• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    新型光學活性含氰基三聯(lián)苯液晶聚噻吩合成與分子構(gòu)象

    2010-12-11 09:13:14陳義旺周魏華聶華榮
    物理化學學報 2010年4期
    關鍵詞:主鏈光致發(fā)光構(gòu)象

    諶 烈 陳義旺 姚 凱 周魏華 李 璠 聶華榮

    (南昌大學化學系,高分子研究所,南昌 330031)

    新型光學活性含氰基三聯(lián)苯液晶聚噻吩合成與分子構(gòu)象

    諶 烈 陳義旺*姚 凱 周魏華 李 璠 聶華榮

    (南昌大學化學系,高分子研究所,南昌 330031)

    合成了一種含有長柔性間隔基和氰基三聯(lián)苯液晶基元的發(fā)光性聚噻吩衍生物{—[thiopheneyl—CH2—COO—(CH2)6—O—terphenyl—CN]n—,PT(6)TPhCN}.利用傅里葉變換紅外(FT-IR)光譜、核磁共振(1H NMR)、差示掃描量熱(DSC)儀、偏光顯微鏡(POM)、紫外-可見(UV-Vis)吸收光譜和熒光(PL)光譜對單體和聚合物的結(jié)構(gòu)及性質(zhì)進行了表征.單體都呈現(xiàn)出良好的液晶性能,由于長間隔基的存在,聚合物PT(6)TPhCN也呈現(xiàn)出良好SmAd相.氰基三聯(lián)苯的存在還賦予了聚合物良好的光致發(fā)光性能,同時,長間隔基也有效地降低了分子間的相互作用,進一步增強了聚合物的發(fā)光性能.另外,研究發(fā)現(xiàn),在未引入任何手性元素的情況下,聚合物主鏈在圓二色(CD)光譜中還呈現(xiàn)出明顯的Cotton效應,這可能是由于大體積液晶基元的位阻效應和取向作用,液晶基元環(huán)繞主鏈進行取向的同時誘導聚噻吩主鏈在長程范圍內(nèi)呈螺旋取向.

    光致發(fā)光;液晶共軛聚合物;三聯(lián)苯;聚噻吩;螺旋構(gòu)象

    Combining liquid crystallinity(LC)and luminescence into the polymer,liquid crystalline conjugated polymers(LCCP)are currently drawing interest from the viewpoint of multifunctional electrical and optical materials[1-4].Attracted by the application perspective,recently,a variety of LCCP based on different conjugated main chains have been prepared,which can be endowed with such functional properties as mesomorphism,luminescence,photoconductivity,gas permeability,chain helicity[5-20]. Especially,a polymer with the two electrooptical features(both liquid crystalline and light emitting)is of practical value,which may offer very high carrier mobility and emit polarized light and may find unique applications and stimulate technological innovations in the development of novel electronic and photonic devices[21].Tang et al.[22-23]synthesized a series of polyacetylenes bearing light emitting chromophore with different functional bridges and spacer length,and they found that the light emitting chromo-phore endowed the polymer with high luminescence and the spacer length played an important role in the packing arrangement of the mesogens.

    Polythiophene and its processable derivatives occupy an important position in the study of conjugated polymers.The polythiophenes have many attractive characteristics such as good electrical properties and stability,for application in polymer electroluminescence devices[24].Polythiophene derivatives with LC side chains are one of the most intriguing types of polymer because their useful electrical and optical properties are expected to be controllable via the molecular orientation of LC side chain. Also,it is expected that the orientation of the LC side chain may enhance the main-chain coplanarity due to the spontaneous orientation of the LC group of the side chains.The main-chain orientation can be further improved and therefore results in improved electrical properties.A variety of polythiophenes containing liquid crystalline mesogens and light-emitting chromophores have been prepared[25-34].

    The terphenyl core has a calamitic structure that is compatible with mesomorphic ordering and is well known to give liquid crystals that have high birefringence[35-36].In our pervious studies, we have synthesized a type of polyacetylene and poly(p-phenylene)containing cyanoterphenyl mesogen and found that the cyanoterphenyl mesogen pendants endowed the polymer with good mesomorphism and high luminescence,besides,the energy could be transferred from mesogen to main chain to favor the fluorescence efficiency[37-40].Since polythiophenes have so many attractive characteristics for application,we also synthesized polythiophene PT(0)TPhCN containing cyanoterphenyl mesogen as pendant—[thiophene—CH2—COO—terphenyl—CN]n—(shown in Scheme 1)[41].However,the short spacer between the mesogenic pendant and the polythiophene backbone results in the loss of liquid crystallinity.Thus,in this work,we designed a novel polythiophene bearing cyanoterphenyl mesogen with long flexible spacer length—[thiophene—CH2—COO—(CH2)6—O—terphenyl—CN]n—,and hope that the long relatively flexible spacer could allow the mesogens to undergo thermal transitions in an independent fashion and to maintain its mesomorphism. This article presents the influence of the structure of polythiophene on its properties.A comparison has also been made between the polymers with short spacer and the one with long spacer.Besides,due to the stereoeffect,the bulkly mesogens the backbone probably aligns around the polythiophene back-bone and induces the backbone with helical conformation in the long region.Therefore,the secondary structures of polymers have also been investigated.

    1 Experimental

    1.1 Materials

    Trimethyl borate(99%),n-butyllithium(2.87 mol·L-1in hexane),thiophene-3-acetic acid(98%),6-bromo-1-hexanol(98%), trimethyl borate,4-(4-bromophenyl)phenol(97%),4-bromobenzonitrile(95%),1,3-dicyclohexylcarbodiimine(DCC)(95%),and 4-(dimethylamino)pyridine(DMAP)(99%)and tetrakis(triphenylphosphine)palladiumwerepurchasedfromAlfaAesarandused as received without any further purification.Tetrahy-drofuran (THF)was dried over sodium.Other chemicals were obtained from Shanghai Reagent Co.,Ltd.,and used as received.

    1.2 Techniques

    The nuclear magnetic resonance(NMR)spectra were collected on a Bruker ARX 400 NMR spectrometer with deuterated chloroform or THF or dimethyl sulfoxide(DMSO)as the solvent and with tetramethylsilane(δ=0)as the internal standard.The infrared (IR)spectra were recorded on a Shimadzu IRPrestige-21 Fourier transform infrared(FT-IR)spectrophotometer by drop-casting sample solution on KBr substrates.The ultraviolet-visible(UVVis)spectra of the samples were recorded on a Hitachi UV-2300 spectrophotometer.Fluorescence measurement for photoluminescence(PL)of the polymers was carried out on a Shimadzu RF-5301 PC spectrofluorophotometer with a xenon lamp as the light source.Thegelpermeationchromatography(GPC),so-calledsizeexclusion chromatography(SEC)analysis,was conducted with a Breeze Waters system equipped with a Rheodyne injector,a 1515 Isocratic pump and a Waters 2414 differential re-fractometer using polystyrenes as the standard and THF as the eluent at a flow rate of 1.0 mL·min-1and 40℃through a Styragel column set,StyragelHT3andHT4(19mm×300mm,102-103nm)toseparate molecular weight(Mw)ranging from 102to 106.Thermogravimetricanalysis(TGA)wasperformedonaPerkinElmer TGA 7 for thermogravimetry at a heating rate of 20℃·min-1under nitrogen with a sample mass of 8-10 mg.Differential scanning calorimetry(DSC)was used to determine phase-transition temperatures on a Perkin-Elmer DSC 7 differential scanning calorimeter with a constant heating/cooling rate of 10℃·min-1.Tex-ture observations by polarizing optical microscopy(POM)were made with a Nikon E600POL polarizing optical microscope equipped with an Instec HS 400 heating and cooling stage.The X-ray diffraction(XRD)study of the samples was carried out on a Bruker D8 Focus X-ray diffractometer operating at 30 kV and 20 mA with a copper target(λ=0.154 nm)and at a scanning rate of 1(°)·min-1.Circular dichroism(CD)spectrum was recorded on a JASCO J-810 spectropolarimeter.

