• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    簡(jiǎn)易方法制備交叉碳納米管-石墨烯異質(zhì)結(jié)

    2010-12-12 02:41:28李丹娜陽(yáng)申王振興郭雪峰
    物理化學(xué)學(xué)報(bào) 2010年4期
    關(guān)鍵詞:雪峰工程學(xué)院異質(zhì)

    甘 霖 劉 松 李丹娜 谷 航 曹 陽(yáng)申 茜 王振興 王 青 郭雪峰

    (北京大學(xué)化學(xué)與分子工程學(xué)院,分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京 100871)

    The engineering of molecular devices relies on the control and exploration of the electronic properties of the junctions. These properties include the intrinsic electronic device functions as well as the ability of the molecules to interact with the electrodes.Among these functions,rectification behavior is one of the most exciting device functions,which was first envisioned by Aviram and Ratner[1].The Aviram-Ratner molecular diode consists of a donor and an acceptor separated with a σ bridge in which the forward current is from the acceptor to the donor.To date,most experimental studies of molecular diodes have been carried out using Langmuir-Blodgett films[2-3]and self-assembled monolayers(SAMs)[4-6].However,the study of the diode behaviors in these molecular junctions is significantly limited due to the requirement of sophisticated and time-consuming device fabrication and the unavailability of the molecules with desired structures.

    Another efficient approach to realize the rectification behaviors at the molecular level is to form T-or Y-shaped heterojunctions between different nanomaterials.In the past decade,much effort has been made to create nano-heterojunctions between nanotubes(NTs)and nanowires(NWs)because they could provide building blocks for nanoelectronics and nanophotonics[7-9]. Although several types of nano-heterojunctions between nanotubes and nanowires have been made[8-13],the key question of the fabrication of the nano-heterojunctions remained a significant challenge.This is due to the difficulty of direct growth of T-or Y-shaped heterojunctions.In this work,we report a facile technique for producing a large number of crossed nanotubegraphene heterojunctions through a nondestructive polymethyl methacrylate(PMMA)-mediated nanotransfer printing approach[14-15]and selective oxygen plasma etching.Then through only one-step electron beam lithography,we can easily fabricate the corresponding nanodevices.

    Single-walled carbon nanotubes(SWNTs)[16]and single-layer graphene(SLG)[17],two star molecules of carbon nanomaterials, have been proposed as the ideal systems for nanoelectronics and molecular electronics in both academic and industrial communities[18-22].Nanojunctions consisting of two crossed SWNTs were fabricated to form two-and three-terminal devices,which showed a rectifying Schottky barrier[23].However,a question remains: what will happen when individual SWNTs are joined with SLG to form multi-terminal devices and,ultimately,complex circuits?To answer this question,in this study we focus on the technical development of building SWNT-SLG heterojunctions formed by graphene that lie across nanotubes on silicon wafer substrates(Fig.1).

    1 Results and discussion

    Fig.1 Schematic structure of the crossed SWNT-SLG heterojunctionsInset shows the assumption that deformations in both SWNT and SLG could happen at the junction due to their interaction with SiO2substrates.

    A schematic procedure for fabricating the SWNT-SLG heterojunctions is given in Fig.2.Although the final SWNT-SLG heterojunctions are obtained through 9 steps,each step is quite simple without either traditional photolithography or complicated electron beam lithography.Within one or two days,one could use this facile procedure to mass produce SWNT-SLG heterojunctions.Firstly we synthesize SLG through a chemical vapor deposition process(CVD).Currently,several promising synthesis methods have been developed to grow SLG.These include epitaxial graphene on SiC[24-25],graphene oxide reduction[26-27],direct growth out of thin nickel film[28-29],and most recently on copper foils[30].Among these methods,the latest copper foil-based synthesis is the most effective in producing large continuous SLGs with promising electrical properties.In our procedure,we use 25 μm thick copper films(Alfa Aesar)to grow our SLG. The basic mechanism is similar to that recently reported in Ref. [30].Before graphene growth,Cu films were immersed in acetic acid at 40℃for 15 min in order to remove most of the copper oxide.We found that this is an important pretreatment because removal of the copper oxide prior to growth improves the quality of the copper film and thus the quality of SLG.A typical growth process is listed below.A quartz substrate with the Cu film was loaded into the furnace.Then the system was evacuated and heated to 1000℃under a 10 cm3·min-1flow of H2at a pressure of about 50 Pa.After stabilizing the Cu film at the desired temperature,we introduced 1.1 cm3·min-1of CH4for 5-10 min at a pressure of about 60 Pa.After the growth the substrates were then cooled down to room temperature for the next transfer step.Fig.3(a)shows a contrast-enhanced optical image of a typical sample substrate after graphene growth.We found that graphene was continuous across the visible Cu grains as demonstrated below.Fig.3(b)presents a Raman spectrum that is representative of the grown graphene.A single symmetric 2D peak (full width at half-maximum ca 34 cm-1),a small G/2D ratio,and a negligible D peak are observed,which strongly suggest that the graphene is a single layer and the quality of the sheet is not significantly affected by the visible features of the Cu film[30].

