• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鎳離子與酵母乙醇脫氫酶的相互作用

    2010-12-12 02:41:28尹國(guó)維李芝芬王保懷杜為紅
    物理化學(xué)學(xué)報(bào) 2010年4期
    關(guān)鍵詞:北京化學(xué)

    尹國(guó)維 尉 薇 徐 佳 李芝芬 王保懷 杜為紅,*

    (1中國(guó)人民大學(xué)化學(xué)系,北京 100872;2北京大學(xué)化學(xué)與分子工程學(xué)院,物理化學(xué)研究所,北京 100871)

    Metal ions are indispensable in kinds of biomacromolecules, especially in metalloproteins.They acts as cofactor or inhibitor in various proteins and in even engineered proteins[1-3].Yeast alcohol dehydrogenase(YADH)is a metalloenzyme which catalyze the fermentation reaction of alcohol to acetaldehyde[4].This fermentation has been widely studied for its implications in wine and beer production[5-6],and an increasing interest in its application for biotechnological processes of bioconversion of different organic wastes into ethanol to be used as solvent or fuel[7-8]. YADH is a tetramer(150 kDa)with four subunits held together[9]. Each subunit contains two zinc ions with one zinc ion located at the active site(catalytic zinc)and bound to two cysteines,one histidine and a water molecule.The other zinc ion bound to four cysteines and maintains the tertiary structure of the enzymes (structuralzinc).TheZn(II)sitesareconservedamongADHsfrom different species[10-14].

    The structure-activity relationships of ADHs are widely concerned in recent years.Evaluation of Hofmeister effects on ADH and other proteins indicated that the protein kinetics stability could be influenced by salt species and their concentration,and the thermodynamic parameters were also affected by some small molecules[15-16].To improve the activity of ADH,some works focused on the transition metal substitution for zinc ions,and possible substrates and inhibitors were studied[12,17-18].Moreover,the quantum mechanics method was used to show the kinetic isotope effects and enzyme motion[19].The interaction of mithramycin and chromomycin with ADH were performed to check the binding affinity of the two anticancer antibiotics to bivalent cations,i.e.,zinc ions in structural site or catalytic site[20-21].This means that the inhibitors of ADH are widely distributed.They include not only the classical reagent 4-methyl-pyrazole[12]and the anticancer compounds,but also different metal ions,such as copper[22]and bismuth[23].

    Among the bivalent cations,Ni(II)is reported to inhibit ADH in a mode of mixed type mechanism in previous study[22],but little is known about the detailed information on Ni(II)-YADH interaction.In this paper,we have characterized the interaction and inhibition of Ni(II)to YADH.UV-Vis spectroscopy and fluorenscence spectroscopy were used to investigate the binding process of Ni(II)and YADH.Ellman method[24]was carried out to determine the thiolate group binding to Ni(II).And the inhibition mechanism was studied by enzymatic reaction.Furthermore,the differential scanning calorimetry(DSC)and fast protein liquid chromatography(FPLC)were performed to evaluate the thermodynamic stability of protein.

    1 Materials and methods

    1.1 Samples

    YADH and nicotinamide adenine dinucleotid(NAD)were purchased from Sigma-Aldrich Co.(USA).The enzyme was used without further purification.Nickelous acetate tetrahydrate,trihydroxymethyl aminomethane(Tris),and 5,5′-dithiobis(2-nitrobenzoic acid)(DTNB)were purchased from BBI company (USA).All other reagents were of analytical grade.

    1.2 UV-Vis spectroscopy

    UV-Vis spectroscopy was used to study the binding process of Ni(II)and YADH.The lyophilized powder of YADH was dissolved in 2.0×10-2mol·L-1Tris-HCl buffer at pH 8.0.Enzyme concentration was determined from the UV absorbance at 280 nm with an absorption coefficient(ε280)of 1.89×105mol-1· L·cm-1[25].The spectrum width was from 300 to 500 nm.40 folds of Ni(II)(2.4×10-4mol·L-1)was added to 6.0×10-6mol·L-1YADH in 2.0×10-2mol·L-1Tris-HCl buffer at pH 8.0,298.2 K. The course of the reaction was monitored up to 300 min.All UVVis spectra were recorded on a Cary 50 spectrometer(Varian, USA)with thermostat holders at 298.2 K.

    1.3 Fluorescence spectroscopy

    The experiment was carried out on a Perkin-Elmer LS55 fluorescence spectrometer.A solution of 6.0×10-7mol·L-1YADH reacted with 40 folds of Ni(II)in 2.0×10-2mol·L-1Tris-HCl buffer at pH 8.0,298.2 K.The excitation wavelength was at 295 nm and the exit slit was set to 4 nm.The changes in emission intensities were obtained at regular time intervals.Each spectrum was corrected by blank subtraction using 2.0×10-2mol·L-1Tris-HCl buffer at pH 8.0.

    1.4 Enzyme catalysis reaction

    The concentrations of NAD+and NADH were determined using the extinction coefficients of 6.22×103mol-1·L·cm-1at 340 nm[26].Enzyme activity was determined by the changes of initial rate of absorbance at 340 nm corresponding to the reduction of NAD+to NADH as previously reported[27].The solution of YADH was incubated in the presence of excess of Ni(II)for 5 min.An aliquot was withdrawn and added to a solution containing 1.5×10-3mol·L-1NAD+and 0.2 mol·L-1EtOH.The final enzyme concentration was 2.5×10-9mol·L-1in solution.The initial rates(r0)of reaction were recorded at different concentrations of ethanol ranging from 5.0×10-3to 50.0×10-3mol·L-1.The Michaelis constant(Km)and the maximal reaction velocity(rmax)for inhibited reactions and control were obtained from Lineweaver-Burk plots[28].

