姜冬梅 康 波 馬 容 何 琿
(四川農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,雅安 625014)
烯醇化酶(enolase,ENO)是在古生菌、真細(xì)菌和真核生物中廣泛分布的一種高保守的蛋白酶,能催化糖酵解途徑中2-磷酸-D-甘油酸(2-phospho-D-glycerate,PGA)與磷酸烯醇式丙酮酸(phosphoenolpyruvate,PEP)相互轉(zhuǎn)化。脊椎動(dòng)物ENO 存在有 ENO1(α-ENO)、ENO2(γ-ENO)和ENO3(β-ENO)3種亞型,它們之間具有高序列相似性和相近的酶動(dòng)力學(xué)特性。許多研究已經(jīng)證實(shí),ENO1除了可催化PGA與PEP之間的轉(zhuǎn)化,還可通過(guò)糖酵解途徑來(lái)參與心臟功能的調(diào)節(jié)[1]。此外,ENO1與τ-晶體蛋白同源,被認(rèn)為是哺乳動(dòng)物,尤其是鳥(niǎo)類(lèi)眼睛晶狀體的最重要組成成分[2]。近年來(lái)的研究表明,ENO1還在纖溶酶原激活和纖溶酶活性、肌生成和肌肉再生、細(xì)胞凋亡以及腫瘤發(fā)生發(fā)展等許多生物學(xué)過(guò)程中發(fā)揮重要調(diào)控作用[3]。本文就ENO1調(diào)控纖維蛋白溶解、肌生成和肌肉再生、細(xì)胞凋亡以及腫瘤發(fā)生發(fā)展的新進(jìn)展做一綜述,以期為闡明ENO1多重生物學(xué)功能及其分子調(diào)控機(jī)制的研究奠定基礎(chǔ),同時(shí)為篩選ENO1作為疾病診斷和預(yù)后生物標(biāo)記提供新的切入點(diǎn)。
ENO1作為有核血細(xì)胞表面的纖溶酶原特異性受體[4],在癌細(xì)胞、單核細(xì)胞、神經(jīng)細(xì)胞和內(nèi)皮細(xì)胞表面均有表達(dá)。中性粒細(xì)胞表面纖溶酶原抗原表位與人類(lèi)ENO1氨基酸序列中間區(qū)域的16個(gè)氨基酸殘基序列一致[5]。細(xì)胞表面纖溶酶原與ENO1相互作用后可激活纖溶酶原,并可增強(qiáng)細(xì)胞外周蛋白酶活性[6],同時(shí)也可保護(hù)纖溶酶免受α2-抗纖溶酶抑制[7]。López-Alemany 等[8]研究發(fā)現(xiàn),MAb11G1(可阻斷纖溶酶原與ENO1結(jié)合單抗)可抑制90%的纖溶酶原激活,說(shuō)明ENO1在細(xì)胞表面纖溶酶原激活過(guò)程中發(fā)揮關(guān)鍵調(diào)控作用。在纖溶酶原激活過(guò)程中,纖溶酶原首先與細(xì)胞表面ENO1結(jié)合形成纖溶酶原受體復(fù)合物,再在尿激酶型纖溶酶原激活劑的作用下將纖溶酶原激活轉(zhuǎn)變?yōu)橛谢钚缘睦w溶酶,后者發(fā)揮調(diào)控細(xì)胞外基質(zhì)(extracellular matrix,ECM)重塑、細(xì)胞遷移和細(xì)胞增殖的功能[9]。Redlitz 等[7]研究發(fā)現(xiàn),單核細(xì)胞樣細(xì)胞表面只有ENO1一種纖溶酶原受體參與調(diào)控纖溶酶原激活過(guò)程;而Das等[10]研究表明,單核巨噬細(xì)胞膜表面主要的纖溶酶原受體不是ENO1,而是組蛋白H2B,推測(cè)ENO1作為纖溶酶原受體,在調(diào)節(jié)纖溶過(guò)程中可能具有時(shí)空特異性的特點(diǎn)。