    1.3 Synthesis of the monomer

    The synthesis and structures of the monomers are outlined in Scheme 1.All the reactions and manipulations were carried out under nitrogen atmosphere. 1.3.1 2,5-Dibromothiophene-3-acetic acid(1)

    Scheme 1 Illustration of procedures for synthesis of the monomers and their polymerization

    Thiophene-3-acetic acid(10 g,70.3 mmol)was very slowly added to a solution of N-bromosuccinimide,NBS(30.2 g,172 mmol),in 50 mL of DMF by a dropping funnel.After the addition,10 mL of DMF was further added to the reaction mixture and refluxed at 50℃for 20 h under argon atmosphere.The reaction vessel was wrapped by aluminum foil to shield the reaction from light.When the reaction finished,the reaction mixture was allowed to warm to room temperature.The solution was poured into a large amount of saturated sodium sulfate cooled by ice water.The yellow precipitate was filtered off and recrystallized from an ethanol/water mixture to yield product as white needlelike crystal.Yield:63.0%.IR(cm-1):3101,2918, 1707,1415,1327,1232,1016,829,735,632,469.1H NMR (CDCl3,from TMS):δ 3.63(s,2H,CH2),6.95(s,1ArH,BrCCHC).

    1.3.2 4-Cyanobenzeneboronic Acid(2)

    A solution of n-butyllithium(30 mL,2.87 mol·L-1in hexane, 0.086 mol)was added dropwise to a stirred,cooled(-110℃) solution of 4-bromobenzonitrile(15 g,0.082 mol)in dry THF (180 mL)under dry nitrogen.The solution was stirred at-100℃for 1 h and a solution of trimethyl borate 20.8 mL in dry THF (60 mL)was added at-100℃.The solution was allowed to warm to room temperature overnight.About 10%hydrochloric acid was added and the solution was stirred for 1 h at room temperature.The product was extracted into ether and the organic layer was washed with water and dried with MgSO4.The solvent was removed in vacuo and the crude product dissolved in THF and precipitated with n-hexane to give a yellow solid with yield of 70%.

    1.3.3 4-Hydroxy-4′-cyanoterphenyl(3)

    Under dry nitrogen atmosphere a solution of 2.00 g of 4-cyanobenzeneboronic acid(13.6 mmol)in 10 mL of ethanol was added to a solution of 2.75 g of 4-(4-bromophenyl)phenol(97%, 11.02 mmol)and 0.42 g of tetrakis(triphenylphosphine)palladium(0)(99%,0.36 mmol)in 20 mL of benzene and 20 mL of aqueous Na2CO3(2 mol·L-1).The reaction was conducted under reflux overnight.The reaction mixture was then shaken with ethyl acetate and the insoluble parts were filtered off.The organic layer was dried with anhydrous MgSO4,and the solvent was removed by evaporation in vacuo.The crude product was recrystallized from acetone to provide a yellow powder,65%yield.IR (KBr,cm-1):2215(C≡N),3351(—OH).1H NMR(CDCl3):δ 7.73-7.65(m,8H,aromatic),7.53(d,2H,aromatic),6.93(d, aromatic,2H ortho to hydroxyl),4.91(s,1H,—OH).

    1.3.4 4-(6-Hydroxyhexyloxy)-4′-cyanoterphenyl(4)

    Mixing 20 mmol of(3),24 mmol of 6-bromo-1-hexanol,40 mmol of K2CO3and 4.01 mmol of KI in 200 mL of DMF,the reaction mixture was refluxed at 80℃for 24 h.And then cooled and the solvent was removed by evaporation in vacuo.The residue was recrystallized from absolute ethanol to give a light yellowsolidin73%yield.IR(KBr,cm-1):3416,3033,2935,2852, 2228,1600,1491,1258,1047,812.1H NMR(THF-d):δ 7.64-7.77(m,8H,aromatic),7.58-7.62(d,2H,aromatic),6.87-6.89(d, aromatic,2H),4.55(t,1H,—OH),3.89-3.92(t,2H,—CH2OAr—), 3.36-3.39(t,2H,—CH2OOC),1.33-1.72(m,8H,—(CH2)4).

    1.3.5 2,5-Dibromo-3-{[(6-(4-(4′-cyano)terphenyloxy)hexyloxy)carbonyl] methyl}-thiophene(T(6)TPhCN)

    2,5-Dibromothiophene-3-acetic acid(3.43 g,12 mmol)was added to a mixture of(4)(3.71 g,10 mmol),4-(dimethylamino)pyridine,DMAP 1.47 g(12 mmol),and 1,3-dicyclohexylcarbodiimide,DCC (2.46 g,12 mmol),in 200 mL of absolute THF and further stirred for 24 h at room temperature under argon atmosphere.Then the solution was filtered to remove the urea crystals,and the solvent was removed by evaporation.The crude productwaspurifiedbycolumnchromatography(n-hexane/CHCl3volume ratio of 1/4)to afford T(6)TPhCN as white powder.Yield is75%.IR(KBr,cm-1):2948,2862,2228,1731,1592,1483,1007, 810,641.1H NMR(CDCl3):δ 7.74-7.63(m,aromatic,8H),7.58, 7.56(d,aromatic,2H),7.05,7.00(d,aromatic,2H ortho to—O—), 6.98(s,aromatic,1H,BrCCHC),4.15-4.12(t,2H,—CH2—O—Ar),4.03-4.00(t,2H,—CH2—OOC—),3.57(s,2H,—CH2—COO—),1.84-1.42(m,8H,—CH2(CH2)4CH2—).

    1.4 Polymerization

    The polymerization reaction and manipulations were carried out under nitrogen using Schlenk techniques in a vacuum line system or in an inert-atmosphere glovebox(vacuum atmospheres),except for the purification of the polymer,which was done in an open atmosphere.

    A 50 mL three-neck round bottom flask equipped with condenser,rubber septum,nitrogen inlet-outlet and magnetic stirrer was charged under nitrogen with 0.655 g(1.0 mmol)T(6)TPhCN, 0.08 g(0.0304 mmol)PPh3,2.024 g(30.96 mmol)Zn,0.0076 g (0.05 mmol)bpy,0.0064 g(0.05 mmol)NiCl2and 5 mL of dry dimethyl acetamide(DMAC).The reaction was performed at 85℃under nitrogen.The mixture was stirred for 24 h.Then,the polymer was precipitated in excess methanol/HCl mixture,filtered and dried.The polymer was then redissolved in THF and precipitated in methanol.A red-brown solid was obtained.

    PT(6)TPhCN,red-brown solid:IR(KBr,cm-1):2932,2856, 2215,1731,1599,1487,1245,1103,803.1H NMR(DMSO-d6):δ 7.74-7.48(m,10H,aromatic),7.02-6.96(m,aromatic,2H ortho to—O—and 1 H,BrCCHC),4.05(m,2H,—CH2—O—Ar),3.96 (m,2H,—CH2—OOC—),3.50(s,2H,—CH2—COO—),1.69-1.37(m,8H,—CH2(CH2)4CH2—).Weight-average molecular weight(Mw)is 20100;Number-average molecular weight(Mn)is 11500;and Mw/Mn=1.75.