    1.5 Thiolate group analysis of YADH

    Ellman′s method[24]was utilized to determine the free thiolate content(SH)of YADH before and after reacting with Ni(II). YADH was incubated with 100 folds of Ni(II)at 298.2 K,in 2.0× 10-2mol·L-1Tris-HCl buffer,pH 8.0.A solution of DTNB(1.0× 10-2mol·L-1)was added to the mixture.The final solution contained 2.0×10-6mol·L-1YADH,2.0×10-4mol·L-1Ni(II)and 5.0× 10-4mol·L-1DTNB.The reaction solution was incubated for 4 h until the absorbance at 412 nm did not change.The amount of generated p-nitrothiolate was determined using the extinction coefficient(ε412)of 1.42×104mol-1·L·cm-1[29].

    1.6 Differential scanning calorimetry

    Differential scanning calo rimetry experiments were performed with a Setaram(Lyons,France)Micro DSC III calorimeter.The mixture of 40 folds of 2.4×10-4mol·L-1Ni(II)and 6.0× 10-6mol·L-1YADH was incubated for 12 h in 2.0×10-2mol·L-1Tris-HCl buffer at pH 8.0,298.2 K.Then it was measured using the scanning rate of 1.0 K·min-1.The experimental temperature range was from 298.2 to 383.2 K.Temperature correction and baseline correction had been done before proceeding with the experiment.The sample volume was 0.8 mL.Tris-HCl buffer was used as the reference in all the three repeat experiments.

    1.7 Fast protein liquid chromatography

    A solution of 10 μmol·L-1YADH was incubated with 40 foldsofNi(II)in 100 mmol·L-1Tris-HCl at pH 8.0,298.2 K.After 120 min,the mixture was injected to fast protein liquid chromatography(FPLC)system.The Tris-HCl buffer(100 mmol·L-1, pH 8.0)was used as an elution solvent.Chromatograms were recorded by monitoring the absorbance at 280 nm with a UV detector.Control experiments were performed in the absence of Ni(II).The molecular mass calibration curve for the column was obtained using bovine serum albumin(65 kDa)and cytochrome C(12 kDa)as standards.

    2 Results

    2.1 Binding of Ni(II)and YADH

    The interaction of Ni(II)with YADH leads to a new UV-Vis absorption band(Fig.1A).With the mixture of 40 folds of Ni(II) to YADH solution,the absorbance centered at 320 nm increased gradually.This band was assigned as S--Ni(II)ligand-to-metal charge transfer(LMCT)transitions due to Ni(II)binding to the thiolate ligand.It could be used to monitor the progress of the reaction between Ni(II)and YADH.Kinetics of the reaction was described by the dependence of absorption spectrum on time (Fig.1B).It was characterized by an initial rapid increase in absorbance,then a progressive increase for the duration.The twokinetic steps could be resolved,which obey first-order kinetics and fit to a bi-exponential growth using the non-linear least square method:

    where k1and k2are the rate constants of the two kinetic phases, A1and A2are the corresponding amplitudes that show the contribution of the individual kinetic phases to the observed change in absorbance.The rate constant k1,was measured to be 0.091 min-1, and contributed 28%to the whole reaction[23].And the rate constant k2,had a value of 6.9×10-3min-1representing the rest of the reaction.

    2.2 Conformational change in YADH due to the binding of Ni(II)

    Fluorescence spectroscopy is widely used in protein conformational investigation since the tryptophan and tyrosine residues can produce intrinsic fluorescence[30].YADH has five tryptophan residues in each subunit.These residues produce an intrinsic fluorescence for YADH at 340 nm.With the mixture of 40 folds of Ni(II)to YADH solution,the fluorescence emission intensity decreased obviously(Fig.2A).It revealed that conformational changesoccurredinYADHuponNi(II)binding.The decrease ofYADH intensity versus time was also in a biphasic process and could be fitted by a two-exponential function as used in UV data processing(Fig.2B).The rate constant k1for the fast step was measuredto be 0.31 min-1,which contributed to 25%of the reaction,while the rate constant k2for the slow step had a value of 2.4×10-2min-1that represented the rest of the reaction.The rates are slightly higher than the corresponding values obtained from UV-Vis spectroscopy.

    Fig.1 (A)Time scale of absorption spectrum,(B)kinetics of the reaction of Ni(II)to YADH at 320 nmsolution containing YADH(6.0×10-6mol·L-1)and 40 folds of Ni(II)in 2.0×10-2 mol·L-1Tris-HCl at pH 8.0,298.2 K;the broad band centered at 320 nm in Fig.1A indicating formation of Ni(II)-S(thiolate)bonds,reaction time from bottom to top:0,2,4,6,8,10,15,20,50,80,145,300 min

    Fig.2 (A)Time scale of fluorescence emission spectra with an excitation wavelength of 295 nm,(B)kinetics of the reaction of Ni(II)to YADH at 340 nm emission intensitysolution containing YADH(6.0×10-7mol·L-1)and 40 folds of Ni(II)in 2.0×10-2 mol·L-1Tris-HCl at pH 8.0,298.2 K;reaction time from top to bottom: 0,1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,80,100,120 min