    Fig.2 Schematic representation of the fabrication procedure to form crossed nanotube-graphene heterojunctions

    Fig.3 (a)A contrast-enhanced optical image of a typical sample substrate after graphene growth, (b)a representative Raman spectrum of the grown graphene

    Fig.4 (a)An optical image of large-area graphenes after PMMA-mediated nanotransfer process,(b)an optical image of graphene sheet array after oxygen plasma etching and the zoomed-in image of the part labeled by a red square, (c)Raman spectra obtained from the marked spots with the corresponding colored circles

    After graphene growth,polymer PMMA with 300 nm thickness was spin coated on the Cu films.The whole samples were then immersed into a continually refreshed saturated solution of iron nitrate for an enough long time to remove the Cu substrates. The resultant transparent sheet floating in the aqueous solution was transferred to a sacrifice silicon substrate.To demonstrate the efficiency of the PMMA-mediated transfer technique,we simply tested the quality of graphene after removing PMMA in a boiling acetone solution.As shown in Fig.4(a),this method allows us to transfer large-area continuous high-quality graphenes with only small residues to any kinds of substrates as confirmed by Raman measurements(see below).To form graphene sheets, we directly applied an oxygen plasma etching process(oxygen: 19 cm3·min-1,pressure:35 Pa,power:50 W)for 2.5 min without removing PMMA thin films after the transfer step to etch away the unprotected graphene beneath the exposed PMMA through a shadow mask.Then after removing the remaining PMMA in a boiling acetone solution,graphene sheets with desired patterns were obtained.Fig.4(b)shows an optical image of the resulting sheet array with ca 100 μm width separated by ca 500 μm.In principle,graphene microarrays with any kinds of patterns could be easily obtained through this flexible process,depending on the design of the shadow mask.A zoomed-in optical image of one part is also shown in Fig.4(b).This contrast-enhanced image confirms that the surface of SLG sheets is very clean without obvious damages and any visible residues on top of them.To further evaluate the quality and uniformity of the transferred graphenes,we used Raman spectroscopy to characterize them. Fig.4(c)showsthe correspondingRaman spectra fromthe marked circles with different colors in Fig.4(b).Surprisingly,the resulting graphene sheets show the uniform Raman signature over large areas and remain the same original quality as shown in Fig. 3(b).Based on the Raman analysis,we estimated the SLG coverage to be a minimum of 93%[30].The Raman measurements as well as the optical characterization demonstrate that this nanotransfer and oxygen plasma etching process is useful for making large-area high-quality graphene microdevices in a nondestructive manner.We found that the sequential transfer and oxygen plasma etching process is important.If the oxygen plasma etching is straightly applied on the Cu films without the transfer step as shown in Fig.2(Route 2),extensive damages of the graphene sheets can occur probably due to the fragility of Cu films.

    Fig.5 (a)Schematic representation of the SLG device array and the enlarged optical image of a representative device, (b)a representative electronic property of the same device

    To transfer graphene sheets to the desired substrates,we performed another PMMA-mediated transfer step.Similarly,300 nm PMMA was spin coated on the sacrifice silicon substrates. After immersing the whole sample in the aqueous solution of potassium hydroxide(1.0 mol·L-1)at the temperature of 80℃for 0.5 h[15],PMMA thin films together with the graphene sheet array can be peeled off from the sacrifice substrates.Then the floating transparent PMMA thin films were transferred onto the target silicon substrates with 300 nm thermally grown silicon oxide.After dissolving PMMA in a boiling acetone,the graphene sheets were released to the target substrate.To test the electronic properties of these graphene sheets,we made the transistor arrays through a simple thermal evaporation.One key advantage of our device fabrication process is its high yield and uniform electronic properties.In order to show this,we fabricated 200 devices on a single substrate over a large area(about 8 mm×6 mm).A representative device schematic is shown in Fig. 5(a).Only 3 out of 200 devices are obviously damaged and all other devices are conductive,showing the yield as high as 98%. Fig.5(b)shows the corresponding electronic property of one representative device shown in Fig.5(a).Based on the data,we estimate the average sheet resistance to be about 0.7-1.2 kΩ.The high yield of the highly conductive devices demonstrated here and the uniform Raman features shown in Fig.4(c)confirm the continuous growth of SLG over a large area and the efficiency of our nondestructive transfer technique.