    2 Results and discussion

    2.1 Synthesis of monomer and polymer

    3-Position substituted thiophene is prepared by Suzuki reaction,etherification and esterification,in sequence.The synthetic route of the monomer is shown in Scheme 1.The terphenyl mesogen is obtained via Suzuki reaction.The monomer is synthesized through esterification reaction route in the presence of 1,3-dicyclohexylcarbodimine(DCC)and 4-(dimethylamino)pyridine(DMAP).The reaction goes smoothly,and the product is isolated in high yield near 70%after purifications by silica gel chromatography followed by recrystallization.All the intermediates and final products are thoroughly purified and fully characterized,and satisfactory analysis data are obtained(detailed spectroscopic data for the key intermediates and for all the compounds being given in the Experimental Section).

    The polymerization of 2,5-dibrominated thiophene monomer was carried out via dehalogenative polycondensation,giving poly-(3-position substituted thiophene)derivative,PT(6)TPhCN. The polymer synthesized was fusible and soluble in common organic solvents including tetrahydrofuran(THF),DMAC,DMSO and DMF,etc.Number-average(Mn)and weight-average(Mw) molecular weights of the polymer are summarized in the Experimental Section.The chemical structure of the polymer is confirmed by FT-IR and1H NMR.

    2.2 Structural characterization

    Substituted thiophene and its corresponding polymer are characterized by spectroscopic methods and all the products give satisfactory data corresponding to their expected molecular structures.A typical example of the IR spectra of PT(6)TPhCN is shown in Fig.1.The spectrum of its monomer T(6)TPhCN is also shown in the same figure for comparison.The C=O and C≡N absorption bands of the monomer and polymer are observed at about 1731 and 2228 cm-1,respectively.The strong C—H stretch absorption is located at 3000 cm-1.When the monomer is polymerized by dehalogenative polycondensation, the C—Br bending vibration absorption band(about 500 cm-1) disappears in the spectra of its polymer,which means that the monomer has been polymerized successfully.Fig.2 shows the1H NMR spectrum of the isolated polymer in comparison with that of monomer,which sufficiently supports the structures of the products by the assignments of the signals as described in the experimentalsection.Monomer T(6)TPhCN and its polymer have the similar resonance peaks in their1H NMR spectra.The aromatic H resonance peaks appear in the low magnetic region(δ 7.0-8.0),whereas the aliphatic H resonance peaks in the high magnetic region(δ 1.8-1.3),except the peaks of the near-neighboring aliphatic H to the—O—or—CO—shifted to the middle region(δ 4.0-3.5).All the resonance peaks of the polymer show much broader than that of its monomer,which further confirms the perfect conversion from monomer to polymer.Except the peaks of solvent and water remained in the spectra,no unexpected signals are observed in the spectra of the monomer and polymer,and all the resonance peaks can be assigned to appropriate protons as marked in Fig.2.

    Fig.1 FT-IR spectra of the monomer T(6)TPhCN and polymer PT(6)TPhCN

    2.3 Thermal stability

    Since the formation of mesophases of thermotropic liquid crystals are realized by the application of heat,the thermal stability of the polymer is thus of primary concern.The polymer PT(6)TPhCN exhibited excellent thermal stability.As shown in Fig.3,the polymer PT(6)TPhCN decomposed at a temperature as high as ca 350℃in the thermogravimetric analysis.The thermal stability originates from the“jacket”effect of the terphenyl mesogenic appendages well wrapping the conjugated backbones and protecting the conjugated backbone from the perturbations by heat attack[22].

    2.4 Mesomorphic properties

    Fig.2 1H NMR spectra of the monomer and polymer

    The thermal transition behaviors of the monomer and polymer are examined by differential scanning calorimetry(DSC)and polarized optical microscopy(POM).The polarized optical microscopy textures of the monomer and polymer are displayed in Fig.4.ThemonomerT(6)TPhCN exhibitsopticalanisotropywhen observed by POM,suggesting that the terphenyl mesogens en-dow the compound with thermotropic liquid-crystalline behavior.When the monomer is cooled from its isotropic state,many batonnets emerge from the dark background and grow to bigger domains,leading to the formation of the focal conic texture characteristic of the smectic phase.The birefringent texture also can be observed by reheating the solid states.In our previous study,the polymer PT(0)TPhCN with short aster spacer could not exhibit any optical anisotropy when heated or cooled,indicating that the polymer is completely nonmesomorphic.Because the mesogenic pendant is closely“coupled”with the rigid back-bone, it destroys the packing arrangements of the mesogens and demolishes the stability of the mesophases[37,42].Cheerfully,different from PT(0)TPhCN,with the favoring of flexible long spacer,the PT(6)TPhCN shows bright colorful texture when heating and cooling,and with the aid of XRD analysis the texture is identified with SmAd,indicating that the PT(6)TPhCN is indeed enantiotropic liquid crystalline.This suggests that the polythiophene backbones and the terphenyl mesogens are well“decoupled”and the flexibility of the long spacer allows the mesogen to move together to pack in a regular fashion.

    Fig.3 TGA thermogram of polymer under nitrogen at a heating rate of 20℃·min-1

    To learn more about the thermal transitions of the monomer and polymer,we measured their thermograms under nitrogen on a differential scanning calorimeter(shown in Fig.5).The DSC thermogram of T(6)TPhCN shows two transition peaks at 96.5 and 104.8℃ in the second heating cycle,associated with k-SmAdand SmAd-i transitions,respectively.Their corresponding SmAd-k and i-SmAdtransitions do not exhibited in the first cooling scan,probably due to the fast cooling rate,but,the focal conic texture is obvious under POM,indicating an enantiotropic smecticity.Different from the DSC curve of PT(0)TPhCN which does not show any peaks associated with the liquid phase transition,polymer PT(6)TPhCN with longer flexible spacer length ap-pears two transitions at 209.0 and 289.6℃in the second heating curve,indicating that the longer spacer offers more freedom for the polymer segments and the mesogenic pendants to act separately.But compared to T(6)TPhCN,the temperatures of the two transitions of PT(6)TPhCN are much higher than that of its corresponding monomer.Apparently,the mesogenic pendants are not completely“decoupled”from the polymer main chains,and the“polym er effect”is functioning.The macromolecular chains string the mesogenic pendants together in a comblike fashion, making the mesogens easy to order but difficult to randomize,as argued by other scientists[13].

    Fig.4 Smectic phase textures observed by POM at 102℃for T(6)TPhCN(A)and at 232℃for PT(6)TPhCN(B)under cooling from melt statecooling rate:1℃·min-1

    Fig.5 DSC thermograms of the monomer and polymer recorded under nitrogen during(a)the second heating scans and (b)the first cooling scansscan rate:10℃·min-1

    XRD analysis can provide useful information concerning molecular arrangement,mode of packing,and type of order in a mesophase of a polymeric liquid crystal.WAXD patterns of the polymer and monomer were obtained at room temperature after the samples had been quenched from liquid-crystalline states with liquid nitrogen.The diffractogram of a powder sample can be generally divided into the low-angle Bragg reflections corresponding to the layer spacing of molecular orientational order and the high-angle peaks associated with the liquidlike intermesogenic organization within the layers.The appearance of a broad or sharp peak serves as a qualitative indication of the degree of order[43].T(6)TPhCN shows an typical smectic phase XRD patter consisting of one low-angle peak(2θ=2.28°)and one highangle peak(2θ=21.01°)(Fig.6).The d-spacing derived from the low-angle peak is 3.850 nm,which is excess of the calculated molecular length(l)of T(6)TPhCN in its most extended conformation(l=2.801 nm),but less than the double of molecular length, thus,the T(6)TPhCN shows the nature of SmAdphase with bilayer arrangement,where the mesogens are interdigitated in an antiparallel fashion.The diffractogram of PT(6)TPhCN quenched from 269℃exhibits a broad peak at 2θ=19.99°,from which a dspacing of 0.448 nm is derived from Bragg′s law,occurring in the lateral packing arrangement of the mesogenic pendants.The layer spacing(d)derived from the Bragg reflection at 2θ=2.04° (d=4.271 nm)is longer than the molecular length(l=2.756 nm) of one repeat unit of PT(6)TPhCN at its most extended conformation.Because the d/l ratio is ca 1.5,the bilayer structure is thus an SmAdtype as schematically shown in Fig.7,in which the mesogens arrange in an antiparallel overlapping interdigitated manner.In the mid-angle region,the diffractogram of the polymer PT(6)TPhCN shows a weak reflection at 2θ=5.52°,from which a d-spacing of 1.597 nm.The calculated length for the interdigitated(cyanoterphenylyl)oxy groups in the proposed bilayer structure of PT(6)TPhCN is 1.516 nm.The reflection peak at 2θ=5.52°thus may be related to the regions,in which the rigids (cyanoterphenylyl)oxy are interdigitated and well packed.The results are as well as identified with the POM and DSC.

