies of VOPc molecules and particles from VOPc colloidal solutions(c=2.5×10-2g·L-1,Vsample=-0.48 V,I=0.31 nA;200 nm×200 nm); (c)the VOPc SAM sampled from the circle area in(b)(Vsample=-0.74 V,I=0.29 nA; 12 nm×13 nm);(d)the HOPG lattice structure sampled from the square area in(b) (Vsample=0.30 V,I=0.80 nA;3.8 nm×3.8 nm)

    No VOPc nanoparticles could be observed in bare HOPG substrate areas,i.e.,in the big dark triangular area in Fig.2(b).This bare area did not carry anything visible and its atomic image (Fig.2(d))sampled from the square area clearly displayed a perfect HOPG structure.

    The underlying driving force for the formation of VOPc SAMs in our experiments is likely that the interaction between HOPG surface and VOPc molecules is stronger than that between the solvent and VOPc molecules,and the ordered structure of the VOPc SAM further decreases the mobility of the adsorbed molecules.We have proven[29]that in the VOPc colloidal solution,equilibrium was established between VOPc molecules in the solution and at the nanocrystal surface.Albeit the solubility of VOPc in C2H4Cl2was quite low(ca 10-3g·L-1),the concentration of the VOPc molecules in the colloidal solution did not change much during the formation of the VOPc SAM on the HOPG substrate.These would facilitate the formation of a largearea and ordered VOPc SAM.

    The VOPc nanoparticles can really“stick”to the VOPc SAMs at the surface.The exact reason for this phenomenon is still elusive and needs further investigation.One possibility is that the VOPc SAMs with their V=O groups pointing up-wards[49-50]provide a structural complement for the assembly of the VOPc nanocrystals with their specific crystal face attached to the VOPc SAM.

    Fig.3 (a)STM image of the assembled VOPc nanoparticles at room temperature;(b)line scan profile along the line in(a); (c)size-distribution of the VOPc nanoparticles according to the statistical analysis of 101 nanoparticles in(a)

    2.2 Assembling-induced size-selection of the assembled VOPc nanoparticles

    Generally speaking,the smaller the nanoparticles,the more difficult to achieve a narrow size-distribution.The lateral sizes of the assembled particles were quite uniform(Fig.3(a,b))and calibrated with the HOPG substrate lattice constant and the VOPc molecular size.The particle sizes of the VOPc nanoparticles were measured to be(4.60±0.47)nm(Fig.3(c))with a standard deviation of ca 10%according to the statistical analysis of 101 particles.This provides an excellent example for the monodispersed organic semiconductor nanoparticles.

    The size distribution of the VOPc nanoparticles in the original colloidal solution was in the range of 2-20 nm,as measured by TEM[29],while the STM measurments only found the near-monodispersed VOPc nanoparticle in the present assembly(Fig.3). The unusual size-selective assembling of the VOPc colloidal nanoparticles on the VOPc-SAM/HOPG substrates has not been well understood at the moment.Since the VOPc nanoparticles possess excellent photoconductivity,the assembling-induced sizeselection may provide a novel approach to the fabrication of nanostructured photoelectric devices with a high resolution.

    With the increase of the VOPc nanoparticle concentration in the colloidal solution,more and more VOPc nanoparticles were dispersed on the molecular layer(Fig.4)and in the end,a dense VOPc nanoparticle monolayer formed.Note that the sizes of VOPc nanoparticles on the substrates did not change upon increasing the VOPc concentration of the colloidal solutions,confirming that the VOPc nanoparticles on the substrate were really size-selectively assembled from the colloidal solution.This is quite intriguing because the“dual-layer”structure composed of a uniform VOPc nanoparticle layer and an ordered assembled VOPc molecular layer can be easily prepared in this way.

    2.3 Imaging and stability of the VOPc SAM

    In Fig.4(a),one can immediately notice that the STM image of the underlying VOPc SAM appears ridge-like.Does this mean that this ridge-like VOPc SAM is different from that shown in Fig.2(c)in structure?To uncover this,we did a series of scanning experiments and the results were compiled in Fig.5. In Fig.5(b),the width of a molecular“strand”in the ridge-like image is about 5.0 nm,similar to the size of an assembled VOPc nanoparticle,but much larger than the size of a VOPc molecule. Therefore,the strand can not be a VOPc molecular row.It is well known that the STM imaging can be greatly affected by the STM tip state[51-52],which may explain the appearance of the molecular ridge-like structure.The STM tip effect hypothesis receives strong support from the result in Fig.5(c)where the VOPc molecular structure suddenly changed from the ridge-like image to the normalimage(the same asthatin Fig.5(a))when the tip scanned from the bottom to the top without changing the scanning parameters.Thus,the only possibility for the sudden change of the imaged VOPc molecular structure comes from the variation of the STM tip state.We also did the experiments by applying an electric pulse on to the STM tip,leading to that the ridge-like image changed back into the normal one shown in Fig.2(c)and Fig.5(a).This implied that the ridge-like structure might appear upon the sticking of some VOPc molecular species or nanoparticles to the STM tip.The image in Fig.5(d)displays mixed normal and ridge-like VOPc structures where the individual VOPc molecule is still distinguishable,clearly indicating the complexity and diversity of the tip state.