    After proving the high conductivity of the resulting graphene sheets,we finally transferred them to the silicon wafer substrates with pre-grown well-aligned ultralong SWNT arrays.Wellaligned ultralong SWNTs were grown through a standard CVD process on silicon wafers with a 300 nm SiO2layer[31-32]and with different marks,which help find SWNTs under SEM.With care, graphene sheets with desired patterns can be precisely positioned perpendicular to SWNT arrays,thus forming high-density crossed SWNT-SLG junctions.Fig.6(a)shows such a SEM image of crossed SWNT-SLG junctions with distinctive marks,showing the average density of ca 3 junctions per 100 μm.With the aid of these marks,the corresponding nanodevices based on these SWNT-SLG junctions were then fabricated through only one-step electron beam lithographic process.Fig.6(b)shows the SEM images of a representative nanodevice,clearly showing that SLG lies across SWNT.It is well-known that SWNTs may be metallic or semiconducting,depending on their chirality[33-34]. At room temperature,metallic SWNTs have a finite conductance that is nearly independent of VG.Semiconducting SWNTs are found to be p-type,conducting at negative VGand insulating at positive VG.However,graphene at the micrometer scale shows only semimetallic properties due to its zero bandgap[18-22].Therefore,our crossed SWNT-SLG junctions can be composed of one metallic SWNT and one SLG(MM),or one semiconducting SWNT and one SLG(MS).We expect that a rectifying Schottky barrier could be formed when the semiconducting SWNT is con-nected with the semimetallic graphene.This potential initiates our great attention to exploring the foreseen and unforeseen properties on these SWNT-SLG junctions.The electrical characterization is still in progress.

    Fig.6 (a)A SEM image of crossed SWNT-SLG junctions,(b)SEM images of a representative nanodevice

    2 Conclusions

    In this study,we detailed a nondestructive method to mass produce crossed SWNT-SLG junctions through twice PMMA-mediated transfer techniques and selective oxygen plasma etching.SLGs used here were grown over large areas on Cu films by a CVD method.Then graphene sheet array with desired patterns were made by applying oxygen plasma etching through a shadow mask after the first transfer step.Raman and conductance measurements show that the quality and electrical properties of our SLG sheets are uniform over a large area.Finally,crossed SWNT-SLG junctions can be easily achieved by transferring the graphene sheet array onto the target substrates with well-aligned SWNT arrays.Characterization of the electrical properties of nanodevices based these heterojunctions is underway and will be reported in due time.In addition to forming crossed SWNTSLG junctions,SLG synthesis and device fabrication discussed in this article also provides a reliable method to pattern graphene sheet arrays for making graphene-based microdevices over large areas and with high yield.This technique is compatible with standard thin film technologies and allows SLG to be integrated into large scale electronics circuitry within several simple steps that can be easily streamlined and automated.These results might offer the platform for the creation of a wide variety of molecular rectifiers and other functional nano/molecular devices.

    1 Aviram,A.;Ratner,M.A.Chem.Phys.Lett.,1974,29:277

    2 Martin,A.S.;Sambles,J.R.;Ashwell,G.J.Phys.Rev.Lett.,1993, 70:218

    3 Zhou,S.Q.;Liu,Y.Q.;Qiu,W.F.;Xu,Y.;Huang,X.B.;Li,Y.S.; Jiang,L.;Zhu,D.B.Adv.Funct.Mater.,2002,12:65

    4 Chabinyc,M.L.;Chen,X.X.;Holmlin,R.E.;Jacobs,H.; Skulason,H.;Frisbie,C.D.;Mujica,V.;Ratner,M.A.;Rampi,M. A.;Whitesides,G.M.J.Am.Chem.Soc.,2002,124:11730

    5 Elbing,M.;Ochs,R.;Koentopp,M.;Fischer,M.;von Hanisch,C.; Weigend,F.;Evers,F.;Weber,H.B.;Mayor,M.Proc.Natl.Acad. Sci.U.S.A.,2005,102:8815

    6 Metzger,R.M.Chem.Rev.,2003,103:3803

    7 Hochbaum,A.I.;Yang,P.D.Chem.Rev.,2010,110:527

    8 Hu,J.T.;Ouyang,M.;Yang,P.D.;Lieber,C.M.Nature,1999, 399:48

    9 Zhang,Y.;Ichihashi,T.;Landree,E.;Nihey,F.;Iijima,S.Science, 1999,285:1719

    10 Meng,G.W.;Han,F.M.;Zhao,X.L.;Chen,B.S.;Yang,D.C.; Liu,J.X.;Xu,Q.L.;Kong,M.G.;Zhu,X.G.;Jung,Y.J.;Yang, Y.J.;Chu,Z.Q.;Ye,M.;Kar,S.;Vajtai,R.;Ajayan,P.M.Angew. Chem.Int.Edit.,2009,48:7166

    11 Asaka,K.;Nakahara,H.;Saito,Y.Appl.Phys.Lett.,2008,92: 023114

    12 Luo,J.;Zhang,L.;Zhang,Y.J.;Zhu,J.Adv.Mater.,2002,14: 1413

    13 Rodriguez-Manzo,J.A.;Banhart,F.;Terrones,M.;Terrones,H.; Grobert,N.;Ajayan,P.M.;Sumpter,B.G.;Meunier,V.;Wang, M.;Bando,Y.;Golberg,D.Proc.Natl.Acad.Sci.U.S.A.,2009, 106:4591

    14 Xiao,S.X.;Tang,J.Y.;Beetz,T.;Guo,X.F.;Tremblay,N.; Siegrist,T.;Zhu,Y.M.;Steigerwald,M.;Nuckolls,C.J.Am. Chem.Soc.,2006,128:10700

    15 Jiao,L.Y.;Fan,B.;Xian,X.J.;Wu,Z.Y.;Zhang,J.;Liu,Z.F. J.Am.Chem.Soc.,2008,130:12612

    16 Iijima,S.Nature,1991,354:56

    17 Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.;Zhang, Y.;Dubonos,S.V.;Grigorieva,I.V.;Firsov,A.A.Science,2004, 306:666