    Fig.6 XRD patterns of the monomer and polymer quenched from their liquid crystalline states

    Fig.7 Proposed bilayer packing arrangement of PT(6)TPhCN within the SmAdlayer with the smectogens interdigitating in antiparallel fashion

    2.5 Electronic absorption and photoluminescence

    The electronic absorption spectra and photoluminescence of CH2Cl2solutions of the polymer PT(6)TPhCN and monomer T(6)TPhCN are given in Fig.8 and Fig.9,respectively.In order to make a comparison between the two polymers,the spectra of the polymer PT(0)TPhCN and its monomer T(0)TPhCN have also been given.Due to the cyanoterphenyl chromophore,the monomers and polymers have the similar absorption wavelengths at about 300 nm,which are assignable to the π-π*bands of the cyanoterphenyl mesogenic pendants.The absorptions of the polymers are stronger than that of its corresponding monomers and the absorption in the long-wavelength visible spectral region is thus obviously from the polythiophene backbone.The low absorptivity of the polymer PT(0)TPhCN main chain may have been due to the reduction of the effective conjugation lengths along the polymer backbone caused by steric effect.The intensity of PT(6)TPhCN in the long-wavelength region is much stronger than that of PT(0)TPhCN,which is in agreement with our previousobservations[37,39]that the longer spacer reduces steric crowding and allows backbone to be more coplanar than the short spacer,thus resulting in the observed hyperchromic effect.

    Since polythiophenes derivatives bear chromophoric pendant groups,it is of interest to check the effects of the structural variables on luminescence behaviors of polymers.Upon photoexcitation at 300 nm,the two strong light emitting bands at 380 and 425 nm observed for the solution of PT(0)TPhCN are assigned to the emitting center of the cyanoterphenyl mesogenic core and thatoftheconjugated polythiophene main chain(shown in Fig.9), which suggests that the emitting center is both the cyanoterphenyl mesogenic pendant and the backbone.The light emitting bands of the mesogens and backbones also emerge in the PL spectrum of the PT(6)TPhCN.As can be seen from the spectra shown in Fig.8 and Fig.9,the thiophene backbone absorbs in a spectral region where its cyanoterphenyl pendant emits.Therefore,the excitation pumps its cyanoterphenyl pendant to the excited state,the UV light emitted from the pendant is reabsorbed by the backbone,suggesting that energy transfer from the cyanoterphenyl pendants to the backbone favors the stronger lightemitting of backbone.The absorption of the PT(6)TPhCN with the longer spacer inserted between the backbone and mesogenic pendant is about 30 nm red-shifted than that of PT(0)TPhCN, even extending to near 600 nm.The result is in agreement with the Tang′s observation[17]that the longer flexible spacers have better keep the conjugated backbone apart and further enhance stronger photolumincescence.

    Fig.8 UV-Vis spectra of the monomers and polymers in CH2Cl2solutions

    Fig.9 Photoluminescence spectra of polymers in CH2Cl2 solutionsc=0.125 mmol·L-1;excitation wavelength:300 nm

    2.6 Secondary structure of the polymers

    Synthetic helical polymers with π-conjugation along the main chains is under hot pursuits in recent years due to the challenge they offer in polymer chemistry as well as their wide practical and potential applications,such as optical polarizing films,chiral stationary phases,asymmetric electrodes,nisotropic molecular wires,fluorescent chemosensors[44].Generally,helical conjugated polymers are obtained by the introduction of chiral substituents,polymerization using a chiral catalystic system,or preparation in a chiral liquid crystalline solvent,a new method reported by Goto[45].

    Fig.10 CD spectra of the polymers measured in THF c=0.25 mmol·L-1

    As we mentioned above,the heavy bulkly mesogenic pendants of PT(0)TPhCN are closely“coupled”with the rigid backbone and even those of PT(6)TPhCN with longer spacers are not completely“decoupled”,that is,to avoid steric crowding,the heavy bulkly mesogens probably rotate around the main chain to induce the main chain with helical tendency.It is interest of check how the heavy bulk mesogen exert its influence on the backbone,thus,the CD spectrum is measured to prove our assumption.TheCDspectraofPT(0)TPhCNandPT(6)TPhCN measured in THF is shown in Fig.10.Although there have no any chiral groups/center in the structures of the polymers,PT(0)TPhCN shows several negative CD bands at 284,293,and 313 nm,while PT(6)TPhCN exhibits several positive Cotton effect at 278,289, 300,and 317 nm,which unambiguously confirms that these polymers adopt a helical conformation with a preferred screw sense.Due to no chiral groups existing in the polymers,thus the helical conformation must originate from the backbone.Therefore,introducing the heavy bulky as the pendant linked to the backbone will be a novel charming method to obtain helical polymers.

    3 Conclusions

    In this work,we designed and synthesized a novel polythiophene,and introduced the chromophoric cyanoterphenyl mesogenic pendant onto the polythiophene main chain with long flexible spacer length.The effects of the structural variations on the chemical and physical properties of the monomer and polymer were investigated.Owning to the protective jacket effect contributed by cyanoterphenyl mesogenic pendant,the polymer is thermally very stable.The long flexible spacer length is in favor of the mesomorphic properties,the UV absorption,and photoluminescence of the polymers.

    A significant and interesting finding also can be observed in this type of polymers:in order to reduce the repellent from steric crowding,the cyanoterphenyl mesogen pendant orientating around the skeleton can force the main chain to be helical conformation in the long region.Thus,without using any chiral element,we can obtain helical polymers easily only by introducing the heavy bulky as the pendant linked to the backbone.Understanding the relationship between the structure and properties may widen and deepen our knowledge on how to design the molecular structure and may provide us with a newly way to obtain polymers with the helical conformation.

    1 Kuroda,H.;Goto,H.;Akagi,K.;Kawaguchi,A.Macromolecules, 2002,35:1307

    2 Burroughes,J.H.;Bradley,D.D.C.;Brown,A.R.;Marks,R.N.; Mackay,K.;Friend,R.H.;Burns,P.L.;Holmes,A.B.Nature, 1990,347:539

    3 Bowman,D.;Mattes,B.R.Synth.Met.,2005,154:29

    4 Lee,K.;Cho,S.;Park,S.H.;Heeger,A.J.;Lee,C.W.;Lee,S.H. Nature,2006,441:65

    5 Yuan,W.Z.;Sun,J.Z.;Dong,Y.;Haeussler,M.;Yang,F.;Xu,H. P.;Qin,A.;Lam,J.W.Y.;Zheng,Q.;Tang,B.Z.Macromolecules, 2006,39:8011

