徐子偉
(浙江省農(nóng)業(yè)科學院畜牧獸醫(yī)研究所,杭州 310021)
在現(xiàn)代養(yǎng)豬業(yè)中,仔豬早期斷奶是提高母豬年生產(chǎn)力和減少母-仔豬疾病傳播的技術(shù)措施。但斷奶應激則又導致仔豬出現(xiàn)早期斷奶綜合征,首當其沖的是仔豬腸道損傷。因此,腸道損傷修復及其營養(yǎng)調(diào)控研究日益受到關(guān)注。腸道正常的功能依賴腸道黏膜上皮屏障、免疫屏障、生物屏障這三大屏障的完整性來維持。斷奶應激會導致仔豬腸道屏障功能受損,表現(xiàn)為仔豬腸道黏膜形態(tài)結(jié)構(gòu)改變、腸上皮屏障通透性增加、免疫抑制、腸道微生物菌群失衡等。直接或間接調(diào)控仔豬腸道營養(yǎng)、生長發(fā)育與促進腸道損傷修復的因子種類繁多,主要包括多肽類生長因子、微生態(tài)調(diào)控制劑和營養(yǎng)代謝調(diào)節(jié)劑等。本文在分析仔豬斷奶導致的腸道損傷問題基礎上,對相關(guān)的各類損傷修復調(diào)控因子研究進展進行綜述。
1.1.1 腸黏膜上皮屏障損傷
腸道黏膜位于腸道最外層,直接與腸道中的營養(yǎng)物質(zhì)和微生物接觸,是機體阻止腸腔內(nèi)細菌入侵和毒素吸收的重要屏障。腸黏膜上皮屏障分為物理屏障和化學屏障。物理屏障主要指健康完整的腸道上皮細胞及細胞間的緊密連接[1]。仔豬斷奶后,腸道物理屏障發(fā)生變化:1)小腸黏膜形態(tài)結(jié)構(gòu)改變。表現(xiàn)為黏膜萎縮、絨毛變短、隱窩加深、吸收能力下降[2],多數(shù)研究認為這與仔豬斷奶后采食量下降有關(guān)[3],攝入能量和蛋白質(zhì)不足影響上皮細胞增殖,該狀態(tài)下的細胞增殖彌補不了絨毛表面成熟細胞的損傷[4]。2)腸上皮屏障通透性增加。這是一個選擇透過性屏障,一方面允許營養(yǎng)物質(zhì)有序進入,另一方面有效阻止大分子抗原物質(zhì)、病原微生物、腸道內(nèi)細菌及其毒素等進入,起到防御作用[5]。斷奶仔豬經(jīng)受多種應激后,腸道通透性增加,腸屏障功能受損,導致腹瀉和疾?。?]。3)消化吸收功能降低。小腸刷狀緣酶可反映小腸功能,仔豬斷奶降低小腸刷狀緣乳糖酶活性[7]。有報道斷奶后無論補飼與否,乳糖酶和蔗糖酶的活性都顯著下降,尤以乳糖酶下降更嚴重,可能因為其更多分布在絨毛頂端[8]。腸道堿性磷酸酶是腸黏膜上的標志酶,斷奶應激顯著降低仔豬空腸堿性磷酸酶活性[9]。有研究發(fā)現(xiàn)斷奶后3 d仔豬小腸黏膜內(nèi)氨基肽酶-N及二肽氨基肽酶Ⅳ的活性顯著降低[10]?;瘜W屏障由胃腸道分泌的胃酸、溶菌酶、膽汁、腸道黏液蛋白和其他抗菌肽等構(gòu)成的微環(huán)境,能夠裂解和殺滅細菌,防止毒素等有害物質(zhì)吸收。早期斷奶導致小腸細胞損傷、杯狀細胞數(shù)量減少、黏液層厚度下降、黏蛋白含量下降、腸道化學屏障受損。此外,斷奶前因母乳含有大量乳糖,可在仔豬胃內(nèi)產(chǎn)生乳酸,彌補胃酸不足。斷奶后這一營養(yǎng)源缺乏,胃內(nèi)pH升高,pH大于4.0時,消化道有害菌會大量繁殖生長[11]。對于早期斷奶仔豬,調(diào)節(jié)腸道pH是維護腸道化學屏障的措施。
1.1.2 腸道免疫屏障損傷