    Fig.3 Lineweaver-Burk plots of the enzyme catalysis reactionThe solution is composed of 2.5×10-9mol·L-1YADH and 1.5×10-3mol·L-1NAD+ at 298.2 K,2×10-2mol·L-1Tris-HCl,pH 8.0.Kmfor control reaction(◆)was found to be 8.37×10-3mol·L-1.The value is in agreement with that of control in the presence of 60(■)and 240(▲)folds of Ni(II)

    2.3 Inhibition of Ni(II)to YADH activity

    Based on the interaction study of YADH and Ni(II),we measured the rate of ethanol oxidation catalyzed by YADH at different substrate concentrations in the presence of Ni(II).The kinetics of enzyme catalysis reaction can be described by a Michaelis-Menten model.In the present work,the Kmand rmaxwere calculated to be 8.3×10-3mol·L-1and 41.48 OD·s-1(OD:optical density)respectively for the uninhibited control reaction,which were acceptable for further enzymatic inhibition analysis[31](Fig. 3).And the Kmvalues obtained in the presence of 60 folds and 240 folds of Ni(II)were almost the same as that in the absence of Ni(II).However,the rmaxdecreased significantly due to the increase of Ni(II).The Lineweaver-Burk plots showed a typical mode of noncompetitive inhibition[28].

    2.4 Thiolate group analysis of YADH

    Fig.4 DSC curves for pure YADH in the presence and absence of Ni(II)In the absence of Ni(II),the onset temperature is measured at(330.0±0.2)K (curve a),the corresponding value in the presence of 40 folds of Ni(II)is measured at(335.8±0.3)K(curve b)

    The free thiolate contents were determined using DTNB by Ellman′s method so as to investigate whether Ni(II)binds to free Cys residues of YADH.The amount of generated p-nitrothiolate was determined using the absorbance at 412 nm as described in the experimental section[29].Totally,36 free Cys residues are found in each YADH subunit after treatment with dithiolthreitol (DTT)[32].19 free SH groups in the native enzyme were determined in the present work.After incubation with 100 folds of Ni(II)for 4 h at pH 8.0 Tris-HCl buffer,298.2 K,the number of free thiolate groups was determined to be 15.Therefore,there is one free thiol group loss in each subunit of YADH compared to its intact form.

    2.5 Thermal denaturation of YADH upon binding of Ni(II)

    The DSC method provided significant information about the thermodynamic properties of protein molecules,and the influence of molecular interactions on the stability of proteins and nucleicacids[33-34].The denaturation experimentofYADH byDSC started from 298.2 to 383.2 K and returned from 383.2 to 298.2 K.YADH showed an irreversible denaturation process(Fig.4). There was an exothermic peak at(330.0±0.2)K(onset point), which was very similar as reported[16].The molar enthalpy change of denaturation of(-7.6±0.5)×104kJ·mol-1was too large for conformational change and possibly due to protein sedimenta-tion.Addition of Ni(II)resulted in the increase of molar enthalpy change and denaturation temperature to(-8.9±0.3)×104kJ·mol-1and(335.8±0.3)K(onset point),respectively.

    Fig.5 FPLC profiles of YADH after incubation with Ni(II)(A)native YADH,(B)YADH with 40 folds of Ni(II)incubation after120 min;a solution of ca 10 μmol·L-1YADH was incubated with 40 folds of Ni(II)in 100 mmol·L-1Tris-HCl,pH 8.0

    2.6 Fast protein liquid chromatography study

    Metal ions are known to affect signal transduction and protein-protein interaction.We carried out this experiment in order to demonstrate whether Ni(II)interferes with the quaternary structure of the native YADH.After loading YADH solution into the column,the relative retention volume value was observed at 62.9 and 74.0,respectively.Peak a in Fig.5A corresponds to a 150 kDa species based on the mass calibration curve,while peak b corresponds to a component with a molecular mass about 75 kDa.Therefore,they can be assigned to the tetramer and dimer of YADH,respectively.The existence of dimer might be from conformational equilibrium of ADH in solution.After incubation with Ni(II),the peak at 62.9 decreased in its relative intensity obviously(Fig.5B).While the peak at 74.0 increased in its relative intensity gradually.This suggests that part of tetrameric YADH dissociates into a dimer,presumably due to the binding of Ni(II)to the enzyme.

    3 Discussion

    YADH is a classical enzyme which contains two zinc(II)ions in each subunit,one in its active site and another in auxiliary site.The enzymatic activity has been reported to be inhibited by some metal ions at various conditions[18,22-23].Ni(II)is an important transition metal that takes part in many biological processes[34]. In the present work,we reported the interaction of Ni(II)with YADH.The results show that Ni(II)can bind to YADH and change the conformation of YADH.

    UV-Vis spectroscopy reveals that the binding of Ni(II)leads to the appearance of 320 nm absorbance band.The time scale shows two kinetics steps for Ni(II)binding.The rate constants are less than those obtained from fluorescence spectrum,which indicate that the conformational change is prior to the binding of Ni(II)to thiolate group of ADH.

    Although the inhibition of Ni(II)on recombinant ADH exhibits a mixed type mechanism[22],our data show a noncompetitive inhibition in the enzyme catalysis reaction at the beginning of Ni(II)binding.Since the binding process is time dependent and the enzymatic conformation changes gradually,the conclusive mechanism of inhibition is inenarrable.The complexity might be induced by the anion effect compared with previous result[22],since anion plays a key role in enzymatic activity and protein stability[12,15,35].The used sample in this case was nickelous acetate tetrahydrate,and further work is needed to compare the binding mechanism by different Ni(II)compounds in order to make it clear.