    6 Akagi,K.;Guo,S.;Mori,T.;Goh,M.;Piao,G.;Kyotani,M.J.Am. Chem.Soc.,2005,127:14647

    7 Xing,C.;Lam,J.W.Y.;Zhao,K.;Tang,B.Z.J.Polym.Sci.APolym.Chem.,2008,46:2960

    8 Zhou,J.L.;Chen,X.F.;Fan,X.H.;Chai,C.P.;Lu,C.X.;Zhao, X.D.;Pan,Q.W.;Tang,H.Y.;Gao,L.C.;Zhou,Q.F.J.Polym. Sci.A-Polym.Chem.,2006,44:4532

    9 Sanda,F.;Araki,H.;Masuda,T.Macromolecules,2004,37:8510

    10 Lai,L.M.;Lam,J.W.Y.;Qin,A.;Dong,Y.;Tang,B.Z.J.Phys. Chem.B,2006,110:11128

    11 Li,B.S.;Kang,S.Z.;Cheuk,K.K.L.;Wan,L.;Ling,L.;Bai,C.; Tang,B.Z.Langmuir,2004,20:7598

    12 Yuan,W.Z.;Mao,Y.;Zhao,H.;Sun,J.Z.;Xu,H.P.;Jin,J.K.; Zheng,Q.;Tang,B.Z.Macromolecules,2008,41:701

    13 Yuan,W.Z.;Qin,A.;Lam,J.W.Y.;Sun,J.Z.;Dong,Y.; Haeussler,M.;Liu,J.;Xu,H.P.;Zheng,Q.;Tang,B.Z. Macromolecules,2007,40:3159

    14 Percec V.;Asandei,A.D.;Hill,D.H.;Crawford,D. Macromolecules,1999,32:2597

    15 Soto,J.P.;Diaz,F.R.;Valle,M.A.;Nunez,C.M.;Bernede,J.C. Euro.Polym.J.,2006,42:935

    16 Zhao,X.;Hu,X.;Zheng,P.J.;Gan,L.H.;Lee,C.K.P.Thin Solid Films,2005,477:88

    17 Lam,J.W.Y.;Dong,Y.;Kwok,H.S.;Tang,B.Z. Macromolecules,2006,39:6997

    18 Suda,K.;Akagi,K.J.Polym.Sci.A-Polym.Chem.,2008,46:

    3591

    19 Goto,H.;Dai,X.;Narihiro,H.;Akagi,K.Macromolecules,2004, 37:2353

    20 Goto,H.;Dai,X.;Ueoka,T.;Akagi,K.Macromolecules,2004, 37:4783

    21 O′Neill,M.;Kelly,S.M.Adv.Mater.,2003,15:1135

    22 Lam,J.W.Y.;Dong,Y.;Cheuk,K.K.L.;Luo,J.;Xie,Z.;Kwok, H.S.;Mo,Z.;Tang,B.Z.Macromolecules,2002,35:1229

    23 Dong,Y.;Lam,J.W.Y.;Han.P.;Cheuk,K.K.L.;Kwok,H.S.; Tang,B.Z.Macromolecules,2004,37:6408

    24 Ravichandar,R.;Thelakkat,M.;Somanathan,N.J.Fluoresc., 2008,18:891

    25 Kijima,M.Akagi,K.;Shirakawa,H.Synth.Met.,1997,84:313

    26 Sohn,H.S.;Yoon,Y.S.;Lee,J.C.Synthsis and characterization of novel polythiophene derivatives:the effect of side chain hydrophilicity on the mesomorphic behaviors of the polythiophene. Abstracts of Papers 236th ACS National Meeting,Philadelphia, PA,United States,August 17-21,2008:468

    27 Dai,X.M.;Narihiro,H.;Goto,H.;Akagi,K.;Yokoyama,H.Synth. Met.,2001,119:397

    28 Jin,S.H.;Lee,H.J.;Sun,Y.K.;Kim,H.D.;Koh,K.N.;Gal,Y. S.;Park,D.K.Euro.Polym.J.,1999,35:89

    29 Goto,H.;Akagi,K.;Dai,X.;Narihiro,H.Ferroelectrics,2007, 348:149

    30 Osaka,I.;Shibata,S.;Toyoshima,R.;Akagi,K.;Shirakawa,H. Synth.Met.,1999,102:1437

    31 Dai,X.M.;Goto,H.;Akagi,K.;Shirakawa,H.Synth.Met.,1999, 102:1291

    32 Toyoshima,R.;Narita,M.;Akagi,K.;Shirakawa,H.Synth.Met., 1995,69:289

    33 Hiroyuki,K.;Fumio,S.;Takashi,M.;Naoyuki,K.Polym.J., 2003,35:945

    34 Radhakrishnan,S.;Somanathan,N.;Narashimhaswamy,T.; Thelakkat,M.;Schmidt,H.W.J.Therm.Anal.Calor.,2006,85: 2433

    35 Hird,M.;Toyne,K.J.;Gray,G.W.;Day,S.E.;McDonnell,D.G. Liq.Cryst.,1993,15:122

    36 Goulding,M.;Green,S.;Parri,O.;Coates,D.Mol.Cryst.Liq. Cryst.,1995,265:27

    37 Zhou,D.;Chen,Y.W.;Chen,L.;Zhou,W.H.;He,X.H. Macromolecules,2009,42:1454

    38 Chen,L.;Chen,Y.W.;Zhou,W.H.;He,X.H.Synth.Met.,2009, 159:576

    39 Chen,L.;Chen,Y.W.;Yao,K.;Zhou,W.H.;Li,F.;Chen,L.;Hu, R.;Tang,B.Z.Macromolecules,2009,42:5053

    40 Chen,L.;Chen,Y.W.;Yao,K.;Zhou,W.H.;Li,F.;Chen,L.;Hu, R.;Tang,B.Z.J.Polym.Sci.A-Polym.Chem.,2009,47:4723

    41 Chen,L.;Chen,Y.W.;Zhou,W.H.;He,X.H.Mol.Cryst.Liq. Cryst.,2010,518:68

    42 Chen,L.;Chen,Y.W.;Zha,D.J.;Yang,Y.J.Polym.Sci.APolym.Chem.,2006,44:2499

    43 Okano,Y.;Masuda,T.;Higashimura,T.J.Polym.Sci.Polym. Chem.Ed.,1985,23:2527

    44 Lam,J.W.Y.;Tang,B.Z.Acc.Chem.Res.,2005,38:745

    45 Goto,H.Macromolecules,2007,40:1377

    October 26,2009;Revised:December 16,2009;Published on Web:February 8,2010.

    Synthesis and Helical Conformation of New Optically Active Liquid Crystalline Polythiophene Containing Cyanoterphenyl Mesogen Pendant

    CHEN Lie CHEN Yi-Wang*YAO Kai ZHOU Wei-Hua LI Fan NIE Hua-Rong
    (Institute of Polymers,Department of Chemistry,Nanchang University,Nanchang 330031,P.R.China)

    A novel liquid crystalline(LC)polythiophene bearing cyanoterphenyl mesogenic pendants with a long flexiblespacer{—[thiophene—CH2—COO—(CH2)6—O—terphenyl—CN]n—,PT(6)TPhCN}wasdesignedandsynthesized. Structures of the monomer and the polymer were characterized by nuclear magnetic resonance(NMR)and Fourier transform infrared(FT-IR)spectroscopy while the liquid crystalline and other properties were evaluated with thermogravimetry,differential scanning calorimetry(DSC),polarized optical microscopy(POM),ultraviolet visible(UV-Vis) spectroscopy,and photoluminescence(PL).The monomer shows enantiotropic smectic phases during the heating and cooling processes.Because of the long flexible spacer,the polymer PT(6)TPhCN exhibits a colorful SmAdmesogenic phase texture.The cyanoterphenyl group results in the polymer having good photoluminescence.The spacer length also greatly influences the UV absorption and photoluminescence behavior of the polymers.A longer spacer may better segregate the backbone,which effectively enhances the stronger photoluminescence emission.More interestingly,without introducing any chiral groups,the polymer exhibits an obvious Cotton effect on the circular dichroism(CD)spectra,which results from the predominant screw sense of the backbone.This is probably due to the heavy bulky mesogenic pendant rotating around the polythiophene backbone and producing a backbone with a helical conformation in the long wavelength region.