    Fig.4 Assemblies of the VOPc molecules and nanoparticles from the colloidal solutions of various VOPc contents(a)c=2.5×10-2g·L-1,Vsample=-0.48 V,I=0.31 nA,scan range:100 nm×100 nm;(b)c=2.5×10-1g·L-1,Vsample=-0.75 V,I=0.38 nA,scan range:200 nm×200 nm; (c)c=6.3×10-1g·L-1,Vsample=-0.71 V,I=0.34 nA,scan range:100 nm×100 nm

    Fig.5 Normal and ridge-like STM images of the VOPc SAM on HOPG (a)normal STM image of the VOPc SAM(Vsample=-0.74 V,I=0.10 nA;70 nm×70 nm);(b)ridge-like STM image of the VOPc SAM(Vsample=-0.74 V,I=0.10 nA; 100 nm×100 nm);(c)the sudden change of the ridge-like STM image into the normal one during the scanning from bottom to top(Vsample=-0.50 V,I=0.37 nA;80 nm×80 nm); (d)coexistence of the normal and ridge-like structures in which the individual VOPc molecules can still be visible(Vsample=-0.80 V,I=0.40 nA;108 nm×108 nm)

    Fig.6 STM image of the VOPc SAM and nanoparticles after thermal treatment at 450 K for 30 minVsample=-0.80 V,I=0.37 nA;scan range:70 nm×70 nm.The arrows indicate the vestiges of the leaving VOPc nanoparticles during the thermal treatment.

    To study the stabilities of the VOPc SAM and nanoparticles on HOPG,we treated the assembly of the VOPc molecules/ nanoparticles shown in Fig.4(c)at 450 K for about 30 min.The result is shown in Fig.6.After the thermal treatment,most of the VOPc nanoparticles were removed.With the removal of the VOPc nanoparticles,exposed underlying was the perfect VOPc SAM rather than bare HOPG substrate.In Fig.6,some irregular looped vestiges left upon removing VOPc nanoparticles on top of the self-assembled molecular layer still can be seen,suggesting that the interaction between the VOPc SAM and HOPG is much stronger than that of the VOPc molecules in the nanocrystals.

    3 Conclusions

    In summary,we have demonstrated that VOPc molecules dissolved with a low concentration in a VOPc/C2H4Cl2colloidal solution could self-assemble on HOPG to form a VOPc SAM.It was found that the VOPc nanoparticles size-selectively assembled on the VOPc SAM rather than directly at the bare HOPG substrate surface.The assembled organic semiconductor nanoparticles possessed a very narrow size-distribution,(4.60±0.47)nm, with a standard deviation of ca 10%.These VOPc nanoparticle assemblies and SAMs will be beneficial to the study on the intrinsic properties of the organic semiconductor at nanoscale and molecular levels and to the fabrication of promising photoelectronic devices such as photoelectronic sensors,imagers or photoreceptors in a controlled manner.

    1 Murray,C.B.;Kagan,C.R.;Bawendi,M.G.Science,1995,270: 1335

    2 Springholz,G.;Holy,V.;Pinczolits,M.;Bauer,G.Science,1998, 282:734

    3 Collier,C.P.;Vossmeyer,T.;Heath,J.R.Annu.Rev.Phys.Chem., 1998,49:371

    4 Mirkin,C.A.Inorg.Chem.,2000,39:2258

    5 Hayward,R.C.;Saville,D.A.;Aksay,I.A.Nature,2000,404:56

    6 Li,M.;Schnablegger,H.;Mann,S.Nature,1999,402:393

    7 Alchalabi,K.;Zimin,D.;Kostorz,G.;Zogg,H.Phys.Rev.Lett., 2003,90:026104

    8 Fu,X.Y.;Wang,Y.;Huang,L.X.;Sha,Y.L.;Gui,L.L.;Lai,L. H.;Tang,Y.Q.Adv.Mater.,2003,15:902

    9 Petritsch,K.;Dittmer,J.J.;Marseglia,E.A.;Friend,R.H.;Lux, A.;Rozenberg,G.G.;Moratti,S.C.;Holmes,A.B.Sol.Energy Mater.Sol.Cells,2000,61:63

    10 Ginger,D.S.;Greenham,N.C.Phys.Rev.B,1999,59:10622

    11 Huynh,W.U.;Peng,X.G.;Alivisatos,A.P.Adv.Mater.,1999, 11:923

    12 Law,K.Y.Chem.Rev.,1993,93:449

    13 Wei,X.F.;Di,Z.W.;Yan,J.M.;Jiang,K.J.;Wang,Y.Q.;Yang, L.M.Photographic Science and Photochemistry,2002,20:191 [魏先福,邸振文,閻建民,蔣克健,王艷喬,楊聯(lián)明.感光科學(xué)與光化學(xué),2002,20:191]