缺乏信號(hào)肽序列的ENO1能作為纖溶酶原受體基因在細(xì)胞表面表達(dá)并發(fā)揮其功能。目前對(duì)該現(xiàn)象有2種解釋:一種認(rèn)為ENO1疏水結(jié)構(gòu)域可能執(zhí)行內(nèi)部信號(hào)肽序列的功能[11];而另一種則認(rèn)為ENO1翻譯后乙?;蛘吡姿峄饔每赡芘cENO1表達(dá)于細(xì)胞表面有密切關(guān)系[12]。因此,缺乏信號(hào)肽序列的ENO1可在細(xì)胞表面表達(dá)的機(jī)制仍有待進(jìn)一步研究闡明。
細(xì)胞表面蛋白質(zhì)水解是組織重塑等生理過(guò)程的常見(jiàn)現(xiàn)象。纖溶酶激活系統(tǒng)在肌肉損傷之后的再生過(guò)程中發(fā)揮重要作用。肌肉特異性表達(dá)的ENO3在胚胎發(fā)育期的肌肉組織中表達(dá)上調(diào),同時(shí)伴隨著ENO1和ENO2表達(dá)下調(diào),在成年動(dòng)物肌肉組織中無(wú) ENO2,但是 ENO1 仍有表達(dá)[13]。López-Alemany等[14]研究表明,在離體小鼠成肌細(xì)胞分化和體肌肉再生過(guò)程中,ENO1的表達(dá)量均顯著升高。Díaz-Ramos等[15]用 MAb11G1 和纖溶酶原的抑制劑ε-氨基已酸聯(lián)合處理肌肉損傷的野生型小鼠和肌營(yíng)養(yǎng)不良癥mdx小鼠,結(jié)果表明MAb11G1和ε-氨基已酸都可通過(guò)抑制炎癥細(xì)胞浸潤(rùn)或者促進(jìn)ECM沉積途徑來(lái)抑制肌肉再生修復(fù),說(shuō)明ENO1參與肌肉再生修復(fù)過(guò)程。體外研究也表明,衛(wèi)星細(xì)胞源成肌細(xì)胞表面ENO1的表達(dá)量隨著細(xì)胞表面纖溶酶原水平的增加而增加。另外,Bryer等[16]研究證實(shí),在肌肉組織重塑過(guò)程中,ENO1是主要的功能性纖溶酶原受體。在心肌創(chuàng)傷后愈合以及心肌梗塞時(shí),包括ENO1在內(nèi)的纖溶過(guò)程在心肌組織修復(fù)和再生過(guò)程中發(fā)揮了重要調(diào)控作用[17-18]。綜上所述,ENO1作為纖溶酶原受體,可通過(guò)介導(dǎo)纖溶酶活性來(lái)調(diào)控細(xì)胞浸潤(rùn)和ECM重塑功能,從而發(fā)揮其調(diào)控肌生成和肌肉再生的功能。
在細(xì)胞凋亡過(guò)程中,凋亡細(xì)胞表面分泌大量自身抗原,并被吞噬細(xì)胞識(shí)別,啟動(dòng)免疫抑制應(yīng)答。ENO1作為纖溶酶原特異性受體可促進(jìn)纖溶酶的生成并提高其活性,從而通過(guò)纖溶酶的介導(dǎo)來(lái)發(fā)揮其調(diào)控細(xì)胞凋亡的功能。Ucker等[19]研究發(fā)現(xiàn),大量分泌糖酵解酶(尤其是ENO1)是許多細(xì)胞凋亡常見(jiàn)的早期表現(xiàn)。在凋亡細(xì)胞中,ENO1已經(jīng)失去了它固有的糖酵解活性,但可作為纖溶酶原受體參與調(diào)控細(xì)胞凋亡過(guò)程[20]。與ENO1相比,其他的纖溶酶原受體分子,如膜聯(lián)蛋白A2[21]和組蛋白H2B[10],在凋亡細(xì)胞表面的含量并沒(méi)有得到顯著富集,說(shuō)明ENO1是調(diào)控細(xì)胞凋亡的關(guān)鍵纖溶酶原受體。另外,Yang等[22]研究表明,ENO1與自身抗體交互作用對(duì)結(jié)締組織疾病的上皮細(xì)胞凋亡也發(fā)揮重要作用,提示ENO1可作為自身抗原與其抗體特異性結(jié)合發(fā)揮調(diào)控細(xì)胞凋亡的功能。