    Ni(II)binding could lead to the dissociation of YADH from tetramer to dimmer,which is verified by FPLC experiments.The relative stability of dimer indicates that YADH could be described as a“Etetramer of dimers”with two identical interfaces. Hence in the DSC process,the binding of Ni(II)induces YADH in a higher denaturation temperature and molar enthalpy change. And we might conclude that conformational change arised from Ni(II)binding influences the path of YADH thermal denaturation.

    Metal ions inhibition of YADH reveals various but exciting results.The investigation on interaction of Ni(II)and YADH makes a whole profile of the metal binding than ever.And it provides more information to understand metal-protein interaction.

    1 Lu,Y.;Berry,S.M.;Pfister,T.D.Chem.Rev.,2001,101:3047

    2 Xu,K.;Yang,X.D.;Wang,K.Chem.J.Chin.Univ.,2008,29: 2525 [徐 崑,楊曉達(dá),王 夔.高等學(xué)?;瘜W(xué)學(xué)報(bào),2008,29: 2525]

    3 Huang,Z.X.Prog.Chem.,2002,14:318 [黃仲賢.化學(xué)進(jìn)展, 2002,14:318]

    4 Ramaswamy,S.;Kratzer,D.A.;Hershey,A.D.;Rogers,P.H.; Arnone,A.;Eklund,H.;Plapp,B.V.J.Mol.Biol.,1994,235:777

    5 Blandino,A.;Caro,I.;Cantero,D.Biotechnol.Lett.,1997,19:651

    6 Onnela,M.L.;Suihko,M.L.;Penttil,M.;Keraen,S. J.Biotechnol.,1996,49:101

    7 Fernandez,M.R.;Biosca,J.A.;Martinez,M.C.;Achkor,H.; Farres,J.;Pares,X.Adv.Exp.Med.Biol.,1997,414:373

    8 Lortie,R.;Fassouane,A.;Laval,J.M.;Bourdillon,C.Biotechnol. Bioeng.,1992,39:157

    9 Vanni,A.;Pessione,E.;Anfossi,L.;Baggiani,C.;Cavaletto,M.; Gulmini,M.;Giunta,C.J.Mol.Catal.B-Enzym.,2000,9:283

    10 Magonet,E.;Hayen,P.;Delforge,D.;Delaive,E.;Remacle,J. Biochem.J.,1992,287:361

    11 Meijers,R.;Adolph,H.W.;Dauter,Z.;Wilson,K.S.;Lamzin,V. S.;Cedergren-Zeppezauer,E.S.Biochemistry,2007,46:5446

    12 Reimers,M.J.;Hahn,M.E.;Tanguay,R.L.J.Biol.Chem.,2004, 279:38303

    13 Rubach,J.K.;Plapp,B.V.Biochemistry,2002,41:15770

    14 Winberg,J.O.;Brendskag,M.K.;Sylte,I.;Lindstad,R.I.; McKinley-McKee,J.S.J.Mol.Biol.,1999,294:601

    15 Broering,J.M.;Bommarius,A.S.J.Phys.Chem.B,2005,109: 20612

    16 Nath,S.;Satpathy,G.R.;Mantri,R.;Deep,S.;Ahluwalia,J.C. J.Chem.Soc.Faraday Trans.,1997,93:3351

    17 Kleifeld,O.;Rulisek,L.;Bogin,O.;Frenkel,A.;Havlas,Z.; Burstein,Y.;Sagi,I.Biochemistry,2004,43:7151

    18 Vanni,A.;Anfossi,L.;Pessione,E.;Giovannoli,C.Int.J.Biol. Macromol.,2002,30:41

    19 Billeter,S.R.;Webb,S.P.;Agarwal,P.K.;Iordanov,T.;Hammes-Schiffer,S.J.Am.Chem.Soc.,2001,123:11262

    20 Das,S.;Devi,P.G.;Pal,S.;Dasgupta,D.J.Bio.Inorg.Chem., 2005,10:25

    21 Devi,P.G.;Chakraborty,P.K.;Dasgupta,D.J.Biol.Inorg.Chem., 2009,14:347

    22 Cavaletto,M.;Pessione,E.;Vanni,A.;Giunta,C.J.Biotechnol., 2001,84:87

    23 Jin,L.;Szeto,K.Y.;Zhang,L.;Du,W.H.;Sun,H.Z.J.Inorg. Biochem.,2004,98:1331

    24 Ellman,G.L.Arch.Biochem.Biophys.,1959,82:70

    25 Buhner,M.;Sund,H.Eur.J.Biochem.,1969,11:73

    26 Tkachenko,A.G.;Winston,G.W.Arch.Biochem.Biophys.,2000, 380:165

    27 Vallee,B.L.;Hoch,F.L.Proc.Natl.Acad.Sci.U.S.A.,1955,41: 327

    28 Wang,J.Y.;Zhu,S.G.;Xu,C.F.Biochemistry.Beijing:Higher Education Press,2002:351-383 [王鏡巖,朱圣庚,徐長(zhǎng)法.生物化學(xué).北京:高等教育出版社,2002:351-383]