腸道免疫屏障主要由腸黏膜吸收上皮細胞和腸道淋巴組織構(gòu)成。仔豬主動免疫到2月齡才基本成熟,而早期斷奶通常在4周之前。早期斷奶會降低仔豬抗體水平,導致機體免疫力下降和腹瀉[12]。早期斷奶仔豬出現(xiàn)免疫抑制的原因:1)母源有益因子消失。母乳特別是初乳中含有多種生物活性成分,如激素、生長因子、神經(jīng)肽、抗炎癥因子和免疫調(diào)節(jié)因子,對腸道上皮、腸神經(jīng)系統(tǒng)和黏膜免疫系統(tǒng)發(fā)育起重要作用[13];2)斷奶仔豬受到飼糧抗原的挑戰(zhàn)。飼糧中大豆蛋白如大豆球蛋白、β-聚球蛋白可引起仔豬腸道過敏反應[14],抗原性大豆蛋白影響小腸組織中T、B淋巴細胞含量和小腸電解質(zhì)分泌;3)斷奶造成仔豬免疫系統(tǒng)發(fā)育所需營養(yǎng)不足。斷奶后仔豬采食量下降、營養(yǎng)吸收不良而造成的營養(yǎng)缺乏會導致淋巴器官萎縮和對致病菌、病毒感染的敏感度增加。
1.1.3 腸道生物屏障損傷
腸道是動物機體內(nèi)最大的儲菌庫,腸道常駐菌群是一個相互依賴又相互作用的微生態(tài)系統(tǒng),這種微生態(tài)平衡構(gòu)成了腸道生物屏障。早期斷奶在一定程度上影響腸道菌群的正常發(fā)育,造成菌群失調(diào),引起腸道疾病。斷奶前仔豬糞便中少見產(chǎn)腸毒素大腸桿菌,而斷奶后糞便中大量出現(xiàn),甚至成為優(yōu)勢菌[6]。斷奶可引起有益菌群的數(shù)量下降,增加腸道有害菌群寄居,打破正常菌群平衡[15],致病性病原體在腸道中大量繁殖并產(chǎn)生毒素,破壞腸道的黏膜系統(tǒng),或使臟器血氧供應減少,進一步損傷黏膜屏障。
仔豬斷奶應激會引起養(yǎng)分攝入不足,腸道消化吸收率下降,腸道菌群比例失調(diào),免疫功能受抑制,腸道黏膜屏障受損及通透性增加,外界有毒有害物質(zhì)侵入,腸道炎癥和機體疾病發(fā)生。受損的腸道黏膜屏障進一步激活多個與腸道功能相關(guān)的信號通路,從而造成腸道的繼發(fā)性損傷。利用基因芯片技術(shù)研究21日齡斷奶的仔豬在28日齡時與同日齡哺乳仔豬的腸道基因表達差異,結(jié)果表明斷奶顯著改變了仔豬腸道功能基因表達,其中導致氧化應激和免疫激活的21個基因表達上調(diào),營養(yǎng)代謝和細胞增殖有關(guān)的18個基因表達下調(diào),顯示斷奶應激通過能量代謝、氧化應激、腸道細胞增殖和凋亡等通路造成仔豬腸道黏膜屏障損傷[16]。
microRNAs(miRNAs)是一類長18~26 nt的內(nèi)源性單鏈非編碼小分子RNA,作為細胞增殖、分化和凋亡的關(guān)鍵調(diào)控因子,影響著機體內(nèi)部幾乎所有的信號通路。本團隊研究者Tao等[17]針對斷奶應激致仔豬腸道損傷問題,分析了斷奶后1、4和7 d仔豬與同日齡哺乳仔豬空腸組織中miRNAs的表達差異,發(fā)現(xiàn)斷奶應激顯著改變仔豬斷奶后第1周腸道組織miRNAs的表達譜,特別是斷奶后4 d仔豬腸道中發(fā)現(xiàn)了98個差異表達的miRNAs,其中92個上調(diào)、6個下調(diào),進一步分析發(fā)現(xiàn):1)上調(diào)表達的miR-146b呈最大差異倍數(shù),有研究證實miR-146家族(miR-146a和miR-146b)可通過作用于其靶基因白細胞介素-1受體相關(guān)激酶1和轉(zhuǎn)化生長因子-β(TGF-β)調(diào)控腸黏膜免疫系統(tǒng)和腸上皮細胞的增殖及分化[18];2)在F18大腸桿菌敏感型斷奶仔豬腸道中呈上調(diào)表達的miR-215,在本研究中呈顯著下調(diào)且高度表達,提示斷奶應激和F18大腸桿菌腸道損傷反應機理可能不同;3)6 個 miRNAs(miR-155、miR-150-1、miR-204、miR-132、miR-212和miR-218-2)在仔豬斷奶后1、4和7 d的其中2個相鄰時間點上呈一致性的顯著上調(diào)表達。這提示上述miRNAs在斷奶應激致仔豬腸道損傷中起重要作用。