    14 Li,Y.F.;Li,S.L.;Shao,K.F.;Yang,L.M.Information Recording Materials,2005,6:21 [李英鋒,李紹路,邵科峰,楊聯(lián)明.信息記錄材料,2005,6:21]

    15 Flora,W.H.;Hall,H.K.;Armstrong,N.R.J.Phys.Chem.B, 2003,107:1142

    16 Nuesch,F.;Carrara,M.;Romero,D.B.;Zuppiroli,L.Chem.Phys. Lett.,2001,347:311

    17 Jenekhe,S.A.;Yi,S.J.Adv.Mater.,2000,12:1274

    18 Street,R.A.;Graham,J.;Popovic,Z.D.;Hor,A.;Ready,S.;Ho,J. J.Non-Cryst.Solids,2002,299:1240

    19 Trombach,N.;Tada,H.;Hiller,S.;Schlettwein,D.;W?hrle,D. Thin Solid Films,2001,396:109

    20 Pannemann,C.;Dyakonov,V.;Parisi,J.;Hild,O.;W?hrle,D. Synth.Met.,2001,121:1585

    21 Rella,R.;Serra,A.;Siciliano,P.;Tepore,A.;Valli,L.;Zocco,A. Langmuir,1997,13:6562

    22 Bouvet,M.;Leroy,A.;Simon,J.;Tournilhac,F.;Guillaud,G.; Lessnick,P.;Maillard,A.;Spirkovitch,S.;Debliquy,M.;de Haan, A.;Decroly,A.Sens.Actuators B,2001,72:86

    23 Gu,D.H.;Chen,Q.Y.;Tang,X.D.;Gan,F.X.;Shen,S.Y.;Liu, K.;Xu,H.J.Opt.Commun.,1995,121:125

    24 Gu,D.H.;Chen,Q.Y.;Shu,J.P.;Tang,X.D.;Gan,F.X.;Shen,S. Y.;Liu,K.;Xu,H.J.Thin Solid Films,1995,257:88

    25 Fang,S.L.;Hoshi,H.J.;Kohama,K.C.;Maruyama,Y.J.Phys. Chem.,1996,100:4104

    26 Yamashita,M.;Inui,F.;Irokawa,K.;Morinaga,A.;Tako,T.;Mito, A.;Moriwaki,H.Appl.Surf.Sci.,1998,130:883

    27 Wang,Y.;Deng,K.;Gui,L.L.;Tang,Y.Q.;Zhou,J.W.;Cai,L. Y.;Qiu,J.B.;Ren,D.;Wang,Y.Q.J.Colloid Interface Sci.,1999, 213:270