Zhang等[23]在研究環(huán)氧合酶-2抑制劑NS-398對(duì)子宮內(nèi)膜癌細(xì)胞RL95-2增殖、凋亡和侵襲的作用時(shí)發(fā)現(xiàn),NS-398能顯著抑制RL95-2細(xì)胞增殖和侵襲,同時(shí)伴隨ENO1蛋白質(zhì)翻譯上調(diào),進(jìn)一步證實(shí)了ENO1具有調(diào)控細(xì)胞凋亡的功能??傊?,越來(lái)越多的研究表明,ENO1在調(diào)控細(xì)胞凋亡過(guò)程中具有重要作用,然而其分子機(jī)制仍有待進(jìn)一步研究闡明。
原癌基因c-myc在調(diào)控細(xì)胞生長(zhǎng)和分化過(guò)程中起重要作用,c-myc啟動(dòng)子結(jié)合蛋白(c-myc promoter-binding protein,MBP-1)定位于胞核,能與c-myc的P2啟動(dòng)子結(jié)合,抑制c-myc的表達(dá),從而發(fā)揮抗腫瘤作用[24]。MBP-1與 ENO1序列同源,MBP-1起始密碼子ATG位于ENO1起始密碼子下游,MBP-1被認(rèn)為是 ENO1基因編碼產(chǎn)物[25]。由于MBP-1缺乏ENO1的前96個(gè)氨基酸殘基,因此MBP-1不具有糖酵解活性。然而,缺失第96至236個(gè)氨基酸殘基的ENO1突變蛋白喪失了與DNA結(jié)合的能力,說(shuō)明ENO1的羧基末端對(duì)于MBP-1結(jié)合c-myc基因是必需的[26]。成神經(jīng)細(xì)胞瘤是一種見(jiàn)于兒童的實(shí)體腫瘤,其特征是染色體1p 缺失,而 ENO1 則位于1p36.2。Ejesk?r等[27]將ENO1的cDNA轉(zhuǎn)入缺失1p的成神經(jīng)細(xì)胞瘤中,結(jié)果發(fā)現(xiàn)ENO1可誘導(dǎo)細(xì)胞凋亡,促進(jìn)瘤細(xì)胞的死亡;而將體外轉(zhuǎn)錄的ENO1 mRNA轉(zhuǎn)入該瘤細(xì)胞后,瘤細(xì)胞生長(zhǎng)明顯受阻,說(shuō)明高水平的ENO1可抑制瘤細(xì)胞生長(zhǎng)。因此,ENO1可選擇性地表達(dá)成為MBP-1,通過(guò)與c-myc啟動(dòng)子結(jié)合發(fā)揮抑制腫瘤的作用。然而,目前有關(guān)ENO1跳過(guò)第1個(gè)起始密碼子而選擇性表達(dá)截短的MBP-1原因和分子機(jī)制仍不清楚。
與上述ENO1抑制腫瘤作用不同,ENO1很可能還是腫瘤發(fā)生發(fā)展過(guò)程中的重要癌基因。在肺癌、結(jié)腸癌和急性髓細(xì)胞樣白血病中,ENO1表達(dá)上調(diào),作為纖溶酶原受體的ENO1可促進(jìn)低氧環(huán)境的細(xì)胞代謝活動(dòng),通過(guò)纖溶酶原激活和ECM降解作用驅(qū)動(dòng)腫瘤的侵襲[28-29]。Chen 等[30]研究發(fā)現(xiàn),肝癌細(xì)胞中ENO1表達(dá)量顯著高于癌變前期的肝細(xì)胞,提示ENO1可作為早期肝癌細(xì)胞診斷的生物標(biāo)記。Chang等[28]研究發(fā)現(xiàn),ENO1表達(dá)與疾病臨床分期和疾病復(fù)發(fā)密切相關(guān),晚期和復(fù)發(fā)的患者ENO1表達(dá)明顯增高。胃動(dòng)蛋白1(gastrokine 1,GKN1)可抑制蛋白激酶C,促進(jìn)細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2(ERK1/2)和c-Jun氨基末端激酶1/2(JNK1/2)的生物活性,從而發(fā)揮抑制胃癌細(xì)胞生長(zhǎng)的功能。