EGF是1條由53個氨基酸組成的單鏈多肽,分子內(nèi)的6個半胱氨酸組成3個二硫鍵,形成反向平行的β-折疊片段。EGF的特殊空間結(jié)構(gòu)使其耐受酸、熱和胰蛋白酶、胃蛋白酶和糜蛋白酶[19]。它具有促進細胞內(nèi)DNA、RNA和蛋白質(zhì)合成,刺激多種組織細胞增殖分化,促進腸道生長發(fā)育及損傷修復等作用。EGF對仔豬腸道作用效果與遞送方式和劑量有關(guān)。斷奶仔豬飼喂EGF(17.86μg/d)可提高小腸淀粉酶、脂肪酶、胃蛋白酶、蔗糖酶及鳥氨酸脫羧酶活性,降低熱休克蛋白表達量,減輕小腸黏膜損傷程度[20]。飼糧補充0.5 mg/kg EGF可增加仔豬胃蛋白酶活性,補充1.5 mg/kg EGF顯著增加空腸中堿性磷酸酶和乳糖酶活性[21]。腹膜內(nèi)注射EFG可促進腸道上皮細胞增殖,加快流行性腹瀉仔豬萎縮性腸炎的損傷恢復[22]。
EGF的有限來源制約了其在養(yǎng)豬生產(chǎn)中的應用,基因工程是獲得EGF的重要方法。從仔豬腸道損傷修復角度出發(fā),本團隊構(gòu)建了表達豬EGF重組乳酸菌,并通過小鼠葡聚糖硫酸鈉(DSS)結(jié)腸炎模型進行評價。試驗顯示,與正常對照組相比,DSS模型組小鼠結(jié)腸長度顯著降低,結(jié)腸緊密連接蛋白occludin、白細胞介素-10(IL-10)和白細胞介素-4(IL-4)濃度顯著降低,腫瘤壞死因子-α(TNF-α)濃度顯著增加,血清內(nèi)毒素濃度及二胺氧化酶和髓過氧化物酶活性增加;與模型對照組相比,口服重組乳酸菌組小鼠結(jié)腸長度、緊密連接蛋白濃度、IL-10和IL-4濃度顯著增加,分別增加 34.32%、40.63%、58.87% 和 27.86%,TNF-α濃度降低14.18%,血清內(nèi)毒素濃度及二胺氧化酶和髓過氧化物酶活性分別降低22.57%、19.83%和46.19%,說明DSS造成小鼠結(jié)腸結(jié)構(gòu)和功能嚴重損傷,乳酸菌表達的重組豬EGF(pEGF)可修復受損結(jié)腸組織,對維持腸道屏障完整性和促進腸道健康有重要意義。
IGF-Ⅰ為含有70個氨基酸的單鏈多肽,由3個二硫鍵交叉連接而成,主要在肝臟合成,也在腸道組織中合成。IGF-Ⅰ是多功能生長因子,具有類胰島素功能,能促進脂肪、糖原、蛋白質(zhì)合成,刺激RNA和DNA合成以及細胞增生。IGF-Ⅰ可促進胃腸細胞增殖,提高小腸黏膜質(zhì)量及絨毛高度(VH),增 加 養(yǎng) 分 吸 收[23]。低 劑 量 IGF-Ⅰ(0.2 mg/kg)可顯著提高新生仔豬小腸刷狀緣二糖酶活性,刺激小腸功能成熟[24]。高劑量IGF-Ⅰ(3.5 mg/kg)使小腸的重量、蛋白質(zhì)和DNA濃度有較大幅度提高,空腸和回腸 VH顯著增加[25]。腸黏膜損傷試驗中,給予外源性IGF-Ⅰ,腸上皮細胞DNA和蛋白質(zhì)合成增加,腸黏膜結(jié)構(gòu)和功能得到不同程度恢復[26]。IGF-Ⅰ可加快腸切除小鼠的切口修復[27],大幅增加酸性黏液素細胞數(shù)量,限制有害細菌入侵[28]。IGF-Ⅰ可提高新生仔豬小腸中Na+、Cl-以及含Na+的葡萄糖、丙氨酸的吸收量,提高腸道表皮對谷氨酸的吸收率[29]。腸道 IGF-Ⅰ受體是其功能發(fā)揮的必要條件,新生仔豬開始吮乳后,腸道IGF-Ⅰ受體數(shù)量會暫時下降,隨后又升高,且腸道IGF-Ⅰ受體數(shù)量變化與小腸的生長模式一致[30]。