    Photoluminescence;Liquid crystalline conjugated polymer;Cyanoterphenyl;Polythiophene; Helical conformation

    *Corresponding author.Email:ywchen@ncu.edu.cn;Tel/Fax:+86-791-3969561.

    The project was supported by the National Natural Science Foundation of China(50773029,50902067)and Natural Science Foundation of Jiangxi Province,China(2007GZC1727,2008GQH0046).

    國家自然科學基金(50773029,50902067)和江西省自然科學基金(2007GZC1727,2008GQH0046)資助項目

    陳義旺,1996-1999年在北京大學化學與分子工程學院學習,獲得理學博士學位.

    O644;O631.1+1

    猜你喜歡
    主鏈光致發(fā)光構(gòu)象
    “鹵代烴”知識概要
    中學化學(2024年1期)2024-05-26 13:20:27
    光致發(fā)光與變色纖維發(fā)展趨勢
    WDC主鏈正式啟動創(chuàng)世區(qū)塊已誕生
    有機化合物命名易錯題直擊
    “烷烴”的五字命名方針
    中學化學(2016年12期)2017-02-05 17:24:23
    一種一枝黃花內(nèi)酯分子結(jié)構(gòu)與構(gòu)象的計算研究
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點的水熱法合成及其光致發(fā)光性能
    One-pot facile synthesis of highly photoluminescent graphene quantum dots with oxygen-rich groups
    玉米麩質(zhì)阿拉伯木聚糖在水溶液中的聚集和構(gòu)象
    應用化工(2014年7期)2014-08-09 09:20:23
    Cu2+/Mn2+存在下白花丹素對人血清白蛋白構(gòu)象的影響
    99久久精品国产亚洲精品| 99国产精品一区二区蜜桃av | 天堂动漫精品| 亚洲精品美女久久久久99蜜臀| 国产精品国产av在线观看| 国产亚洲一区二区精品| 精品久久久久久久久久免费视频 | 亚洲精品美女久久久久99蜜臀| 人人妻,人人澡人人爽秒播| 又黄又粗又硬又大视频| 国产高清国产精品国产三级| bbb黄色大片| 中文字幕另类日韩欧美亚洲嫩草| av视频免费观看在线观看| 超碰97精品在线观看| 韩国av一区二区三区四区| 成人三级做爰电影| 欧美成狂野欧美在线观看| 大陆偷拍与自拍| av视频免费观看在线观看| 好男人电影高清在线观看| 女性被躁到高潮视频| 夜夜躁狠狠躁天天躁| 免费在线观看亚洲国产| 麻豆av在线久日| 欧美日韩中文字幕国产精品一区二区三区 | 午夜91福利影院| 夜夜爽天天搞| 国产精品国产av在线观看| www.自偷自拍.com| 亚洲精品一卡2卡三卡4卡5卡| 看片在线看免费视频| 欧美日韩亚洲国产一区二区在线观看 | 久久人妻福利社区极品人妻图片| 久久精品熟女亚洲av麻豆精品| 成年版毛片免费区| 亚洲人成伊人成综合网2020| 国产精品偷伦视频观看了| 视频区欧美日本亚洲| 好看av亚洲va欧美ⅴa在| 国产精品久久视频播放| 国产精品久久久久久精品古装| av片东京热男人的天堂| 久久久精品免费免费高清| 日日夜夜操网爽| 男女之事视频高清在线观看| 在线观看免费视频日本深夜| 国产成人av教育| 午夜福利欧美成人| 人妻丰满熟妇av一区二区三区 | 日本黄色日本黄色录像| 欧美乱码精品一区二区三区| 久久久久久久久久久久大奶| 久久久精品区二区三区| 丝袜美足系列| 久久久久精品国产欧美久久久| 国产成人一区二区三区免费视频网站| 人成视频在线观看免费观看| 黄色视频不卡| 欧美黑人精品巨大| 日韩制服丝袜自拍偷拍| 侵犯人妻中文字幕一二三四区| 看黄色毛片网站| 国内久久婷婷六月综合欲色啪| 亚洲人成伊人成综合网2020| 久久精品亚洲av国产电影网| 亚洲av第一区精品v没综合| 日本黄色日本黄色录像| 久久精品aⅴ一区二区三区四区| 91字幕亚洲| 在线观看免费视频日本深夜| 老司机深夜福利视频在线观看| 黄片播放在线免费| 成人三级做爰电影| 久久久精品国产亚洲av高清涩受| 国产精品 国内视频| 久久国产精品大桥未久av| 精品乱码久久久久久99久播| 在线观看一区二区三区激情| 亚洲国产欧美日韩在线播放| 老司机在亚洲福利影院| 女人爽到高潮嗷嗷叫在线视频| 人人澡人人妻人| 欧美另类亚洲清纯唯美| 三级毛片av免费| 制服诱惑二区| 久久亚洲真实| 久久中文字幕人妻熟女| 十八禁网站免费在线| 国产xxxxx性猛交| 国产精品影院久久| 美女视频免费永久观看网站| 侵犯人妻中文字幕一二三四区| 久久精品亚洲熟妇少妇任你| 99久久99久久久精品蜜桃| 9色porny在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲一区二区三区欧美精品| 最近最新中文字幕大全免费视频| 成人免费观看视频高清| 亚洲第一青青草原| 精品视频人人做人人爽| 丝瓜视频免费看黄片| 动漫黄色视频在线观看| 亚洲人成77777在线视频| 久久香蕉精品热| 欧美一级毛片孕妇| 午夜福利在线免费观看网站| 国产亚洲一区二区精品| 亚洲国产中文字幕在线视频| 老司机影院毛片| 国产成人欧美| 伦理电影免费视频| 亚洲av日韩在线播放| 女人久久www免费人成看片| 一级a爱视频在线免费观看| 少妇的丰满在线观看| 国产精品秋霞免费鲁丝片| av福利片在线| 久久香蕉激情| 波多野结衣一区麻豆| 嫁个100分男人电影在线观看| 一级,二级,三级黄色视频| 欧美日韩亚洲综合一区二区三区_| 90打野战视频偷拍视频| 女人久久www免费人成看片| 欧美日本中文国产一区发布| 国产精品免费一区二区三区在线 | 99国产综合亚洲精品| 人人妻人人澡人人爽人人夜夜| 亚洲熟妇中文字幕五十中出 | 亚洲视频免费观看视频| 亚洲片人在线观看| 日韩精品免费视频一区二区三区| 精品久久久久久,| 在线视频色国产色| 涩涩av久久男人的天堂| 国产日韩欧美亚洲二区| 精品人妻1区二区| 涩涩av久久男人的天堂| videos熟女内射| 国产男靠女视频免费网站| 日本五十路高清| 亚洲伊人色综图| 国产精品影院久久| 精品亚洲成a人片在线观看| 极品少妇高潮喷水抽搐| 国产日韩欧美亚洲二区| 免费黄频网站在线观看国产| 村上凉子中文字幕在线| 波多野结衣av一区二区av| 