Yan等[31]研究發(fā)現(xiàn),GKN1可參與調(diào)節(jié)74個(gè)蛋白質(zhì)的功能,其中ENO1是這些蛋白質(zhì)交互作用的中心元件,干擾ENO1表達(dá)可抑制胃癌細(xì)胞生長(zhǎng),而ENO1過(guò)表達(dá)會(huì)阻斷GKN1誘導(dǎo)的抑制細(xì)胞生長(zhǎng)的作用,說(shuō)明ENO1可促進(jìn)胃癌細(xì)胞生長(zhǎng)。另外,Takashima等[32]發(fā)現(xiàn)丙型肝炎性肝癌組織中ENO1表達(dá)明顯高于正常肝組織,ENO1表達(dá)越高,肝癌的惡性程度越高,而且ENO1的表達(dá)與腫瘤的大小和血管侵襲呈正相關(guān)。低氧是實(shí)體腫瘤的共同特征,腫瘤細(xì)胞ENO1表達(dá)上調(diào)可促進(jìn)低氧增殖和癌癥侵襲[29]。在結(jié)腸癌細(xì)胞增殖過(guò)程中,ENO1可通過(guò)影響糖酵解、三羧酸循環(huán)以及隨后的氧化磷酸化酶底物水平來(lái)影響三磷酸腺苷(ATP)的合成,這對(duì)腫瘤細(xì)胞生長(zhǎng)是十分重要的[33]。綜上所述,在腫瘤發(fā)生發(fā)展過(guò)程中,ENO1具有抑制和促進(jìn)腫瘤的雙重作用。在腫瘤形成早期,由于內(nèi)外環(huán)境因素促使ENO1選擇性表達(dá)成 MBP-1,MBP-1結(jié)合 c-myc的 P2啟動(dòng)子,發(fā)揮抑制腫瘤功能;而在癌癥發(fā)生發(fā)展過(guò)程中,ENO1通過(guò)其糖酵解功能來(lái)發(fā)揮促進(jìn)腫瘤發(fā)生發(fā)展的效應(yīng)。
ENO1除了具有參與糖酵解和維持晶狀體結(jié)構(gòu)的功能之外,還具有調(diào)控纖溶過(guò)程、肌生成和肌肉再生、細(xì)胞凋亡以及腫瘤發(fā)生發(fā)展的功能。然而,大多數(shù)這些功能的作用途徑和機(jī)制仍不十分清楚,如缺乏信號(hào)肽序列的ENO1跨細(xì)胞膜在細(xì)胞表面表達(dá)的機(jī)制、ENO1介導(dǎo)的細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)機(jī)制、調(diào)控 ENO1選擇性表達(dá) MBP-1的因素、ENO1調(diào)控腫瘤發(fā)生發(fā)展的途徑和機(jī)制。另外,ENO1還可能參與調(diào)控鵝卵巢功能和卵泡發(fā)育。然而,ENO1是通過(guò)糖酵解途徑,還是通過(guò)纖溶酶受體途徑來(lái)調(diào)控動(dòng)物繁殖功能,還有待進(jìn)一步研究闡明。因此,對(duì)上述問(wèn)題的研究,不僅對(duì)于闡明ENO1多重生物學(xué)功能具有重要意義,而且將為闡明ENO1在各種病理生理過(guò)程中的功能及作用機(jī)制研究提供新的切入點(diǎn),同時(shí)還可為ENO1作為疾病治療的靶點(diǎn)以及篩選作為疾病診斷和預(yù)后生物標(biāo)記提供依據(jù)。
[1]ZHU L A,F(xiàn)ANG N Y,GAO P J,et al.Differential expression ofα-enolase in the normal and pathological cardiac growth[J].Experimental and Molecular Pathology,2009,87(1):27-31.