    28 Liu,W.J.;Wang,Y.;Gui,L.L.;Tang,Y.Q.Langmuir,1999,15: 2130

    29 Zhang,X.R.;Wang,Y.F.;Ma,Y.;Ye,Y.C.;Wang,Y.;Wu,K. Langmuir,2006,22:344

    30 Chao,W.;Zhang,X.R.;Xiao,C.;Liang,D.J.;Wang,Y.J.Colloid Interface Sci.,2008,325:198

    31 Wang,Y.;Liang,D.J.Adv.Mater.,2010,in press

    32 Gimzewski,J.K.;Stoll,E.;Schlittler,R.R.Surf.Sci.,1987,181:267

    33 Lippel,P.H.;Wilson,R.J.;Miller,M.D.;Woll,C.;Chiang,S. Phys.Rev.Lett.,1989,62:171

    34 Lu,X.;Hipps,K.W.;Wang,X.D.;Mazur,U.J.Am.Chem.Soc., 1996,118:7197

    35 Hipps,K.W.;Lu,X.;Wang,X.D.;Mazur,U.J.Phys.Chem., 1996,100:11207

    36 Lu,X.;Hipps,K.W.J.Phys.Chem.B,1997,101:5391

    37 Qiu,X.H.;Wang,C.;Zeng,Q.D.;Xu,B.;Yin,S.X.;Wang,H. N.;Xu,S.D.;Bai,C.L.J.Am.Chem.Soc.,2000,122:5550

    38 Xu,B.;Yin,S.X.;Wang,C.;Qiu,X.H.;Zeng,Q.D.;Bai,C.L. J.Phys.Chem.B,2000,104:10502

    39 Lei,S.B.;Wang,C.;Wan,L.J.;Bai,C.L.J.Phys.Chem.B,2004, 108:1173

    40 Sashikata,K.;Sugata,T.;Sugimasa,M.;Itaya,K.Langmuir,1998, 14:2896

    41 Wan,L.J.;Shundo,S.;Inukai,J.;Itaya,K.Langmuir,2000,16: 2164

    42 Yoshimoto,S.;Tada,A.;Suto,K.;Narita,R.;Itaya,K.Langmuir, 2003,19:672

    43 Yoshimoto,S.;Tada,A.;Suto,K.;Itaya,K.J.Phys.Chem.B, 2003,107:5836

    44 Nazin,G.V.;Qiu,X.H.;Ho,W.Science,2003,302:77

    45 Qiu,X.H.;Nazin,G.V.;Ho,W.Phys.Rev.Lett.,2004,92: 206102

    46 Gopakumar,T.G.;Lackinger,M.;Hackert,M.;Müller,F.; Hietschold,M.J.Phys.Chem.B,2004,108:7839

    47 Griffiths,C.H.;Walker,M.S.;Goldstein,P.Mol.Cryst.Liq. Cryst.,1976,33:149

    48 Wang,Y.F.;Ye,Y.C.;Wu,K.Surf.Sci.,2006,600:729

    49 Hipps,K.W.;Barlow,D.E.;Mazur,U.J.Phys.Chem.B,2000, 104:2444

    50 Barlow,D.E.;Hipps,K.W.J.Phys.Chem.B,2000,104:5993

    51 Xu,Q.M.;Wan,L.J.;Yin,S.X.;Wang,C.;Bai,C.L.J.Phys. Chem.B,2001,105:10465

    52 Olson,J.A.;Bühlmann,P.Anal.Chem.,2003,75:1089

    December 4,2009;Revised:January 21,2010;Published on Web:February 25,2010.

    Self-Assemblies of Oxovanadium Phthalocyanine Molecules and Nanoclusters on Highly Oriented Pyrolytic Graphite

    WANG Yong-Feng ZHANG Xin-Ran YE Ying-Chun LIANG De-Jian WANG Yuan*WU Kai*
    (Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry&Molecular Engineering,Peking University,Beijing 100871,P.R.China)

    Self-assembled monolayer(SAM)of oxovanadium phthalocyanine(VOPc),an organic semiconductor compound,was prepared at room temperature on a highly oriented pyrolytic graphite(HOPG)substrate by immersing the substrate in a 1,2-dichloroethane(C2H4Cl2)colloidal solution containing both VOPc nanoparticles(2-20 nm)and dissolvedVOPcmolecules(ca10-3g·L-1).TheVOPcnanoparticlesfurtherassembledonthe VOPc SAM.The nanoparticleassembling in the experimental conditions exhibited a high size-selectivity to VOPc nanoparticles of(4.60±0.47)nm with a standard deviation of 10%.As revealed by scanning tunneling microscopy(STM)measurements,with increasing VOPc concentration of the colloidal solution from 2.5×10-2to 2.5×10-1g·L-1,the amount of VOPc nanoparticles assembled on the molecular layer increased gradually,and a dense VOPc nanoparticle monolayer formed in the end. The found assembly structures and method are promising for the development of photoelectric or electric functional systems.

    Self-assembly;Oxovanadium phthalocyanine;Nanoparticles;HOPG;Scanning tunneling microscopy;VOPc

    *Corresponding authors.Email:wangy@pku.edu.cn,kaiwu@pku.edu.cn;Tel:+86-10-62757497,+86-10-62754005.

    The project was supported by the National Natural Science Foundation of China(20773001,20973004,20973003,50821061)and National Key Basic Research Program of China(973)(2006CB806102,2009CB929403).

    國家自然科學(xué)基金(20773001,20973004,20973003,50821061)及國家重點基礎(chǔ)研究發(fā)展規(guī)劃項目(973)(2006CB806102,2009CB929403)資助