    29 Riddles,P.W.;Blakeley,R.L.;Zerner,B.Meth.Enzymol.,1983, 91:49

    30 Jornvall,H.;Eklund,H.;Branden,C.I.J.Biol.Chem.,1978,253: 8414

    31 Dickinson,F.M.;Monger,G.P.Biochem.J.,1973,131:261

    32 Harris,I.Nature,1964,203:30

    33 Du,W.H.;Han,W.;Li,Z.F.;Wang,B.H.Thermochim.Acta, 2000,359:55

    34 Du,W.H.;Wang,L.;Li,J.;Wang,B.H.;Li,Z.F.;Fang,W.H. Thermochim.Acta,2007,452:31

    35 Buhler,R.;Von Wartburg,J.P.FEBS Lett.,1984,178:249

    猜你喜歡
    北京化學(xué)
    Excerpt from Pygmalion
    北京X7
    汽車觀察(2021年11期)2021-04-24 21:34:38
    北京,離幸福通勤還有多遠(yuǎn)?
    民生周刊(2020年15期)2020-07-29 08:56:17
    北京春暖花開(kāi)
    北廣人物(2020年12期)2020-04-01 15:06:41
    北京的河
    北京,北京
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    伊人久久大香线蕉亚洲五| 亚洲国产高清在线一区二区三 | 精品一区二区三区四区五区乱码| 日韩精品免费视频一区二区三区| 色婷婷久久久亚洲欧美| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久人妻精品电影| 99re在线观看精品视频| 咕卡用的链子| 成熟少妇高潮喷水视频| 久久久久久久精品吃奶| 精品一品国产午夜福利视频| 18禁国产床啪视频网站| 亚洲,欧美精品.| 免费在线观看完整版高清| 一区福利在线观看| 免费高清视频大片| 日韩国内少妇激情av| 黄色片一级片一级黄色片| 国产精品久久久人人做人人爽| 97人妻天天添夜夜摸| 久久伊人香网站| 日本 欧美在线| 国产免费av片在线观看野外av| 变态另类成人亚洲欧美熟女 | 又黄又粗又硬又大视频| 性少妇av在线| 久久精品国产亚洲av高清一级| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲午夜精品一区,二区,三区| 国产亚洲欧美98| 欧美日韩亚洲综合一区二区三区_| 亚洲成人精品中文字幕电影| 国产伦一二天堂av在线观看| 老司机福利观看| 最近最新免费中文字幕在线| 亚洲第一青青草原| 国产亚洲av高清不卡| 精品一区二区三区av网在线观看| 久久午夜亚洲精品久久| 大陆偷拍与自拍| 久久天堂一区二区三区四区| 黑人巨大精品欧美一区二区mp4| 日日摸夜夜添夜夜添小说| 免费在线观看黄色视频的| 午夜福利一区二区在线看| 麻豆成人av在线观看| 日韩大尺度精品在线看网址 | 人妻久久中文字幕网| 日韩视频一区二区在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美绝顶高潮抽搐喷水| 亚洲avbb在线观看| 久久性视频一级片| 19禁男女啪啪无遮挡网站| 伊人久久大香线蕉亚洲五| 欧美性长视频在线观看| 成熟少妇高潮喷水视频| 成在线人永久免费视频| 日本五十路高清| 国产精品一区二区精品视频观看| 亚洲 欧美一区二区三区| 女人被狂操c到高潮| 18美女黄网站色大片免费观看| 久久精品影院6| 国产av在哪里看| 久久久久久久久中文| 多毛熟女@视频| 精品熟女少妇八av免费久了| av在线天堂中文字幕| 亚洲第一青青草原| 老汉色∧v一级毛片| 天天一区二区日本电影三级 | 搞女人的毛片| 亚洲第一欧美日韩一区二区三区| 一级,二级,三级黄色视频| 天堂√8在线中文| 成人av一区二区三区在线看| 老司机深夜福利视频在线观看| 18禁黄网站禁片午夜丰满| 亚洲性夜色夜夜综合| 色综合亚洲欧美另类图片| 99久久久亚洲精品蜜臀av| 欧美绝顶高潮抽搐喷水| 成人18禁在线播放| 国产成人一区二区三区免费视频网站| 日韩欧美免费精品| 久久狼人影院| 在线观看www视频免费| 久久影院123| 美女 人体艺术 gogo| 波多野结衣巨乳人妻| 女人精品久久久久毛片| 久久亚洲真实| 国产一区二区三区综合在线观看| 成人av一区二区三区在线看| 国产1区2区3区精品| 亚洲avbb在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av电影在线进入| 啦啦啦免费观看视频1| 亚洲中文字幕日韩| 精品久久久精品久久久| 夜夜夜夜夜久久久久| 久久久精品欧美日韩精品| 