[2]WISTOW G J,LIETMAN T,WILLIAMS L A,et al.Tau-crystallin/alpha-enolase:one gene encodes both an enzyme and a lens structural protein[J].The Journal of Cell Biology,1988,107(6):2729-2736.
[3]PANCHOLI V.Multifunctionalα-enolase:its role in diseases[J].Cellular and Molecular Life Sciences,2001,58(7):902-920.
[4]MILES L A,DAHLBERG C M,PLESCIA J,et al.Role of cell-surface lysines in plasminogen binding to cells:identification of alpha-enolase as a candidate plasminogen receptor[J].Biochemistry,1991,30(6):1682-1691.
[5]ARZA B,F(xiàn)éLEZ J,LóPEZ-ALEMANY R,et al.I-dentification of an epitope of alpha-enolase(a candidate plasminogen receptor)by phage display[J].Thrombosis and Haemostasis,1997,78(3):1097-1103.
[6]LONGSTAFF C,MERTON R E,F(xiàn)ABREGAS P,et al.Characterization of cell-associated plasminogen activation catalyzed by urokinase-type plasminogen activator,but independent of urokinase receptor(uPAR,CD87)[J].Blood,1999,93(11):3839-3846.
[7]REDLITZ A,F(xiàn)OWLER B J,PLOW E F,et al.The role of an enolase-related molecule in plasminogen binding to cells[J].European Journal of Biochemistry,1995,227(1/2):407-415.
[8]LóPEZ-ALEMANY R,LONGSTAFF C,HAWLEY S,et al.Inhibition of cell surface mediated plasmino-gen activation by a monoclonal antibody againstα-Enolase[J].American Journal of Hematology,2003,72(4):234-242.
[9]OSSOWSKI L,AGUIRRE-GHISO J A.Urokinase receptor and integrin partnership:coordination of signaling for cell adhesion,migration and growth[J].Current Opinion in Cell Biology,2000,12(5):613-620.
[10]DAS R,BURKE T,PLOW E F.Histone H2B as a functionally important plasminogen receptor on macrophages[J].Blood,2007,110(10):3763-3772.
[11]VON HEIJNE G,LILJESTR?M P,MIKUS P,et al.The efficiency of the uncleaved secretion signal in the plasminogen activator inhibitor type 2 protein can be enhanced by point mutations that increase its hydrophobicity[J].The Journal of Biological Chemistry,1991,266(23):15240-15243.
[12]BOTTALICO L A,KENDRICK N C,KELLER A,et al.Cholesteryl ester loading of mouse peritoneal macrophages is associated with changes in the expression or modification of specific cellular proteins,including increase in an alpha-enolase isoform[J].Arteriosclerosis,Thrombosis,and Vascular Biology,1993,13(2):264-275.
[13]MERKULOVA T,DEHAUPAS M,NEVERS M C,et al.Differential modulation ofα,β andγ enolase isoforms in regenerating mouse skeletal muscle[J].European Journal of Biochemistry,2000,267(12):3735-3743.
[14]LóPEZ-ALEMANY R,SUELVES M,MU?OZCáNOVES P.Plasmin generation dependent on alphaenolase-type plasminogen receptor is required for myogenesis[J].Thrombosis and Haemostasis,2003,90(4):724-733.
[15]DíAZ-RAMOS A,ROIG-BORRELLAS A,GARCíAMELERO A,et al.Requirement of plasminogen binding to its cell-surface receptorα-enolase for efficient regeneration of normal and dystrophic skeletal muscle[J].PLoS One,2012,7(12):e50477.
[16]BRYER S C,KOH T J.The urokinase-type plasminogen activator receptor is not required for skeletal muscle inflammation or regeneration[J].American Journal of Physiology:Regulatory,Integrative and Comparative Physiology,2007,293(3):R1152-R1158.