    18 Feldman,A.K.;Steigerwald,M.L.;Guo,X.;Nuckolls,C.Acc. Chem.Res.,2008,41:1731

    19 Dai,H.Acc.Chem.Res.,2002,35:1035

    20 Guo,X.;Nuckolls,C.J.Mater.Chem.,2009,19:5470

    21 Geim,A.K.;Novoselov,K.S.Nature Mater.,2007,6:183

    22 Zhang,Y.;Tan,Y.W.;Stormer,H.L.;Kim,P.Nature,2005,438: 201

    23 Fuhrer,M.S.;Nygard,J.;Shih,L.;Forero,M.;Yoon,Y.G.; Mazzoni,M.S.C.;Choi,H.J.;Ihm,J.;Louie,S.G.;Zettl,A.; McEuen,P.L.Science,2000,288:494

    24 Berger,C.;Song,Z.M.;Li,X.B.;Wu,X.S.;Brown,N.;Naud,C.; Mayou,D.;Li,T.B.;Hass,J.;Marchenkov,A.N.;Conrad,E.H.; First,P.N.;de Heer,W.A.Science,2006,312:1191

    25 Dawlaty,J.M.;Shivaraman,S.;Chandrashekhar,M.;Rana,F.; Spencer,M.G.Appl.Phys.Lett.,2008,92:042116

    26 Eda,G.;Fanchini,G.;Chhowalla,M.Nat.Nanotech.,2008,3:270

    27 Dikin,D.A.;Stankovich,S.;Zimney,E.J.;Piner,R.D.;Dommett, G.H.B.;Evmenenko,G.;Nguyen,S.T.;Ruoff,R.S.Nature, 2007,448:457

    28 Reina,A.;Jia,X.T.;Ho,J.;Nezich,D.;Son,H.B.;Bulovic,V.; Dresselhaus,M.S.;Kong,J.Nano Lett.,2009,9:30

    29 Kim,K.S.;Zhao,Y.;Jang,H.;Lee,S.Y.;Kim,J.M.;Kim,K.S.; Ahn,J.H.;Kim,P.;Choi,J.Y.;Hong,B.H.Nature,2009,457: 706

    30 Li,X.S.;Cai,W.W.;An,J.H.;Kim,S.;Nah,J.;Yang,D.X.; Piner,R.;Velamakanni,A.;Jung,I.;Tutuc,E.;Banerjee,S.K.; Colombo,L.;Ruoff,R.S.Science,2009,324:1312

    31 Guo,X.;Xiao,S.;Myers,M.;Miao,Q.;Steigerwald,M.L.; Nuckolls,C.Proc.Natl.Acad.Sci.U.S.A.,2009,106:691

    32 Liu,S.;Li,J.M.;Shen,Q.;Cao,Y.;Guo,X.F.;Zhang,G.M.; Teng,C.Q.;Zhang,J.;Liu,Z.F.;Steigerwald,M.L.;Xu,D.S.; Nuckolls,C.Angew.Chem.Int.Edit.,2009,48:4759