啦啦啦免费观看视频1| 黄色成人免费大全| 精品第一国产精品| 在线观看午夜福利视频| 久久久久久久午夜电影| 十八禁网站免费在线| 国产一区在线观看成人免费| 国产视频一区二区在线看| 法律面前人人平等表现在哪些方面| 亚洲九九香蕉| 91麻豆精品激情在线观看国产| 久久亚洲精品不卡| 美女午夜性视频免费| 亚洲熟女毛片儿| 99国产精品一区二区三区| 中出人妻视频一区二区| 欧美乱妇无乱码| 男女下面插进去视频免费观看| 国产91精品成人一区二区三区| av视频免费观看在线观看| 日本 av在线| 亚洲av成人不卡在线观看播放网| 亚洲中文字幕一区二区三区有码在线看 | 欧美国产日韩亚洲一区| 国产亚洲av嫩草精品影院| 亚洲黑人精品在线| 人成视频在线观看免费观看| 亚洲精华国产精华精| 1024香蕉在线观看| 国产男靠女视频免费网站| 少妇 在线观看| 9热在线视频观看99| 国产熟女xx| 一级毛片精品| 成熟少妇高潮喷水视频| 一进一出抽搐动态| 高清黄色对白视频在线免费看| 久久天堂一区二区三区四区| 亚洲片人在线观看| 国产av在哪里看| 黑人巨大精品欧美一区二区mp4| 超碰成人久久| 黄色丝袜av网址大全| 日本撒尿小便嘘嘘汇集6| 嫁个100分男人电影在线观看| 国产高清有码在线观看视频 | 国产乱人伦免费视频| 国产1区2区3区精品| 正在播放国产对白刺激| e午夜精品久久久久久久| 99久久国产精品久久久| 久久久久国内视频| 香蕉丝袜av| 久久香蕉国产精品| 91精品三级在线观看| 国产私拍福利视频在线观看| 日本 av在线| 丁香欧美五月| 久久人人精品亚洲av| 亚洲精品在线观看二区| 成人av一区二区三区在线看| 精品国产超薄肉色丝袜足j| av免费在线观看网站| 一本大道久久a久久精品| 免费在线观看视频国产中文字幕亚洲| 50天的宝宝边吃奶边哭怎么回事| 啦啦啦观看免费观看视频高清 | 黄色成人免费大全| 无限看片的www在线观看| 丝袜美足系列| 久久久久久久久免费视频了| 欧美一级a爱片免费观看看 | 精品久久久久久成人av| 一边摸一边抽搐一进一小说| 99精品久久久久人妻精品| 涩涩av久久男人的天堂| 免费在线观看影片大全网站| 黑人巨大精品欧美一区二区mp4| 精品福利观看| 熟妇人妻久久中文字幕3abv| 亚洲va日本ⅴa欧美va伊人久久| 黄网站色视频无遮挡免费观看| 精品电影一区二区在线| 一级a爱片免费观看的视频| 欧美午夜高清在线| АⅤ资源中文在线天堂| 国产一区二区三区在线臀色熟女| a级毛片在线看网站| tocl精华| 可以免费在线观看a视频的电影网站| 国产精品一区二区免费欧美| 午夜日韩欧美国产| 欧美国产精品va在线观看不卡| 亚洲欧美精品综合一区二区三区| 老司机靠b影院| 国产免费男女视频| 国产精品乱码一区二三区的特点 | 国产又爽黄色视频| 美女午夜性视频免费| 久久精品国产亚洲av香蕉五月| 97碰自拍视频| 12—13女人毛片做爰片一| 成人特级黄色片久久久久久久| 免费一级毛片在线播放高清视频 | 国产99白浆流出| 9热在线视频观看99| 97人妻天天添夜夜摸| 国产成人免费无遮挡视频| 久久国产亚洲av麻豆专区| 精品第一国产精品| 日日爽夜夜爽网站| 国产精品一区二区免费欧美| 精品一区二区三区av网在线观看| 国产激情欧美一区二区| 国产亚洲欧美精品永久| xxx96com| 人人澡人人妻人| 国产精品电影一区二区三区| 久久 成人 亚洲| 久久精品国产亚洲av香蕉五月| 人人妻,人人澡人人爽秒播| 成人av一区二区三区在线看| 午夜精品国产一区二区电影| 女人高潮潮喷娇喘18禁视频| www.自偷自拍.com| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看一区二区三区| 国产精品久久久人人做人人爽| 精品国产美女av久久久久小说| 国产精品久久久人人做人人爽| 黄色女人牲交| 色综合亚洲欧美另类图片| 日韩欧美一区二区三区在线观看| 免费在线观看完整版高清| 亚洲狠狠婷婷综合久久图片| 69av精品久久久久久| 大香蕉久久成人网| av片东京热男人的天堂| 18禁黄网站禁片午夜丰满| 亚洲成a人片在线一区二区| 99久久综合精品五月天人人| 国产精品一区二区免费欧美| 真人做人爱边吃奶动态| 成人欧美大片| 天天一区二区日本电影三级 | 在线免费观看的www视频| 黄色视频不卡| 两个人视频免费观看高清| 久久性视频一级片| 国产亚洲欧美98| 成人18禁在线播放| 亚洲 欧美一区二区三区| 国产免费男女视频| 亚洲精品国产区一区二| 亚洲精品在线美女| 97碰自拍视频| av天堂在线播放| 国产免费av片在线观看野外av| 国产xxxxx性猛交| 国产免费av片在线观看野外av| 变态另类丝袜制服| 狠狠狠狠99中文字幕| 视频区欧美日本亚洲| 欧美日韩亚洲综合一区二区三区_| 国产精品 国内视频| 国产精品秋霞免费鲁丝片| 91老司机精品| 亚洲欧美日韩高清在线视频| 久久精品国产综合久久久| 老司机在亚洲福利影院| 