轉(zhuǎn)化生長因子-α(TGF-α)與轉(zhuǎn)化生長因子-β1(TGF-β1)對腸道黏膜損傷修復具有互相平衡調(diào)節(jié)作用。TGF-α由50個氨基酸組成,結(jié)構(gòu)上與EGF有30%~40%的同源性。它們可與共同受體轉(zhuǎn)化生長因子受體(TGFR)結(jié)合,激活酪氨酸蛋白激酶,促使DNA合成和細胞增殖、分化等[31]。在胃腸道,TGF-α參與調(diào)節(jié)黏膜上皮更新和黏膜損傷后修復,是維持黏膜完整性的重要介質(zhì)。TGF-α可劑量依賴地促進嬰兒小腸細胞FHs 74 Int[32]和人結(jié)腸細胞 LoVo[33]增殖。TGF-β 是一種具有多種功能的多肽,具有抗炎、調(diào)節(jié)細胞增殖分化、促進上皮修復的作用。其中TGF-β1在哺乳動物細胞體系中比例最高(>90%),產(chǎn)生于整個胃腸道,對多種細胞具有促有絲分裂作用,可作為化學趨化劑趨化炎細胞與組織修復細胞向創(chuàng)面聚集,在胃腸道參與調(diào)節(jié)黏膜上皮的更新與損傷的修復,是維持黏膜完整性的重要物質(zhì)[34]。外源性TGF-β1可通過絲裂原活化蛋白激酶(MAKP)、Smad信號通路上調(diào)上皮細胞緊密連接蛋白表達,維護跨膜電位平衡,加固腸黏膜屏障功能,阻斷腸黏膜炎癥及通透性增加[35]。
已知對腸黏膜損傷有修復作用的多肽類生長因子,如EGF、IFG-Ⅰ等,其作用缺乏特異性,且會引起機體其他組織副反應。首次報道GLP-2具有特異性地促進腸黏膜生長與損傷后修復作用[36]之后,試驗表明其通過特異性促進腸上皮細胞增殖、抑制腸上皮細胞凋亡、抑制胃酸分泌、降低腸道滲透性、增加腸道血供等促進損傷腸黏膜的結(jié)構(gòu)恢復以及吸收功能和屏障功能的改善,且GLP-2的作用效果強于其他非特異的腸生長因子[37]。GLP-2通過作用于GLP-2受體(GLP-2R)來調(diào)節(jié)腸上皮細胞增殖及抑制其凋亡,從而保護腸道細胞[38]。使用實時熒光定量 PCR(qRT-PCR)技術(shù)證實豬胰高血糖素樣肽-2受體(pGLP-2R)mRNA在絨毛上皮細胞和肌間神經(jīng)叢表達,免疫組織化學和原位雜交技術(shù)證實豬pGLP-2R蛋白分布在腸內(nèi)分泌細胞和腸神經(jīng)元細胞上[39]。
GLP-2對新生仔豬腸道治療試驗證明持續(xù)42 d每天2次注射40μg/kg的GLP-2,通過促進隱窩細胞增殖和抑制細胞凋亡,增加了小腸的VH/隱窩深度(CD)[40]。嚙齒類動物試驗[41-42]證明GLP-2需要每天2次持續(xù)注射6~14 d,才能起到腸道損傷修復作用。豬胰高血糖素樣肽-2(pGLP-2)與人胰高血糖素樣肽-2(hGLP-2)均能顯著增加小鼠小腸的重量、長度及回腸橫截面積[43]。這些研究為pGLP-2治療仔豬腸道損傷和功能紊亂提供了依據(jù)。但pGLP-2在體內(nèi)的半衰期很短,極易被血液中二肽酰肽酶Ⅳ快速降解,半衰期只有8.4 min[42],需大劑量頻繁用藥來維持療效,如用于仔豬生產(chǎn),往往得不償失。