    33 Dai,H.Acc.Chem.Res.,2002,35:1035

    34 Liu,S.;Shen,Q.;Cao,Y.;Gan,L.;Wang,Z.;Steigerwald,M.L.; Guo,X.Coord.Chem.Rev.,2010,254:1101

    猜你喜歡
    雪峰工程學(xué)院異質(zhì)
    福建工程學(xué)院
    福建工程學(xué)院
    要退休了
    雜文月刊(2019年19期)2019-12-04 07:48:34
    福建工程學(xué)院
    福建工程學(xué)院
    看山是山?看山非山?
    雪峰下的草場(chǎng)
    隨機(jī)與異質(zhì)網(wǎng)絡(luò)共存的SIS傳染病模型的定性分析
    Ag2CO3/Ag2O異質(zhì)p-n結(jié)光催化劑的制備及其可見(jiàn)光光催化性能
    韓雪峰的“臺(tái)賬”
    婷婷色av中文字幕| 亚洲午夜精品一区,二区,三区| www.av在线官网国产| 视频区图区小说| 国产精品久久久av美女十八| www.精华液| 一级,二级,三级黄色视频| 午夜福利免费观看在线| 777久久人妻少妇嫩草av网站| av一本久久久久| 婷婷色麻豆天堂久久| 国产亚洲av片在线观看秒播厂| 精品久久久久久电影网| 高清视频免费观看一区二区| 老汉色∧v一级毛片| 99九九在线精品视频| 亚洲免费av在线视频| 精品福利永久在线观看| h视频一区二区三区| 久久久精品区二区三区| 中文字幕高清在线视频| 男女下面插进去视频免费观看| 老司机亚洲免费影院| 国产高清国产精品国产三级| 久久精品亚洲av国产电影网| 看免费成人av毛片| 丝瓜视频免费看黄片| 亚洲欧美清纯卡通| 久久精品久久精品一区二区三区| 99热网站在线观看| 你懂的网址亚洲精品在线观看| 男女无遮挡免费网站观看| 亚洲成人免费电影在线观看 | 国语对白做爰xxxⅹ性视频网站| 日韩av免费高清视频| 久久精品亚洲av国产电影网| 国产免费现黄频在线看| 美女午夜性视频免费| 久久精品久久久久久久性| 在线观看免费高清a一片| 精品久久蜜臀av无| 国产黄色免费在线视频| 国产一区二区三区综合在线观看| 十八禁高潮呻吟视频| 夜夜骑夜夜射夜夜干| 免费久久久久久久精品成人欧美视频| 欧美精品一区二区免费开放| 色网站视频免费| 久久精品熟女亚洲av麻豆精品| 一区二区三区激情视频| 91精品伊人久久大香线蕉| 亚洲综合色网址| 亚洲欧洲国产日韩| 亚洲av成人精品一二三区| 黄色视频不卡| 亚洲久久久国产精品| 欧美av亚洲av综合av国产av| 一二三四在线观看免费中文在| 国产亚洲欧美精品永久| 桃花免费在线播放| 欧美日韩亚洲综合一区二区三区_| 久久国产精品男人的天堂亚洲| 在线观看www视频免费| 脱女人内裤的视频| 免费av中文字幕在线| 国产男人的电影天堂91| 两性夫妻黄色片| 叶爱在线成人免费视频播放| 欧美老熟妇乱子伦牲交| 久久久国产欧美日韩av| 999精品在线视频| 我要看黄色一级片免费的| 久久热在线av| 桃花免费在线播放| 满18在线观看网站| 欧美在线一区亚洲| 久热这里只有精品99| 亚洲国产精品国产精品| 97精品久久久久久久久久精品| 最近手机中文字幕大全| 亚洲精品国产一区二区精华液| 亚洲色图 男人天堂 中文字幕| 99精国产麻豆久久婷婷| av有码第一页| 人妻一区二区av| 美女午夜性视频免费| 天天躁夜夜躁狠狠躁躁| 免费在线观看视频国产中文字幕亚洲 | 三上悠亚av全集在线观看| 高潮久久久久久久久久久不卡| 桃花免费在线播放| 国产一区二区三区av在线| 男女下面插进去视频免费观看| 国产欧美亚洲国产| 考比视频在线观看| 精品人妻一区二区三区麻豆| 妹子高潮喷水视频| 美女国产高潮福利片在线看| av在线播放精品| 夫妻午夜视频| 日本vs欧美在线观看视频| 久久九九热精品免费| 欧美97在线视频| 国产亚洲av高清不卡| 少妇猛男粗大的猛烈进出视频| 脱女人内裤的视频| 中文精品一卡2卡3卡4更新| 男人操女人黄网站| 国产女主播在线喷水免费视频网站| 国产伦人伦偷精品视频| videosex国产| 人体艺术视频欧美日本| 中文字幕另类日韩欧美亚洲嫩草| 99re6热这里在线精品视频| 日韩视频在线欧美| 精品一品国产午夜福利视频| 一个人免费看片子| 男女午夜视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美一区视频在线观看| 久久精品久久久久久久性| 精品国产超薄肉色丝袜足j| 日日夜夜操网爽| xxxhd国产人妻xxx| 国产成人啪精品午夜网站| 国产精品人妻久久久影院| 