    O647

    猜你喜歡
    酞菁定向石墨
    石墨系升溫球的實踐與應(yīng)用
    昆鋼科技(2022年1期)2022-04-19 11:36:14
    2-硝基酞菁鋁的合成及其催化活性研究
    安徽化工(2018年4期)2018-09-03 07:11:48
    偏序集上的相對定向集及其應(yīng)用
    石墨烯的健康路
    定向越野
    纖維素纖維負(fù)載鈷酞菁對活性染料X-3B的降解
    四羧基酞菁鋅鍵合MCM=41的合成及其對Li/SOCl2電池催化活性的影響
    定向馴化篩選耐毒酵母
    石墨礦中固定碳的分析與探討
    石墨烯——未來材料之星
    物理與工程(2011年2期)2011-03-25 10:02:58
    黄色片一级片一级黄色片| 日韩欧美在线二视频| 中文字幕久久专区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人精品中文字幕电影| 久久久久久国产a免费观看| 毛片女人毛片| 午夜久久久久精精品| 久久精品亚洲精品国产色婷小说| 国产真实伦视频高清在线观看 | 久久久久国产精品人妻aⅴ院| 12—13女人毛片做爰片一| 午夜免费观看网址| 91在线精品国自产拍蜜月 | 成人三级黄色视频| а√天堂www在线а√下载| 国产日本99.免费观看| 窝窝影院91人妻| 成年女人看的毛片在线观看| 五月玫瑰六月丁香| 麻豆成人午夜福利视频| 国产欧美日韩精品一区二区| 国产99白浆流出| 丰满的人妻完整版| 桃红色精品国产亚洲av| 欧美一级a爱片免费观看看| 欧美日韩综合久久久久久 | 老熟妇乱子伦视频在线观看| 国产主播在线观看一区二区| 18美女黄网站色大片免费观看| 99久久综合精品五月天人人| 欧美不卡视频在线免费观看| 国产私拍福利视频在线观看| 99riav亚洲国产免费| 内地一区二区视频在线| av福利片在线观看| 97超视频在线观看视频| 久9热在线精品视频| 两个人看的免费小视频| 999久久久精品免费观看国产| 国产欧美日韩一区二区三| 国产av在哪里看| 五月玫瑰六月丁香| 一级作爱视频免费观看| 午夜免费男女啪啪视频观看 | 51午夜福利影视在线观看| 51国产日韩欧美| 欧美3d第一页| 亚洲无线观看免费| 国产真实伦视频高清在线观看 | 女生性感内裤真人,穿戴方法视频| 嫁个100分男人电影在线观看| 精品久久久久久久久久久久久| 亚洲av五月六月丁香网| 好男人电影高清在线观看| 成人三级黄色视频| 国产精品一及| 一区福利在线观看| 岛国视频午夜一区免费看| 哪里可以看免费的av片| 国产伦人伦偷精品视频| а√天堂www在线а√下载| 在线观看午夜福利视频| 九九热线精品视视频播放| 日日干狠狠操夜夜爽| 亚洲av免费高清在线观看| 九色国产91popny在线| 在线a可以看的网站| 男女做爰动态图高潮gif福利片| 岛国在线免费视频观看| 在线播放国产精品三级| 身体一侧抽搐| 精品久久久久久久毛片微露脸| 美女 人体艺术 gogo| 麻豆一二三区av精品| 在线观看av片永久免费下载| 乱人视频在线观看| aaaaa片日本免费| 欧美高清成人免费视频www| 久久欧美精品欧美久久欧美| 噜噜噜噜噜久久久久久91| 少妇人妻精品综合一区二区 | 亚洲中文日韩欧美视频| 97碰自拍视频| 国产黄色小视频在线观看| 女人被狂操c到高潮| 无限看片的www在线观看| 精华霜和精华液先用哪个| 亚洲欧美一区二区三区黑人| 欧美黄色淫秽网站| 白带黄色成豆腐渣| 精品乱码久久久久久99久播| 中文字幕精品亚洲无线码一区| 中文字幕av在线有码专区| 国产爱豆传媒在线观看| 欧美一区二区亚洲| 亚洲不卡免费看| 国产视频一区二区在线看| 91麻豆精品激情在线观看国产| 最后的刺客免费高清国语| 中文字幕人妻熟人妻熟丝袜美 | 很黄的视频免费| 亚洲午夜理论影院| 色噜噜av男人的天堂激情| 啪啪无遮挡十八禁网站| 亚洲在线观看片| 麻豆久久精品国产亚洲av| АⅤ资源中文在线天堂| 国产成人av教育| 在线播放无遮挡| 丁香欧美五月| 十八禁人妻一区二区| 男女那种视频在线观看| 波多野结衣高清无吗| 黄色视频,在线免费观看| 少妇的丰满在线观看| 免费无遮挡裸体视频| 国产精品久久久人人做人人爽| 午夜老司机福利剧场| 最近最新中文字幕大全电影3| 亚洲精品在线美女| 噜噜噜噜噜久久久久久91| www国产在线视频色| 国产精品国产高清国产av| 国产主播在线观看一区二区| 国产精品美女特级片免费视频播放器| 一个人看视频在线观看www免费 | 欧美日本视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产欧美人成| 