本團隊新近開展了pGLP-2長效化研究,包括PEG化pGLP-2和pGLP-2微球化2條途徑。使用反相高效液相色譜(RP-HPLC)對單甲氧基聚乙二醇-琥珀酰亞氨基丙酸酯(mPEG5k-SPA)修飾pGLP-2的條件進行優(yōu)化;使用弱酸性陽離子交換層析對修飾混合產(chǎn)物進行分離純化;基質(zhì)輔助激光解析電離化/飛行時間質(zhì)譜(MALDI-TOF-MS)證明其分子相對質(zhì)量是8 867,為單修飾產(chǎn)物Lys30-PEG-pGLP-2;體外酶解穩(wěn)定性證明其半衰期是pGLP-2的16倍[37]。優(yōu)化出了微球制備工藝,優(yōu)化后制備微球包封率為74.15%,突釋率為20.36%,粒徑為31.64μm,9 d能累計釋放 47%的多肽[44]。小鼠和仔豬試驗證明注射2種長效化產(chǎn)物均可降低腸道炎性反應,提高腸道黏膜屏障功能,顯著抑制炎性病變[45]。研究結(jié)果為特異性腸道保護因子pGLP-2在仔豬腸道損傷中的治療提供了可能途徑。
常用益生菌主要有屎腸球菌、芽孢桿菌、植物乳桿菌、乳球菌、酵母菌等。飼糧中添加屎腸球菌可增加斷奶仔豬后腸乳酸菌數(shù)量,降低大腸桿菌數(shù)量,起到增強小腸吸收、分泌及腸道屏障完整性作用[46]。飼糧中添加臘樣芽孢桿菌可降低斷奶仔豬腸道pH,提高小腸VH,降低CD,進而促進小腸形態(tài)發(fā)育[47],降低腸道上皮CD8+γδT細胞數(shù)量和比例,提高其感染鼠傷寒沙門氏菌的抵抗力[48],還通過促進腸道微生態(tài)平衡降低仔豬腹瀉。添加丁酸梭狀芽孢桿菌,可提高斷奶仔豬腸道內(nèi)該類菌屬和乳酸桿菌的數(shù)量,降低大腸桿菌數(shù)量[49]。在斷奶時灌服植物乳桿菌,可提高仔豬腸道菌群的多樣性指數(shù)和相似性指數(shù),降低結(jié)腸中大腸桿菌與乳酸菌之比,增加大腸桿菌攻毒后仔豬結(jié)腸中乳酸菌數(shù)量[50]。酵母菌和乳球菌可顯著降低斷奶仔豬腸道中大腸桿菌數(shù)量[51]。飼喂復合微生態(tài)發(fā)酵制劑同樣在斷奶仔豬糞便中檢測到較多的乳酸菌和較少的大腸桿菌[52]。新生仔豬灌服枯草芽孢桿菌,促進其十二指腸Toll樣受體-9(TLR-9)和白細胞介素-6(IL-6)及回腸白細胞介素-1(IL-1)的mRNA表達,并能提高小腸免疫球蛋白A(IgA)分泌細胞的數(shù)量[53];與豬源乳酸桿菌聯(lián)合灌服可促進小腸絨毛發(fā)育,提高機體拮抗大腸桿菌K88的能力[54];與唾液乳桿菌聯(lián)合灌服,可提高小腸β-防御素-2(pBD-2)和Toll樣受體-2(TLR-2)的mRNA表達[55]。此類制劑名目繁多,益生菌種類及活性各不相同,又受不同豬群影響,效果差異較大。
抗菌肽是廣泛存在于生物體內(nèi)的一類小分子多肽,已報道用于仔豬飼糧的抗菌肽主要有天蠶素、防御素、抗菌肽buforinⅡ、抗菌肽P5及復合肽。研究報道在飼糧中添加400 mg/kg天蠶素可替代飼糧中桿菌肽鋅,降低斷奶仔豬腹瀉率[56],還可使大腸桿菌攻毒后仔豬回腸中需氧菌總數(shù)量降低,厭氧菌總數(shù)量增加,局部小腸VH/CD提高,斷奶應激緩解[57]。飼糧中添加防御素也顯著降低斷奶仔豬腹瀉率,但目前還處在重組表達及抗菌活性初步研究階段[58]。