女警被强在线播放| 两性夫妻黄色片| 香蕉丝袜av| 国产亚洲欧美在线一区二区| 精品亚洲成国产av| 久久久久久人人人人人| 一边摸一边抽搐一进一出视频| 国产视频首页在线观看| 国产精品 欧美亚洲| 大片电影免费在线观看免费| 可以免费在线观看a视频的电影网站| 如日韩欧美国产精品一区二区三区| 交换朋友夫妻互换小说| 中文字幕人妻丝袜制服| 日韩欧美一区视频在线观看| 免费看不卡的av| 免费少妇av软件| 无遮挡黄片免费观看| 欧美+亚洲+日韩+国产| 少妇粗大呻吟视频| 热re99久久精品国产66热6| 国产精品免费视频内射| 色婷婷久久久亚洲欧美| 天天躁日日躁夜夜躁夜夜| 真人做人爱边吃奶动态| 人人妻人人添人人爽欧美一区卜| 久久ye,这里只有精品| 夫妻午夜视频| 美女扒开内裤让男人捅视频| 大码成人一级视频| 亚洲成国产人片在线观看| 免费不卡黄色视频| 极品人妻少妇av视频| 亚洲人成电影免费在线| 午夜av观看不卡| 国产精品国产三级专区第一集| cao死你这个sao货| 波野结衣二区三区在线| 欧美激情 高清一区二区三区| 波多野结衣一区麻豆| 亚洲美女黄色视频免费看| 国产黄频视频在线观看| 午夜av观看不卡| 欧美精品一区二区免费开放| 国产成人影院久久av| 免费人妻精品一区二区三区视频| bbb黄色大片| 成年人黄色毛片网站| 欧美精品一区二区免费开放| 只有这里有精品99| 日本午夜av视频| 一级片'在线观看视频| 久久ye,这里只有精品| 中文字幕av电影在线播放| 在线 av 中文字幕| 我要看黄色一级片免费的| 久久精品国产综合久久久| 黄色视频在线播放观看不卡| 一边摸一边抽搐一进一出视频| 亚洲成人免费电影在线观看 | 欧美黑人精品巨大| 午夜免费观看性视频| 黄色一级大片看看| 亚洲久久久国产精品| 五月开心婷婷网| 国产成人精品久久二区二区91| 黑丝袜美女国产一区| 久久国产精品大桥未久av| 亚洲人成网站在线观看播放| 午夜福利乱码中文字幕| 深夜精品福利| 一二三四社区在线视频社区8| 成人亚洲欧美一区二区av| 精品人妻熟女毛片av久久网站| 人妻一区二区av| 欧美大码av| 视频区图区小说| 亚洲一卡2卡3卡4卡5卡精品中文| cao死你这个sao货| 国产欧美亚洲国产| 欧美人与善性xxx| 日韩一区二区三区影片| 啦啦啦中文免费视频观看日本| 亚洲人成电影观看| 99国产精品一区二区蜜桃av | 精品卡一卡二卡四卡免费| 国产精品 欧美亚洲| 成年女人毛片免费观看观看9 | 国产精品国产三级专区第一集| 久久国产精品男人的天堂亚洲| 亚洲五月色婷婷综合| 日日夜夜操网爽| 99国产精品99久久久久| 好男人视频免费观看在线| 91国产中文字幕| 大陆偷拍与自拍| 国产精品九九99| 人妻一区二区av| 亚洲成人国产一区在线观看 | 老司机影院毛片| 1024香蕉在线观看| 老司机靠b影院| 精品少妇一区二区三区视频日本电影| 亚洲成人免费电影在线观看 | 午夜影院在线不卡| 精品少妇内射三级| 亚洲精品久久午夜乱码| 91老司机精品| e午夜精品久久久久久久| 亚洲人成电影观看| 肉色欧美久久久久久久蜜桃| 99国产精品免费福利视频| 少妇被粗大的猛进出69影院| 一个人免费看片子| 国产亚洲av片在线观看秒播厂| 亚洲国产欧美日韩在线播放| 天天躁日日躁夜夜躁夜夜| 国产成人免费无遮挡视频| 日日爽夜夜爽网站| bbb黄色大片| 日韩av在线免费看完整版不卡| 两性夫妻黄色片| 又大又爽又粗| 十八禁人妻一区二区| 久久九九热精品免费| av福利片在线| 久久精品成人免费网站| 国产人伦9x9x在线观看| 18禁裸乳无遮挡动漫免费视频| 视频在线观看一区二区三区| 欧美精品人与动牲交sv欧美| 精品免费久久久久久久清纯 | 黄色a级毛片大全视频| 国产高清国产精品国产三级| 国产成人啪精品午夜网站| 亚洲国产欧美在线一区| av网站在线播放免费| 中文字幕色久视频| 成人国产av品久久久| 久久久久久久大尺度免费视频| 一本大道久久a久久精品| 午夜激情av网站| 国产精品一区二区精品视频观看| 成年人午夜在线观看视频| 欧美国产精品va在线观看不卡| 2021少妇久久久久久久久久久| 久久精品亚洲熟妇少妇任你| 成年人午夜在线观看视频| 99热全是精品| 妹子高潮喷水视频| 91字幕亚洲| 亚洲欧美色中文字幕在线| 十八禁高潮呻吟视频| 国产一级毛片在线| 新久久久久国产一级毛片| 亚洲图色成人| 好男人电影高清在线观看| 欧美成人精品欧美一级黄| 热re99久久精品国产66热6| a 毛片基地| 午夜福利影视在线免费观看| 91精品国产国语对白视频| 亚洲情色 制服丝袜| 黑人欧美特级aaaaaa片| av在线播放精品| xxxhd国产人妻xxx| 亚洲成人手机| 