久久天躁狠狠躁夜夜2o2o| 欧美zozozo另类| a级毛片a级免费在线| 高清日韩中文字幕在线| 一进一出好大好爽视频| 亚洲精品粉嫩美女一区| 少妇裸体淫交视频免费看高清| 最后的刺客免费高清国语| 1024手机看黄色片| 日韩人妻高清精品专区| 少妇高潮的动态图| 少妇熟女aⅴ在线视频| 啦啦啦韩国在线观看视频| 亚洲一区二区三区不卡视频| 成人高潮视频无遮挡免费网站| 亚洲人成网站在线播放欧美日韩| 亚洲国产欧洲综合997久久,| 国产成人aa在线观看| 91九色精品人成在线观看| 久久精品国产自在天天线| 国产91精品成人一区二区三区| 亚洲国产色片| 国产亚洲精品一区二区www| 欧美在线黄色| 熟女人妻精品中文字幕| 岛国在线观看网站| 波多野结衣高清作品| 午夜激情福利司机影院| 国产精品亚洲一级av第二区| 欧美一区二区国产精品久久精品| 婷婷丁香在线五月| 国内少妇人妻偷人精品xxx网站| av在线天堂中文字幕| 亚洲av电影不卡..在线观看| 久久精品人妻少妇| 亚洲精品影视一区二区三区av| 亚洲人成网站高清观看| 欧美在线黄色| bbb黄色大片| 在线十欧美十亚洲十日本专区| 国产精品久久久久久精品电影| 亚洲欧美日韩高清专用| 在线十欧美十亚洲十日本专区| 国产精品免费一区二区三区在线| 最新在线观看一区二区三区| 久久精品91蜜桃| 亚洲无线在线观看| 久久国产精品人妻蜜桃| 一区二区三区高清视频在线| 亚洲国产精品成人综合色| 久久久精品大字幕| 99国产极品粉嫩在线观看| 欧美激情在线99| 久久久久久久亚洲中文字幕 | 一二三四社区在线视频社区8| 在线看三级毛片| 国产精品99久久99久久久不卡| 99在线人妻在线中文字幕| 免费看日本二区| 小说图片视频综合网站| 99国产综合亚洲精品| 欧美另类亚洲清纯唯美| 成人国产一区最新在线观看| 午夜福利在线观看吧| 国产精品电影一区二区三区| 亚洲片人在线观看| 国产淫片久久久久久久久 | 国产老妇女一区| 国产亚洲欧美在线一区二区| 欧洲精品卡2卡3卡4卡5卡区| 老熟妇仑乱视频hdxx| 亚洲av第一区精品v没综合| 日本一本二区三区精品| 久久国产乱子伦精品免费另类| 高清毛片免费观看视频网站| 国产免费男女视频| 国产av不卡久久| 又爽又黄无遮挡网站| 精品一区二区三区视频在线观看免费| 九九热线精品视视频播放| 国产久久久一区二区三区| 悠悠久久av| 51午夜福利影视在线观看| 国产成人av激情在线播放| 91av网一区二区| 国模一区二区三区四区视频| 国产亚洲精品一区二区www| 丰满人妻一区二区三区视频av | 国产99白浆流出| 制服丝袜大香蕉在线| 精品久久久久久久久久免费视频| 美女大奶头视频| 日本一二三区视频观看| 在线十欧美十亚洲十日本专区| 免费高清视频大片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美日韩无卡精品| 欧美日韩福利视频一区二区| 国产精品亚洲一级av第二区| 狠狠狠狠99中文字幕| 天堂网av新在线| 3wmmmm亚洲av在线观看| 中文字幕精品亚洲无线码一区| 又紧又爽又黄一区二区| 一夜夜www| 国内精品久久久久精免费| 日韩 欧美 亚洲 中文字幕| 99在线视频只有这里精品首页| 成人国产综合亚洲| 免费观看人在逋| 国产综合懂色| 精品人妻偷拍中文字幕| 俺也久久电影网| 特级一级黄色大片| 国产三级黄色录像| 国产色婷婷99| 久久99热这里只有精品18| 成年人黄色毛片网站| 两性午夜刺激爽爽歪歪视频在线观看| 天堂√8在线中文| 午夜福利成人在线免费观看| 亚洲精品在线观看二区| 欧美日韩福利视频一区二区| 亚洲中文字幕一区二区三区有码在线看| 69人妻影院| 免费人成在线观看视频色| 一a级毛片在线观看| 一进一出抽搐动态| 99久久久亚洲精品蜜臀av| 欧美在线一区亚洲| 无限看片的www在线观看| 九色成人免费人妻av| 成人18禁在线播放| 亚洲精品成人久久久久久| 18禁黄网站禁片午夜丰满| 在线观看66精品国产| 乱人视频在线观看| 午夜免费男女啪啪视频观看 | 久久精品国产综合久久久| 国产蜜桃级精品一区二区三区| 国内精品久久久久久久电影| 国产免费一级a男人的天堂| 51午夜福利影视在线观看| 脱女人内裤的视频| 天堂动漫精品| 精品人妻一区二区三区麻豆 | 亚洲精品亚洲一区二区| 欧美黄色片欧美黄色片| 搡老妇女老女人老熟妇| 国模一区二区三区四区视频| 在线免费观看不下载黄p国产 | 亚洲18禁久久av| 性色avwww在线观看| 亚洲精品乱码久久久v下载方式 | 最近视频中文字幕2019在线8| 男人和女人高潮做爰伦理| 国产高清videossex| 