給大腸桿菌攻毒后的斷奶仔豬灌服抗菌肽buforinⅡ可增加緊密連接蛋白含量,促進腸道保護因子表達,顯示出保護腸道黏膜完整性的作用[59]。飼糧中添加60 mg/kg抗菌肽P5,提高了養(yǎng)分表觀消化率,降低了斷奶仔豬腸道和糞樣中大腸桿菌數(shù)量[60]。復合抗菌肽可顯著提高仔豬腸道中乳酸桿菌數(shù)量,降低大腸桿菌數(shù)量,促進腸上皮細胞增殖和蛋白質(zhì)合成,修復由飼糧嘔吐毒素導致的腸道損傷[61]。抗菌肽殺菌作用獨特且廣譜抗菌,又不易產(chǎn)生耐藥性??咕拇嬖诜N類、來源各異及分子結(jié)構(gòu)不同等問題,應用效果也存在較大差異。
4.1.1 谷氨酰胺(Gln)
Gln 通過為腸道黏膜細胞提供能源、參與谷胱甘肽合成等而起到修復腸道損傷作用。早期斷奶仔豬飼糧中添加Gln,可修復腸道黏膜損傷,減輕腸道萎縮,促進腸道生長。添加Gln減輕了仔豬腸黏膜細胞因子反應[62],通過激活生長激素軸維持腸道形態(tài)和功能[63],降低仔豬局部小腸黏膜γ-谷氨酰轉(zhuǎn)肽酶和核轉(zhuǎn)錄因子 -κB(NF-κB)活性[64],提高堿性磷酸酶活性,降低過氧化物酶體增生物激活受體 -γ(PPAR-γ)和丙酮酸激酶的mRNA表達[65],調(diào)控抗菌肽 PR-39、脂肪酸結(jié)合蛋白和二肽轉(zhuǎn)運載體1的mRNA表達[66],增加了熱休克蛋白70(HSP70)mRNA和蛋白表達[67]。Gln對哺乳仔豬腸道黏膜發(fā)育和健康同樣有效。共同添加Gln和精氨酸(Arg),可降低仔豬腹瀉,提高十二指腸黏膜的蔗糖酶和麥芽糖酶活性及其VH/CD[68]。
但由于Gln存在水溶性差、吸收率低、不穩(wěn)定、易轉(zhuǎn)化為有害的焦谷氨酸和氨等缺陷,限制了其應用。谷氨酰胺二肽的發(fā)展彌補了Gln單體的缺陷,二肽主要有丙氨酰-谷氨酰胺(Ala-Gln)和甘氨酰-谷氨酰胺(Gly-Gln)。體外研究表明Ala-Gln可替代Gln,減輕由過氧化氫(H2O2)或脂多糖(LPS)誘導的腸上皮細胞死亡,降低LPS炎癥模型仔豬小腸黏膜中TLR-4、caspase-3和NF-κB的表達[69]。補料中添加Ala-Gln,可改善哺乳仔豬早期腸道結(jié)構(gòu)與功能[70]。體外腸道細胞培養(yǎng)表明Gly-Gln可通過提高Gln相關(guān)酶活性促進細胞增殖和抑制細胞凋亡[71]。添加0.15%的Gly-Gln可提高早期斷奶仔豬十二指腸的VH/CD,減輕由LPS導致的生長和免疫抑制作用[72]。有關(guān)報道顯示出谷氨酰胺二肽可能更具應用前景。
4.1.2 α-酮戊二酸(AKG)
AKG為Gln的前體物質(zhì),且是生物體三羧酸循環(huán)的重要中間產(chǎn)物。AKG無毒、穩(wěn)定、易溶于水,是Gln的理想替代品。飼糧中添加AKG可改善腸道黏膜能量代謝障礙,顯著提高斷奶仔豬VH/CD,加速小腸上皮細胞更新代謝,提高主動吸收功能,緩解斷奶應激造成的腸道黏膜受損[73],顯著提高十二指腸黏膜二磷酸腺苷水平,緩解了LPS刺激導致的十二指腸和空腸黏膜三磷酸腺苷和腺苷酸水平降低,提高了小腸黏膜超氧化物歧化酶(SOD)活性,降低丙二醛(MDA)含量[74]。有報道,AKG是通過調(diào)節(jié)哺乳動物雷帕霉素靶蛋白(mTOR)和腺苷酸活化蛋白激酶(AMPK)信號通路來改善LPS刺激仔豬的腸道能量代謝和緩解腸道損傷[75]。
4.1.3 L- 精氨酸(L-Arg)