[17]HABIB S S,ABDELGADER A G,KURDI M I,et al.Tissue plasminogen activator and plasminogen activator inhibitor-1 levels in patients with acute myocardial infarction and unstable angina[J].The Journal of the Pakistan Medical Association,2012,62(7):681-685.
[18]LUCKING A J,GIBSON K R,PATERSON E E,et al.Endogenous tissue plasminogen activator enhances fibrinolysis and limits thrombus formation in a clinical model of thrombosis[J].Arteriosclerosis,Thrombosis,and Vascular Biology,2013,33(5):1105-1111.
[19]UCKER D S,JAIN M R,PATTABIRAMAN G,et al.Externalized glycolytic enzymes are novel,conserved,and early biomarkers of apoptosis[J].Journal of Biological Chemistry,2012,287(13):10325-10343.
[20]O’MULLANE M J,BAKER M S.Loss of cell viability dramatically elevates cell surface plasminogen binding and activation[J].Experimental Cell Research,1998,242(1):153-164.
[21]CESARMAN G M,GUEVARA C A,HAJJAR K A.An endothelial cell receptor for plasminogen/tissue plasminogen activator(t-PA).Ⅱ.AnnexinⅡ-mediated enhancement of t-PA-dependent plasminogen activation[J].The Journal of Biological Chemistry,1994,269(33):21198-21203.
[22]YANG H B,ZHENG W J,ZHANG X,et al.Induction of endothelial cell apoptosis by anti-alpha-enolase antibody[J].Chinese Medical Sciences Journal,2011,26(3):152-157.
[23]ZHANG Y,CAI J T,ZHANG Y.Proteomics reveals protein profile changes in cyclooxygenase-2 inhibitortreated endometrial cancer cells[J].International Journal of Gynecological Cancer,2009,19(3):326-333.
[24]FEO S,ARCURI D,PIDDINI E,et al.ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor:relationship with myc promoterbinding protein 1(MBP-1)[J].FEBS Letters,2000,473(1):47-52.
[25]SUBRAMANIAN A,MILLER D M.Structural analysis of alpha-enolase.Mapping the functional domains involved in down-regulation of the c-myc protooncogene[J].Journal of Biological Chemistry,2000,275(8):5958-5965.
[26]LO PRESTI M,F(xiàn)ERRO A,CONTINO F,et al.Myc promoter-binding protein-1(MBP-1)is a novel potential prognostic marker in invasive ductal breast carcinoma[J].PLoS One,2010,5(9):e12961.
[27]EJESK?R K,KRONA C,CARéN H,et al.Introduction of in vitro transcribed ENO1 mRNA into neuro-blastoma cells induces cell death[J].BMC Cancer,2005,5:161.
[28]CHANG G C,LIU K J,HSIEH C L,et al.Identification ofα-enolase as an autoantigen in lung cancer:its overexpression is associated with clinical outcomes[J].Clinical Cancer Research,2006,12(19):5746-5754.
[29]CAPELLO M,F(xiàn)ERRI-BORGOGNO S,CAPPELLO P,et al.α-Enolase:a promising therapeutic and diagnostic tumor target[J].FEBS Journal,2011,278(7):1064-1074.
[30]CHEN X L,ZHOU L,YANG J,et al.Hepatocellular carcinoma-associated protein markers investigated by MALDI-TOF MS[J].Molecular Medicine Reports,2010,3(4):589-596.
[31]YAN G R,XU S H,TAN Z L,et al.Proteomics characterization of gastrokine 1-induced growth inhibition of gastric cancer cells[J].Proteomics,2011,11(18):3657-3664.
[32]TAKASHIMA M,KURAMITSU Y,YOKOYAMA Y,et al.Overexpression of alpha enolase in hepatitis C virus-related hepatocellular carcinoma:association with tumor progression as determined by proteomic analysis[J].Proteomics,2005,5(6):1686-1692.
[33]STIERUM R,GASPARI M,DOMMELS Y,et al.Proteome analysis reveals novel proteins associated with proliferation and differentiation of the colorectal cancer cell line Caco-2[J].Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics,2003,1650(1/2):73-91.
動(dòng)物營(yíng)養(yǎng)學(xué)報(bào)2014年1期