亚洲欧美色中文字幕在线| 国产xxxxx性猛交| 亚洲精品久久成人aⅴ小说| 久久久精品免费免费高清| 国产精品久久久人人做人人爽| 久久天堂一区二区三区四区| 99热只有精品国产| 高清视频免费观看一区二区| 99国产精品免费福利视频| 精品人妻熟女毛片av久久网站| 19禁男女啪啪无遮挡网站| 亚洲中文av在线| 99在线人妻在线中文字幕 | 搡老乐熟女国产| 9色porny在线观看| 精品国内亚洲2022精品成人 | 黄网站色视频无遮挡免费观看| 黄色成人免费大全| 国产精品亚洲一级av第二区| 亚洲精品在线美女| 国产精品综合久久久久久久免费 | 亚洲av日韩精品久久久久久密| 午夜福利在线免费观看网站| 久久人妻福利社区极品人妻图片| 亚洲七黄色美女视频| 亚洲五月天丁香| 欧美日韩成人在线一区二区| 国产av又大| 在线观看免费午夜福利视频| 日韩一卡2卡3卡4卡2021年| 久久久久视频综合| 欧美国产精品一级二级三级| 国产高清国产精品国产三级| 人妻丰满熟妇av一区二区三区 | 身体一侧抽搐| 91字幕亚洲| 国产精品久久久av美女十八| 久热这里只有精品99| 亚洲成av片中文字幕在线观看| 久久久久久久午夜电影 | 成人亚洲精品一区在线观看| 大陆偷拍与自拍| 免费人成视频x8x8入口观看| 一级,二级,三级黄色视频| 青草久久国产| 亚洲第一av免费看| 午夜福利一区二区在线看| 高清视频免费观看一区二区| 成人免费观看视频高清| 欧美日韩乱码在线| 亚洲黑人精品在线| 国产精华一区二区三区| 国产精品美女特级片免费视频播放器 | 如日韩欧美国产精品一区二区三区| 久9热在线精品视频| 日韩有码中文字幕| 亚洲一区高清亚洲精品| √禁漫天堂资源中文www| 精品第一国产精品| 亚洲中文日韩欧美视频| 亚洲一区中文字幕在线| 欧美成人午夜精品| 自线自在国产av| 99re在线观看精品视频| 午夜免费观看网址| 久久精品人人爽人人爽视色| 亚洲精品中文字幕一二三四区| 久久精品成人免费网站| 99精品久久久久人妻精品| 亚洲成国产人片在线观看| 黑人猛操日本美女一级片| 黄色怎么调成土黄色| 欧美乱色亚洲激情| 女同久久另类99精品国产91| 999久久久国产精品视频| 国产成人系列免费观看| 亚洲,欧美精品.| 午夜福利免费观看在线| 交换朋友夫妻互换小说| 免费观看a级毛片全部| 久久精品国产99精品国产亚洲性色 | 久久精品国产99精品国产亚洲性色 | √禁漫天堂资源中文www| xxxhd国产人妻xxx| 香蕉久久夜色| 一边摸一边做爽爽视频免费| 999久久久国产精品视频| 国产不卡一卡二| 日本黄色日本黄色录像| 久久精品国产亚洲av高清一级| 在线观看免费日韩欧美大片| 国产区一区二久久| av天堂久久9| 女人爽到高潮嗷嗷叫在线视频| 亚洲专区国产一区二区| 老熟女久久久| 国产免费av片在线观看野外av| 女性生殖器流出的白浆| 亚洲国产精品一区二区三区在线| 成年人黄色毛片网站| 成人国语在线视频| 中文字幕最新亚洲高清| 9191精品国产免费久久| 国产精品1区2区在线观看. | 午夜福利,免费看| 欧美激情高清一区二区三区| a级毛片在线看网站| 久久久精品国产亚洲av高清涩受| www.熟女人妻精品国产| 亚洲欧美一区二区三区久久| 午夜两性在线视频| 国产日韩欧美亚洲二区| 亚洲男人天堂网一区| 黄频高清免费视频| 久9热在线精品视频| 免费久久久久久久精品成人欧美视频| 国产激情欧美一区二区| 成年版毛片免费区| 亚洲伊人色综图| 80岁老熟妇乱子伦牲交| 99精国产麻豆久久婷婷| 国产色视频综合| 国产亚洲欧美精品永久| 两个人看的免费小视频| 超碰成人久久| 男人舔女人的私密视频| 久久天堂一区二区三区四区| 免费观看人在逋| 久9热在线精品视频| 多毛熟女@视频| 亚洲专区字幕在线| 一进一出抽搐gif免费好疼 | 无遮挡黄片免费观看| 免费在线观看完整版高清| 久久久久久久精品吃奶| 日本撒尿小便嘘嘘汇集6| 夜夜躁狠狠躁天天躁| 欧美日韩av久久| 精品亚洲成国产av| 欧美激情极品国产一区二区三区| 在线观看午夜福利视频| 国产单亲对白刺激| 久久青草综合色| 黄色成人免费大全| 午夜影院日韩av| 一二三四社区在线视频社区8| 一级片免费观看大全| 国产欧美日韩精品亚洲av| 叶爱在线成人免费视频播放| 99香蕉大伊视频| 亚洲欧洲精品一区二区精品久久久| 国产成+人综合+亚洲专区| 婷婷成人精品国产| 欧美午夜高清在线| 日本a在线网址| 免费观看a级毛片全部| 在线播放国产精品三级| 中文字幕精品免费在线观看视频| 12—13女人毛片做爰片一| 一进一出好大好爽视频| 最近最新中文字幕大全免费视频| 午夜老司机福利片| 99精品在免费线老司机午夜| 国产精品免费视频内射| av线在线观看网站| 十八禁网站免费在线| 亚洲一区二区三区欧美精品| 亚洲成国产人片在线观看| 国产成人精品久久二区二区免费| 国产99白浆流出| 国产一区有黄有色的免费视频| 亚洲中文av在线| 麻豆国产av国片精品| 国产高清videossex| 国产精品乱码一区二三区的特点 | 午夜精品久久久久久毛片777| 大片电影免费在线观看免费| 无限看片的www在线观看| www.自偷自拍.com| 国产欧美亚洲国产| 如日韩欧美国产精品一区二区三区| 成人18禁在线播放| 曰老女人黄片| 啦啦啦免费观看视频1| 香蕉丝袜av| 亚洲成a人片在线一区二区| 成人精品一区二区免费| 老熟妇仑乱视频hdxx| 99国产精品免费福利视频| 欧美亚洲 丝袜 人妻 在线| 亚洲精品国产一区二区精华液| 欧美 亚洲 国产 日韩一| 男女午夜视频在线观看| 免费高清在线观看日韩| 精品无人区乱码1区二区| 啦啦啦在线免费观看视频4| 丝袜在线中文字幕| 91精品三级在线观看| 91国产中文字幕| 丰满人妻熟妇乱又伦精品不卡| 下体分泌物呈黄色| avwww免费| 日本a在线网址| 日本vs欧美在线观看视频| 9191精品国产免费久久| 乱人伦中国视频| 亚洲精品国产精品久久久不卡| 桃红色精品国产亚洲av| 成人18禁在线播放| 久久国产精品影院| 他把我摸到了高潮在线观看| 亚洲国产欧美一区二区综合| 夫妻午夜视频| 变态另类成人亚洲欧美熟女 | 国产激情久久老熟女| 亚洲午夜精品一区,二区,三区| 一a级毛片在线观看| 性色av乱码一区二区三区2| 一进一出抽搐动态| 日日摸夜夜添夜夜添小说| 亚洲专区中文字幕在线| 久久精品人人爽人人爽视色| 国产欧美日韩综合在线一区二区| 日日夜夜操网爽| 动漫黄色视频在线观看| www.999成人在线观看| 如日韩欧美国产精品一区二区三区| 黄色怎么调成土黄色| 免费在线观看影片大全网站| 亚洲av成人av| 亚洲一卡2卡3卡4卡5卡精品中文| 丁香六月欧美| av线在线观看网站| 国内毛片毛片毛片毛片毛片| 成人国语在线视频| av不卡在线播放| 啦啦啦免费观看视频1| 男女免费视频国产| 国产成人一区二区三区免费视频网站| 