国产欧美日韩一区二区三区在线| 动漫黄色视频在线观看| 18禁观看日本| 亚洲精品久久成人aⅴ小说| 日韩三级视频一区二区三区| 性色av乱码一区二区三区2| 中国美女看黄片| 美女 人体艺术 gogo| 一边摸一边抽搐一进一小说| 国产av一区二区精品久久| 久久青草综合色| 丰满的人妻完整版| 久久午夜综合久久蜜桃| 免费在线观看亚洲国产| 99久久综合精品五月天人人| 成人18禁高潮啪啪吃奶动态图| 亚洲午夜理论影院| 国产视频一区二区在线看| 91成人精品电影| 中文字幕人妻丝袜一区二区| 天堂√8在线中文| 国产av精品麻豆| 亚洲精品久久国产高清桃花| 性少妇av在线| 日韩欧美国产在线观看| 一本大道久久a久久精品| 亚洲精品中文字幕在线视频| 丁香欧美五月| 一进一出好大好爽视频| 亚洲熟妇中文字幕五十中出| 免费看美女性在线毛片视频| 免费高清在线观看日韩| 淫秽高清视频在线观看| 18禁国产床啪视频网站| 亚洲第一青青草原| 视频区欧美日本亚洲| 一个人免费在线观看的高清视频| 伊人久久大香线蕉亚洲五| 精品福利观看| 国产在线观看jvid| 国产伦人伦偷精品视频| 日韩一卡2卡3卡4卡2021年| 丁香六月欧美| 国产精品免费视频内射| 精品一区二区三区视频在线观看免费| 色婷婷久久久亚洲欧美| 国产精品国产高清国产av| 欧美亚洲日本最大视频资源| 亚洲国产精品sss在线观看| 一进一出好大好爽视频| 国产精品av久久久久免费| 制服诱惑二区| 午夜福利成人在线免费观看| 精品久久久久久久久久免费视频| 成年版毛片免费区| 免费看a级黄色片| 日本精品一区二区三区蜜桃| 51午夜福利影视在线观看| aaaaa片日本免费| 50天的宝宝边吃奶边哭怎么回事| 日韩精品中文字幕看吧| 亚洲国产精品999在线| 亚洲七黄色美女视频| 夜夜夜夜夜久久久久| 国产亚洲精品综合一区在线观看 | 久久国产乱子伦精品免费另类| 十八禁网站免费在线| 叶爱在线成人免费视频播放| 久久久国产成人精品二区| 久久 成人 亚洲| 女人被躁到高潮嗷嗷叫费观| 1024香蕉在线观看| 亚洲av电影在线进入| 精品国产一区二区久久| 国产成人av激情在线播放| 757午夜福利合集在线观看| 日本免费一区二区三区高清不卡 | www.www免费av| 久久人人爽av亚洲精品天堂| 亚洲五月色婷婷综合| 精品国产一区二区三区四区第35| 成在线人永久免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧洲精品卡2卡3卡4卡5卡区| 国产免费男女视频| 亚洲国产精品999在线| av网站免费在线观看视频| 久久久国产成人精品二区| 色播在线永久视频| 国产成人欧美| 亚洲第一青青草原| 久久久久国内视频| www.熟女人妻精品国产| 757午夜福利合集在线观看| 涩涩av久久男人的天堂| 99国产综合亚洲精品| 国产麻豆成人av免费视频| 怎么达到女性高潮| 国产视频一区二区在线看| 如日韩欧美国产精品一区二区三区| 久久久久九九精品影院| 亚洲一区高清亚洲精品| 精品久久久精品久久久| 国产主播在线观看一区二区| 俄罗斯特黄特色一大片| 精品无人区乱码1区二区| 亚洲色图综合在线观看| 亚洲色图av天堂| 日韩欧美一区视频在线观看| av视频在线观看入口| 国产精品亚洲av一区麻豆| 99久久99久久久精品蜜桃| 亚洲少妇的诱惑av| 亚洲精品美女久久久久99蜜臀| 老汉色av国产亚洲站长工具| 高清毛片免费观看视频网站| 国产精品永久免费网站| 日日夜夜操网爽| 欧美日韩黄片免| АⅤ资源中文在线天堂| 一级作爱视频免费观看| 香蕉久久夜色| 少妇粗大呻吟视频| 黄色视频不卡| 99精品久久久久人妻精品| 亚洲欧美日韩高清在线视频| 又紧又爽又黄一区二区| 精品国产一区二区三区四区第35| 搡老妇女老女人老熟妇| 欧美一级毛片孕妇| 无限看片的www在线观看| 老汉色∧v一级毛片| 亚洲,欧美精品.| 国产亚洲av嫩草精品影院| 日韩欧美在线二视频| 成人国产综合亚洲| 精品一品国产午夜福利视频| 一个人观看的视频www高清免费观看 | 久久久国产精品麻豆| 99精品久久久久人妻精品| 人人澡人人妻人| 精品少妇一区二区三区视频日本电影| 久久久久亚洲av毛片大全| 午夜福利免费观看在线| 久久久国产成人免费| 久久青草综合色| 亚洲国产欧美日韩在线播放| 女生性感内裤真人,穿戴方法视频| 嫁个100分男人电影在线观看| 最新美女视频免费是黄的| 亚洲五月色婷婷综合| 欧美午夜高清在线| 国产av精品麻豆| 日本撒尿小便嘘嘘汇集6| 欧美日本视频| www.