真人做人爱边吃奶动态| 午夜福利视频精品| 日韩中文字幕视频在线看片| 最新在线观看一区二区三区 | 欧美日韩成人在线一区二区| 男女边摸边吃奶| 久9热在线精品视频| 可以免费在线观看a视频的电影网站| 一区二区av电影网| 18禁黄网站禁片午夜丰满| 少妇人妻 视频| 在线观看免费日韩欧美大片| 欧美亚洲 丝袜 人妻 在线| 婷婷色麻豆天堂久久| 国产精品成人在线| 欧美人与性动交α欧美精品济南到| 亚洲天堂av无毛| 18禁裸乳无遮挡动漫免费视频| 精品一区二区三区av网在线观看 | 久久精品成人免费网站| 亚洲精品久久久久久婷婷小说| 爱豆传媒免费全集在线观看| 国产免费一区二区三区四区乱码| 丝瓜视频免费看黄片| 黄色一级大片看看| 99香蕉大伊视频| 精品久久蜜臀av无| 国产成人av激情在线播放| 亚洲欧洲日产国产| 高清不卡的av网站| 无限看片的www在线观看| 99国产精品一区二区三区| 亚洲自偷自拍图片 自拍| 少妇 在线观看| 欧美 日韩 精品 国产| 叶爱在线成人免费视频播放| 极品人妻少妇av视频| 国产av国产精品国产| 最近手机中文字幕大全| 久久久久久久大尺度免费视频| 中文字幕人妻丝袜一区二区| 嫁个100分男人电影在线观看 | 亚洲精品国产一区二区精华液| 午夜激情av网站| 免费少妇av软件| 久久人妻熟女aⅴ| 国产黄频视频在线观看| 久久这里只有精品19| 人人澡人人妻人| 一级黄片播放器| 中文字幕人妻丝袜一区二区| 大香蕉久久成人网| 国产男人的电影天堂91| 欧美精品啪啪一区二区三区 | av一本久久久久| 国产成人精品在线电影| 国产精品国产三级专区第一集| bbb黄色大片| 欧美少妇被猛烈插入视频| 国产免费一区二区三区四区乱码| 亚洲成人免费电影在线观看 | 精品国产乱码久久久久久男人| 别揉我奶头~嗯~啊~动态视频 | 国产成人免费无遮挡视频| av天堂久久9| 高潮久久久久久久久久久不卡| 手机成人av网站| 欧美在线黄色| 日韩熟女老妇一区二区性免费视频| 欧美成狂野欧美在线观看| 国产成人av激情在线播放| 亚洲精品国产av成人精品| 亚洲 国产 在线| 欧美日本中文国产一区发布| 国产精品偷伦视频观看了| 熟女少妇亚洲综合色aaa.| 在线观看免费高清a一片| 99国产精品一区二区三区| 亚洲av成人不卡在线观看播放网 | www日本在线高清视频| 97精品久久久久久久久久精品| 人妻 亚洲 视频| 黄频高清免费视频| 国产一区二区在线观看av| 精品少妇久久久久久888优播| 国产片特级美女逼逼视频| 精品国产超薄肉色丝袜足j| 日韩欧美一区视频在线观看| 19禁男女啪啪无遮挡网站| 久久免费观看电影| 亚洲精品乱久久久久久| 日日夜夜操网爽| 脱女人内裤的视频| 亚洲精品日本国产第一区| 亚洲精品国产区一区二| 少妇精品久久久久久久| 在线观看免费视频网站a站| 国产精品一区二区在线观看99| 电影成人av| 肉色欧美久久久久久久蜜桃| 欧美亚洲 丝袜 人妻 在线| 两人在一起打扑克的视频| 丰满迷人的少妇在线观看| 在现免费观看毛片| 老汉色∧v一级毛片| 国产xxxxx性猛交| 精品久久久久久久毛片微露脸 | 国产在线免费精品| 免费观看av网站的网址| 亚洲av成人精品一二三区| 免费av中文字幕在线| 啦啦啦中文免费视频观看日本| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲,一卡二卡三卡| 老司机影院成人| 一边摸一边抽搐一进一出视频| 亚洲av综合色区一区| 无遮挡黄片免费观看| 亚洲,欧美,日韩| 亚洲av国产av综合av卡| 欧美成狂野欧美在线观看| 国产一区二区在线观看av| 日韩大片免费观看网站| 一级毛片女人18水好多 | 在线 av 中文字幕| 亚洲欧美一区二区三区国产| 悠悠久久av| 日韩欧美一区视频在线观看| 国产欧美日韩精品亚洲av| 又大又黄又爽视频免费| 99九九在线精品视频| 欧美 日韩 精品 国产| 国产精品二区激情视频| 久久免费观看电影| 欧美日韩亚洲国产一区二区在线观看 | av在线老鸭窝| 精品久久久久久久毛片微露脸 | 国产精品亚洲av一区麻豆| 精品高清国产在线一区| 欧美日韩亚洲高清精品| 深夜精品福利| 久久精品久久久久久噜噜老黄| 中文字幕av电影在线播放| 亚洲av成人不卡在线观看播放网 | 一二三四在线观看免费中文在| 80岁老熟妇乱子伦牲交| 又大又爽又粗| 亚洲国产精品一区三区| 啦啦啦啦在线视频资源| 欧美黄色片欧美黄色片| 午夜av观看不卡| 高清不卡的av网站| 久久人人97超碰香蕉20202| 大陆偷拍与自拍| 亚洲欧洲国产日韩| e午夜精品久久久久久久| 热re99久久国产66热| 国产深夜福利视频在线观看| 精品国产一区二区三区久久久樱花| 