国产亚洲精品av在线| 国产99白浆流出| 岛国视频午夜一区免费看| 一夜夜www| 国产成人av教育| xxx96com| 99久久精品一区二区三区| 日韩免费av在线播放| 母亲3免费完整高清在线观看| 看免费av毛片| 婷婷六月久久综合丁香| 国产成人啪精品午夜网站| 亚洲自拍偷在线| 国产欧美日韩一区二区精品| 老汉色∧v一级毛片| 免费人成视频x8x8入口观看| 色老头精品视频在线观看| 国产精品爽爽va在线观看网站| 日韩大尺度精品在线看网址| 亚洲av成人av| 99热这里只有是精品50| 国产精品一及| 国产 一区 欧美 日韩| 啦啦啦免费观看视频1| x7x7x7水蜜桃| 好男人电影高清在线观看| 亚洲av免费高清在线观看| 一级黄色大片毛片| 91在线精品国自产拍蜜月 | 久久精品91无色码中文字幕| 波野结衣二区三区在线 | 中文字幕高清在线视频| 久久久久久国产a免费观看| 夜夜躁狠狠躁天天躁| 国产精品一及| 两个人看的免费小视频| 岛国视频午夜一区免费看| 精品久久久久久久久久久久久| 少妇丰满av| 狂野欧美激情性xxxx| 嫩草影视91久久| 在线观看日韩欧美| 国产高潮美女av| 国产精华一区二区三区| av福利片在线观看| 日韩高清综合在线| 精品不卡国产一区二区三区| 日本 欧美在线| 两性午夜刺激爽爽歪歪视频在线观看| 99国产综合亚洲精品| 18+在线观看网站| 亚洲熟妇熟女久久| 中文字幕久久专区| 国产精品三级大全| 免费在线观看日本一区| 国产精品一区二区三区四区久久| 免费观看精品视频网站| 国产精品三级大全| 色综合婷婷激情| 久久精品综合一区二区三区| 国产伦精品一区二区三区四那| 99在线人妻在线中文字幕| 午夜精品一区二区三区免费看| 97超视频在线观看视频| 怎么达到女性高潮| 国产三级黄色录像| 亚洲午夜理论影院| 日韩欧美免费精品| 熟妇人妻久久中文字幕3abv| 欧美成人性av电影在线观看| 成人高潮视频无遮挡免费网站| 亚洲av第一区精品v没综合| 国产免费男女视频| 欧美zozozo另类| 成人高潮视频无遮挡免费网站| 男女之事视频高清在线观看| 少妇高潮的动态图| 18美女黄网站色大片免费观看| 国产精品99久久99久久久不卡| 啪啪无遮挡十八禁网站| 欧美日韩综合久久久久久 | 欧美午夜高清在线| 国产又黄又爽又无遮挡在线| 欧美黄色片欧美黄色片| 国产成人a区在线观看| 18禁国产床啪视频网站| 国产色婷婷99| 久久久久久久午夜电影| 午夜免费男女啪啪视频观看 | 免费无遮挡裸体视频| 久久久久久久精品吃奶| 老司机在亚洲福利影院| a在线观看视频网站| 麻豆成人av在线观看| 亚洲精品久久国产高清桃花| 午夜两性在线视频| 国产亚洲av嫩草精品影院| 亚洲成人免费电影在线观看| 国产亚洲精品久久久com| 午夜福利在线观看免费完整高清在 | 国产野战对白在线观看| 性欧美人与动物交配| 91av网一区二区| 色综合欧美亚洲国产小说| 午夜福利欧美成人| 国产高清videossex| 免费电影在线观看免费观看| 亚洲av成人精品一区久久| 亚洲av成人av| 日韩欧美在线乱码| 18禁美女被吸乳视频| 少妇熟女aⅴ在线视频| 亚洲国产精品成人综合色| 国语自产精品视频在线第100页| 国产精品 国内视频| 在线观看免费视频日本深夜| 最近在线观看免费完整版| 国产免费一级a男人的天堂| 亚洲人成电影免费在线| 男人舔奶头视频| xxxwww97欧美| 日韩 欧美 亚洲 中文字幕| 内地一区二区视频在线| 亚洲,欧美精品.| 怎么达到女性高潮| 国产一区二区三区在线臀色熟女| 免费看光身美女| 免费人成视频x8x8入口观看| 亚洲中文字幕日韩| 日韩有码中文字幕| av中文乱码字幕在线| 少妇的丰满在线观看| 国产精品香港三级国产av潘金莲| 国产又黄又爽又无遮挡在线| 亚洲精品国产精品久久久不卡| 人人妻人人看人人澡| 国产精品自产拍在线观看55亚洲| 欧美绝顶高潮抽搐喷水| 欧美成人一区二区免费高清观看| 日本黄色视频三级网站网址| bbb黄色大片| 亚洲精品一区av在线观看| 成人鲁丝片一二三区免费| 国产免费男女视频| 偷拍熟女少妇极品色| 少妇的逼水好多| 免费大片18禁| 日韩精品中文字幕看吧| 亚洲五月婷婷丁香| 男人舔奶头视频| 女人被狂操c到高潮| www日本黄色视频网| 熟女少妇亚洲综合色aaa.| 久久婷婷人人爽人人干人人爱| 真实男女啪啪啪动态图| 久久久久久大精品| 特级一级黄色大片| 久久久久国内视频| 人妻夜夜爽99麻豆av| 女警被强在线播放| 男人舔奶头视频| 久久草成人影院| www.