自偷自拍.com| 变态另类丝袜制服| 久久久久九九精品影院| 黄片播放在线免费| 夜夜看夜夜爽夜夜摸| 在线观看一区二区三区| 精品免费久久久久久久清纯| 国产精品美女特级片免费视频播放器 | 18禁黄网站禁片午夜丰满| 欧美一级毛片孕妇| 欧美 亚洲 国产 日韩一| 国产一区在线观看成人免费| 国产三级黄色录像| 亚洲九九香蕉| 色综合欧美亚洲国产小说| 99国产精品一区二区三区| 日韩欧美一区视频在线观看| 久久久久久久久久久久大奶| 日本vs欧美在线观看视频| 黑人操中国人逼视频| 亚洲一区二区三区色噜噜| 亚洲成人国产一区在线观看| 日韩高清综合在线| 9色porny在线观看| 纯流量卡能插随身wifi吗| 男人舔女人下体高潮全视频| 1024视频免费在线观看| 人人澡人人妻人| 欧美成人午夜精品| 亚洲成av片中文字幕在线观看| 国产欧美日韩一区二区精品| 91精品国产国语对白视频| 久久久久亚洲av毛片大全| 黄色视频,在线免费观看| 国产成人啪精品午夜网站| 欧美亚洲日本最大视频资源| 久久香蕉国产精品| e午夜精品久久久久久久| 久久精品国产综合久久久| 大型黄色视频在线免费观看| 国产一卡二卡三卡精品| 国产色视频综合| 国产片内射在线| av免费在线观看网站| 国产精品免费一区二区三区在线| 长腿黑丝高跟| 精品国产一区二区久久| 超碰成人久久| 在线观看免费视频网站a站| 久久人妻福利社区极品人妻图片| 国产精品永久免费网站| 国产一级毛片七仙女欲春2 | 美女大奶头视频| 国产高清视频在线播放一区| 国产亚洲欧美在线一区二区| 如日韩欧美国产精品一区二区三区| 国产精品 欧美亚洲| 亚洲精品在线美女| 极品教师在线免费播放| 精品久久久久久成人av| 亚洲成人免费电影在线观看| 国产精品一区二区三区四区久久 | 国产99白浆流出| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲片人在线观看| 69精品国产乱码久久久| 久久精品亚洲精品国产色婷小说| 国产真人三级小视频在线观看| 中亚洲国语对白在线视频| 窝窝影院91人妻| 免费av毛片视频| 国产成人av教育| 国产免费男女视频| 岛国视频午夜一区免费看| 久久性视频一级片| 老司机深夜福利视频在线观看| 久久婷婷人人爽人人干人人爱 | 国产国语露脸激情在线看| 又黄又粗又硬又大视频| 久久中文看片网| 国产区一区二久久| 动漫黄色视频在线观看| 69av精品久久久久久| 免费在线观看日本一区| 黑人巨大精品欧美一区二区蜜桃| 免费看美女性在线毛片视频| 国产高清videossex| 国产99白浆流出| 母亲3免费完整高清在线观看| 我的亚洲天堂| 亚洲国产精品sss在线观看| 国产亚洲av嫩草精品影院| 日日摸夜夜添夜夜添小说| 国产又色又爽无遮挡免费看| 如日韩欧美国产精品一区二区三区| av电影中文网址| 美女高潮喷水抽搐中文字幕| 国产亚洲欧美98| 黑人巨大精品欧美一区二区蜜桃| 免费女性裸体啪啪无遮挡网站| 首页视频小说图片口味搜索| 国产视频一区二区在线看| 女性生殖器流出的白浆| 欧美成人免费av一区二区三区| 国产精品1区2区在线观看.| 俄罗斯特黄特色一大片| 亚洲天堂国产精品一区在线| 婷婷精品国产亚洲av在线| a在线观看视频网站| 国语自产精品视频在线第100页| 91成年电影在线观看| 欧美大码av| 欧美日本亚洲视频在线播放| 成人手机av| 老司机深夜福利视频在线观看| 91精品三级在线观看| 日本三级黄在线观看| 在线观看免费视频网站a站| 欧美日韩福利视频一区二区| 午夜激情av网站| 国产成人精品在线电影| 亚洲欧洲精品一区二区精品久久久| 欧美日本亚洲视频在线播放| 视频在线观看一区二区三区| 精品一区二区三区av网在线观看| 大型黄色视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 丝袜美足系列| 亚洲第一青青草原| 中出人妻视频一区二区| 亚洲国产欧美日韩在线播放| 一边摸一边抽搐一进一小说| 黑人欧美特级aaaaaa片| 99re在线观看精品视频| 两性夫妻黄色片| 成年版毛片免费区| 天天添夜夜摸| 一级毛片精品| 19禁男女啪啪无遮挡网站| 国产人伦9x9x在线观看| 精品福利观看| 日韩视频一区二区在线观看| 成熟少妇高潮喷水视频| 亚洲精品在线美女| 亚洲精品久久国产高清桃花| 国产精品一区二区精品视频观看| 久久久国产精品麻豆| 日韩欧美国产在线观看| 在线视频色国产色| 在线观看午夜福利视频| 色播在线永久视频| 99热只有精品国产| 成人国语在线视频| 女人被躁到高潮嗷嗷叫费观| 久久精品91无色码中文字幕| 黑人欧美特级aaaaaa片| 88av欧美| 级片在线观看| 午夜免费观看网址| 久久伊人香网站| 亚洲国产精品sss在线观看| tocl精华| 女人被躁到高潮嗷嗷叫费观| 久久性视频一级片| 色婷婷久久久亚洲欧美| 国产精品爽爽va在线观看网站 | 激情在线观看视频在线高清| 成人亚洲精品一区在线观看| 淫妇啪啪啪对白视频| 久久精品国产亚洲av香蕉五月| 欧美中文日本在线观看视频| 久久久久久人人人人人| 国产精品久久视频播放| 天天一区二区日本电影三级 | 99国产综合亚洲精品| 一区二区三区国产精品乱码| 女生性感内裤真人,穿戴方法视频| 亚洲在线自拍视频| 在线永久观看黄色视频| www.精华液| 男人舔女人下体高潮全视频| 国产区一区二久久| 波多野结衣av一区二区av| 免费在线观看黄色视频的| 激情视频va一区二区三区|