两人在一起打扑克的视频| 侵犯人妻中文字幕一二三四区| 丝袜在线中文字幕| 欧美人与善性xxx| 日韩一卡2卡3卡4卡2021年| 国精品久久久久久国模美| 亚洲av综合色区一区| 亚洲久久久国产精品| 国产熟女午夜一区二区三区| 看免费av毛片| 国产精品99久久99久久久不卡| 成年动漫av网址| 男女边摸边吃奶| 亚洲精品av麻豆狂野| 欧美精品亚洲一区二区| 亚洲国产欧美日韩在线播放| 国产伦理片在线播放av一区| 1024视频免费在线观看| 各种免费的搞黄视频| 水蜜桃什么品种好| 亚洲视频免费观看视频| 中文欧美无线码| 一级毛片女人18水好多 | 国产成人一区二区在线| 国产精品偷伦视频观看了| 国产免费视频播放在线视频| 新久久久久国产一级毛片| cao死你这个sao货| 欧美久久黑人一区二区| 黑人巨大精品欧美一区二区蜜桃| 免费观看av网站的网址| 日韩av免费高清视频| 9热在线视频观看99| 免费在线观看完整版高清| 精品国产乱码久久久久久小说| 美女福利国产在线| 青春草视频在线免费观看| 交换朋友夫妻互换小说| 黄片播放在线免费| 日本91视频免费播放| cao死你这个sao货| 9色porny在线观看| 男人舔女人的私密视频| 久久人妻熟女aⅴ| 亚洲色图综合在线观看| 欧美av亚洲av综合av国产av| 婷婷色麻豆天堂久久| 国产一区二区 视频在线| 自线自在国产av| 美女大奶头黄色视频| 日本av手机在线免费观看| 国产在线一区二区三区精| 国产福利在线免费观看视频| 人人妻人人添人人爽欧美一区卜| 亚洲图色成人| 亚洲九九香蕉| 2018国产大陆天天弄谢| 一区二区三区乱码不卡18| 国产真人三级小视频在线观看| 色精品久久人妻99蜜桃| 国产成人啪精品午夜网站| 飞空精品影院首页| 国产av精品麻豆| 成人国语在线视频| 午夜激情av网站| 人妻 亚洲 视频| 麻豆乱淫一区二区| 日韩视频在线欧美| 汤姆久久久久久久影院中文字幕| 啦啦啦中文免费视频观看日本| av在线老鸭窝| 又大又爽又粗| www.熟女人妻精品国产| 亚洲中文字幕日韩| 女人久久www免费人成看片| av又黄又爽大尺度在线免费看| 男人爽女人下面视频在线观看| 亚洲男人天堂网一区| 免费不卡黄色视频| 9热在线视频观看99| 精品国产一区二区三区四区第35| 亚洲熟女精品中文字幕| 亚洲精品一卡2卡三卡4卡5卡 | 日本av免费视频播放| 精品高清国产在线一区| 亚洲精品久久成人aⅴ小说| 久久性视频一级片| 黄片播放在线免费| 在线观看人妻少妇| 欧美精品人与动牲交sv欧美| 啦啦啦中文免费视频观看日本| 国产在线观看jvid| 日本色播在线视频| 老司机在亚洲福利影院| 男女床上黄色一级片免费看| 成年美女黄网站色视频大全免费| 制服人妻中文乱码| 好男人电影高清在线观看| 国产精品久久久久久人妻精品电影 | 免费看十八禁软件| 丝袜美足系列| 考比视频在线观看| 极品人妻少妇av视频| 亚洲成人免费电影在线观看 | 各种免费的搞黄视频| 亚洲午夜精品一区,二区,三区| 国产欧美亚洲国产| 国产亚洲午夜精品一区二区久久| 久久久久久久大尺度免费视频| 欧美在线一区亚洲| 一级毛片我不卡| 欧美av亚洲av综合av国产av| 免费观看a级毛片全部| 国产片特级美女逼逼视频| 婷婷成人精品国产| 肉色欧美久久久久久久蜜桃| 激情五月婷婷亚洲| 丝袜喷水一区| 国产精品成人在线| 久久久久国产精品人妻一区二区| 亚洲av日韩在线播放| 91精品国产国语对白视频| 国产主播在线观看一区二区 | 免费久久久久久久精品成人欧美视频| 久久人人97超碰香蕉20202| 亚洲人成77777在线视频| 丰满迷人的少妇在线观看| 两个人免费观看高清视频| 亚洲av男天堂| 热re99久久精品国产66热6| 国产成人精品久久久久久| 91精品国产国语对白视频| 久热这里只有精品99| 国产亚洲午夜精品一区二区久久| 乱人伦中国视频| 国产成人一区二区三区免费视频网站 | 亚洲av国产av综合av卡| 日韩 亚洲 欧美在线| 免费女性裸体啪啪无遮挡网站| 人妻人人澡人人爽人人| av有码第一页| 高清不卡的av网站| 欧美黄色片欧美黄色片| 欧美日韩视频高清一区二区三区二| 久久精品国产a三级三级三级| 极品人妻少妇av视频| 亚洲av在线观看美女高潮| 人成视频在线观看免费观看| 人妻人人澡人人爽人人| 成人亚洲精品一区在线观看| 在线观看国产h片| 国产伦理片在线播放av一区| 亚洲国产精品一区三区| 人妻 亚洲 视频| 精品一区在线观看国产| 久久精品久久久久久久性| 国产精品一国产av| 秋霞在线观看毛片| 久久久久久久久久久久大奶| 国产成人a∨麻豆精品| 欧美黑人欧美精品刺激| 多毛熟女@视频| 日韩 欧美 亚洲 中文字幕|