色视频.com| 精品久久久久久久久久免费视频| 久久精品综合一区二区三区| 国产av麻豆久久久久久久| 久久久久久久久久黄片| 一级作爱视频免费观看| 欧美成人性av电影在线观看| 国产在视频线在精品| 亚洲成人中文字幕在线播放| 国内精品久久久久久久电影| 亚洲一区二区三区色噜噜| 99国产精品一区二区蜜桃av| 亚洲一区二区三区不卡视频| 哪里可以看免费的av片| 国内精品久久久久久久电影| 每晚都被弄得嗷嗷叫到高潮| 高清毛片免费观看视频网站| 老司机在亚洲福利影院| 51午夜福利影视在线观看| 91在线观看av| 精品久久久久久久毛片微露脸| 国产精品野战在线观看| 国产高清视频在线观看网站| 男女那种视频在线观看| 宅男免费午夜| av黄色大香蕉| 国产主播在线观看一区二区| 蜜桃久久精品国产亚洲av| 色噜噜av男人的天堂激情| 特大巨黑吊av在线直播| av国产免费在线观看| 久久精品国产99精品国产亚洲性色| 最好的美女福利视频网| 国内精品久久久久久久电影| 97碰自拍视频| 非洲黑人性xxxx精品又粗又长| 大型黄色视频在线免费观看| 99精品久久久久人妻精品| 久久精品91蜜桃| 在线观看午夜福利视频| 九九在线视频观看精品| 日本免费a在线| 亚洲午夜理论影院| 淫秽高清视频在线观看| 中文字幕高清在线视频| 久久久久久大精品| 亚洲国产欧美网| 一二三四社区在线视频社区8| xxx96com| 深夜精品福利| 国产v大片淫在线免费观看| 亚洲真实伦在线观看| av女优亚洲男人天堂| 欧美一区二区精品小视频在线| 久久性视频一级片| 亚洲色图av天堂| a级毛片a级免费在线| 免费观看精品视频网站| 国产欧美日韩精品亚洲av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美日韩中文字幕国产精品一区二区三区| 丁香六月欧美| 色吧在线观看| 久久国产精品人妻蜜桃| 久久精品国产自在天天线| 中出人妻视频一区二区| 国产av在哪里看| 中文字幕精品亚洲无线码一区| 午夜福利高清视频| 亚洲人与动物交配视频| 12—13女人毛片做爰片一| 日韩欧美精品免费久久 | 国内精品美女久久久久久| 最近在线观看免费完整版| 一进一出抽搐gif免费好疼| a在线观看视频网站| 白带黄色成豆腐渣| 欧美激情在线99| av福利片在线观看| a在线观看视频网站| 一级黄色大片毛片| 69人妻影院| 国语自产精品视频在线第100页| 欧美成人一区二区免费高清观看| 国产亚洲精品久久久久久毛片| 午夜老司机福利剧场| 国产精品一区二区三区四区免费观看 | 嫩草影院精品99| 国产亚洲精品综合一区在线观看| 亚洲av电影在线进入| 日韩欧美在线乱码| 中文字幕熟女人妻在线| 国产精品99久久久久久久久| 99国产精品一区二区蜜桃av| 麻豆成人av在线观看| 免费观看的影片在线观看| 精品国产超薄肉色丝袜足j| 欧美成狂野欧美在线观看| ponron亚洲| 中文字幕精品亚洲无线码一区| 99国产极品粉嫩在线观看| 亚洲精品456在线播放app | 香蕉久久夜色| 两个人视频免费观看高清| 日韩精品中文字幕看吧| 欧美黑人巨大hd| 成人特级黄色片久久久久久久| 男女之事视频高清在线观看| 色老头精品视频在线观看| 欧美xxxx黑人xx丫x性爽| 日本黄大片高清| 久久久久性生活片| 亚洲美女视频黄频| 成人一区二区视频在线观看| 国产精品自产拍在线观看55亚洲| 亚洲国产精品合色在线| 色播亚洲综合网| 人妻夜夜爽99麻豆av| 一卡2卡三卡四卡精品乱码亚洲| 国产三级黄色录像| 三级男女做爰猛烈吃奶摸视频| 99久久精品国产亚洲精品| 亚洲激情在线av| 国产成+人综合+亚洲专区| 国产精华一区二区三区| 五月伊人婷婷丁香| 麻豆一二三区av精品| 午夜老司机福利剧场| 无遮挡黄片免费观看| 脱女人内裤的视频| 亚洲精华国产精华精| 最好的美女福利视频网| 国内精品久久久久精免费| 国产精品久久久久久人妻精品电影| 久久久久久九九精品二区国产| 丰满人妻熟妇乱又伦精品不卡| 久久久久久大精品| 亚洲 欧美 日韩 在线 免费| 欧美中文日本在线观看视频| 中文字幕人妻丝袜一区二区| 国产伦在线观看视频一区| 禁无遮挡网站| 少妇丰满av| netflix在线观看网站| 成年人黄色毛片网站| 午夜a级毛片| 91在线观看av| 日韩亚洲欧美综合| 少妇丰满av| 亚洲国产日韩欧美精品在线观看 | 激情在线观看视频在线高清| 免费观看的影片在线观看| 国产精品久久视频播放| 又黄又粗又硬又大视频| 天天添夜夜摸| 国产av麻豆久久久久久久| 中文字幕熟女人妻在线| 内射极品少妇av片p| 最近最新免费中文字幕在线| 我的老师免费观看完整版| 国产中年淑女户外野战色| 国产成人系列免费观看| 亚洲第一电影网av| 长腿黑丝高跟| 国产精品99久久久久久久久| 嫩草影院入口|