高清av免费在线| 亚洲精品成人av观看孕妇| 高清视频免费观看一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 成人精品一区二区免费| 村上凉子中文字幕在线| 男女下面插进去视频免费观看| svipshipincom国产片| 中文亚洲av片在线观看爽 | 日韩欧美在线二视频 | 91av网站免费观看| 久久久国产一区二区| 女同久久另类99精品国产91| 亚洲精品美女久久久久99蜜臀| 亚洲人成电影免费在线| 99久久99久久久精品蜜桃| 国产在线观看jvid| 视频在线观看一区二区三区| 高潮久久久久久久久久久不卡| 大型黄色视频在线免费观看| 99精国产麻豆久久婷婷| 欧美成人免费av一区二区三区 | 欧美在线黄色| 午夜福利在线观看吧| 免费观看精品视频网站| 国产精品综合久久久久久久免费 | 99热网站在线观看| 欧美 亚洲 国产 日韩一| 另类亚洲欧美激情| 波多野结衣一区麻豆| 久久精品国产综合久久久| 国产不卡一卡二| 久久这里只有精品19| 老司机亚洲免费影院| 国产欧美日韩一区二区三| 午夜精品久久久久久毛片777| 欧美日韩国产mv在线观看视频| 极品少妇高潮喷水抽搐| 日本a在线网址| 高清在线国产一区| 老司机靠b影院| 欧美日韩亚洲综合一区二区三区_| 亚洲avbb在线观看| 欧美日韩黄片免| 欧美日韩中文字幕国产精品一区二区三区 | 精品久久久久久电影网| 精品卡一卡二卡四卡免费| 国产在线观看jvid| 这个男人来自地球电影免费观看| 久久久国产成人精品二区 | 欧美日韩成人在线一区二区| 亚洲成国产人片在线观看| 国产精品一区二区精品视频观看| 亚洲国产精品合色在线| 欧美+亚洲+日韩+国产| 免费在线观看完整版高清| 99国产精品一区二区蜜桃av | 一本大道久久a久久精品| 飞空精品影院首页| 久久天堂一区二区三区四区| 大香蕉久久成人网| 久久精品国产综合久久久| 两个人免费观看高清视频| 在线观看日韩欧美| 久久精品亚洲熟妇少妇任你| 免费在线观看完整版高清| 免费在线观看亚洲国产| 777久久人妻少妇嫩草av网站| 欧美日本中文国产一区发布| 国产成人欧美在线观看 | 母亲3免费完整高清在线观看| 精品国产乱子伦一区二区三区| 亚洲美女黄片视频| 嫁个100分男人电影在线观看| 亚洲午夜理论影院| 国产精品久久久人人做人人爽| 国产精品成人在线| 久久 成人 亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 最近最新免费中文字幕在线| 怎么达到女性高潮| av中文乱码字幕在线| 一夜夜www| 国产aⅴ精品一区二区三区波| 少妇粗大呻吟视频| 一个人免费在线观看的高清视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产视频一区二区在线看| 美女高潮到喷水免费观看| 777米奇影视久久| 激情视频va一区二区三区| 久久久国产精品麻豆| 婷婷丁香在线五月| 一区二区三区激情视频| 露出奶头的视频| 欧洲精品卡2卡3卡4卡5卡区| 热re99久久精品国产66热6| 黄色视频,在线免费观看| 久久久国产一区二区| 超碰97精品在线观看| 国产精品一区二区在线观看99| 熟女少妇亚洲综合色aaa.| 天堂俺去俺来也www色官网| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品久久久人人做人人爽| 人人妻人人澡人人看| 下体分泌物呈黄色| 日本黄色日本黄色录像| 夜夜夜夜夜久久久久| 亚洲欧美精品综合一区二区三区| 国产亚洲欧美在线一区二区| www.熟女人妻精品国产| 村上凉子中文字幕在线| 男人操女人黄网站| 午夜激情av网站| 亚洲九九香蕉| 亚洲 欧美一区二区三区| 日韩欧美一区视频在线观看| 女警被强在线播放| 国产视频一区二区在线看| 中文字幕人妻丝袜制服| 亚洲精品av麻豆狂野| 一进一出好大好爽视频| 久久精品国产99精品国产亚洲性色 | 国产精品亚洲一级av第二区| 中文字幕人妻丝袜制服| 一级毛片精品| 亚洲精品一二三| 欧美日韩亚洲国产一区二区在线观看 | 亚洲三区欧美一区| 大型av网站在线播放| 亚洲欧美一区二区三区久久| 精品人妻熟女毛片av久久网站| 丰满人妻熟妇乱又伦精品不卡| 久久久国产欧美日韩av| 国产精品美女特级片免费视频播放器 | 亚洲情色 制服丝袜| 啦啦啦免费观看视频1| 精品久久久久久电影网| 老汉色∧v一级毛片| 99riav亚洲国产免费| 色老头精品视频在线观看| 大陆偷拍与自拍| 身体一侧抽搐| a级毛片在线看网站| 免费在线观看视频国产中文字幕亚洲| 国产一区二区激情短视频| 久久国产精品人妻蜜桃| 欧美黑人精品巨大| 久久精品国产99精品国产亚洲性色 | 国产精品久久久久久精品古装| 国产精品 国内视频| 热99国产精品久久久久久7| 人人妻人人澡人人爽人人夜夜| 精品少妇久久久久久888优播| 久久精品国产清高在天天线| 久久久久国产一级毛片高清牌| 亚洲伊人色综图| av福利片在线| 欧美日韩黄片免| 18禁裸乳无遮挡免费网站照片 | 一级片'在线观看视频| 十八禁高潮呻吟视频| 18禁黄网站禁片午夜丰满| 不卡一级毛片| 亚洲五月婷婷丁香| 精品少妇一区二区三区视频日本电影| 男女下面插进去视频免费观看| 又黄又粗又硬又大视频| 黄色视频,在线免费观看| 99国产精品99久久久久| 日韩三级视频一区二区三区| 91大片在线观看| 另类亚洲欧美激情| 夫妻午夜视频| 欧美黑人精品巨大| 高清av免费在线| 国产xxxxx性猛交| 久久久久国产一级毛片高清牌| 精品亚洲成国产av| 99久久精品国产亚洲精品| 黑人巨大精品欧美一区二区蜜桃| 中文字幕人妻熟女乱码| 12—13女人毛片做爰片一| 后天国语完整版免费观看| 亚洲精品在线美女| 国产精品成人在线| 一区二区三区激情视频| 99riav亚洲国产免费| 国产视频一区二区在线看| 又大又爽又粗| 亚洲欧美激情在线| 久久久久国内视频| 亚洲欧美激情在线| 国产精品偷伦视频观看了| 久久久精品区二区三区| 国产色视频综合| 国产精品久久久久久精品古装| 如日韩欧美国产精品一区二区三区| 在线观看www视频免费| 欧美乱妇无乱码| 超碰97精品在线观看| 成人黄色视频免费在线看| 黄色 视频免费看| 欧美日韩福利视频一区二区| ponron亚洲| 无人区码免费观看不卡| 国产精品影院久久| 女人精品久久久久毛片| 亚洲国产毛片av蜜桃av| 国产成人欧美在线观看 | 操美女的视频在线观看| 国产亚洲精品第一综合不卡| 亚洲成国产人片在线观看| 久久国产精品男人的天堂亚洲| 熟女少妇亚洲综合色aaa.| 久久精品aⅴ一区二区三区四区| 国内久久婷婷六月综合欲色啪| 热99久久久久精品小说推荐| 欧美大码av| 亚洲精品美女久久久久99蜜臀| 国产激情欧美一区二区| 国产免费现黄频在线看| 香蕉久久夜色| 满18在线观看网站|