L-Arg屬于堿性氨基酸,為幼齡動物的一種必需氨基酸,但在成年動物處于應激、病理等狀態(tài)下也成為必需氨基酸。L-Arg可促進動物腸道生長和結(jié)構(gòu)改善,增加血管生長因子表達,加速受損黏膜修復,維護腸道屏障功能。飼糧中添加L-Arg可增加斷奶仔豬腸道VH和黏膜血管內(nèi)皮生長因子水平,提高血漿Arg和胰島素濃度,降低皮質(zhì)醇、氨(NH3)和尿素濃度,促進腸道發(fā)育[76]。給斷奶仔豬補充L-Arg可提高腸道HSP70基因表達,增加黏膜杯狀細胞數(shù)量,提高營養(yǎng)物質(zhì)利用率[77]。研究顯示L-Arg通過調(diào)節(jié)腸道細胞凋亡、激活蛋白激酶B(AKT)和mTOR信號途徑,促進細胞增殖及腸道損傷修復[78]。體內(nèi)Arg在一氧化氮(NO)合成酶催化下可產(chǎn)生NO,NO有調(diào)節(jié)腸道血流量及改善微血管循環(huán)的作用。飼糧中添加7%L-Arg有利于斷奶仔豬腸道微血管發(fā)育,增加空腸亞硝酸鹽和硝酸鹽(NO穩(wěn)定的氧化產(chǎn)物)水平,增加血漿脯氨酸和Arg濃度,提高腸道黏膜CD34及血管內(nèi)皮生長因子表達[79]。
4.1.4 N-乙酰半胱氨酸(NAC)
NAC是一種含有巰基的化合物,為L-半胱氨酸與還原型谷胱甘肽的前體物質(zhì)。NAC具有較強的抗氧化作用,可干擾自由基生成、抑制炎癥反應、抗細胞凋亡等,對腸道屏障功能具有調(diào)節(jié)和保護作用。飼糧中添加NAC可緩解LPS刺激導致的仔豬腸黏膜中白細胞介素-2(IL-2)、IL-6和前列腺素2(PGE2)水平升高及HSP70表達量增加[80],降低小腸黏膜caspase-3表達,增加 claudin-1和occludin蛋白表達量,緩解腸道黏膜損傷[81]。補充NAC可增加仔豬腸道抗氧化物酶活性,減少活性氧生成量,降低氧化型與還原型谷胱甘肽比值,并通過調(diào)節(jié)TLR-4和EGF信號通路降低LPS刺激所引起的腸道炎癥反應[82]。給乙酸誘發(fā)結(jié)腸炎的仔豬補充NAC,可降低血漿髓過氧化物酶(MPO)活性,增加血漿和結(jié)腸MDA濃度、血漿EGF濃度、黏膜雄激素受體(AR)mRNA和claudin-1蛋白水平,降低結(jié)腸黏膜caspase-3表達水平,緩解結(jié)腸損傷程度[83]。
SCFAs由單胃動物結(jié)腸中微生物發(fā)酵酶不消化糖類后產(chǎn)生,主要包括乙酸、丙酸、丁酸、異丁酸、戊酸和異戊酸。其中乙酸、丙酸和丁酸三者占85%~95%。SCFAs可調(diào)節(jié)結(jié)腸上皮細胞轉(zhuǎn)運功能,促進細胞代謝、增殖和分化,調(diào)節(jié)腸道菌群結(jié)構(gòu),減少炎癥發(fā)生,為腸黏膜細胞主要能量來源,其中丁酸發(fā)揮重要作用。給3日齡仔豬補充丁酸鈉可增加空腸后段和回腸VH/CD和黏膜厚度,促進腸道發(fā)育[84]。飼糧中添加丁酸鈉可提高結(jié)腸杯狀細胞數(shù)量,促進腸道消化吸收功能,并可能通過改變腸道菌群生態(tài)結(jié)構(gòu)和代謝活性影響腸道微生態(tài)區(qū)系[85]。王純剛等[86]報道,飼糧中添加丁酸鈉可顯著降低感染輪狀病毒的仔豬腹瀉率,提高空腸VH/CD,增加盲腸乳酸桿菌的數(shù)量,提高血清IL-2、IL-4和IL-6濃度,增強仔豬對疾病的抵抗能力。包被SCFAs效果優(yōu)于未包被的,飼糧中添加包被丁酸可降低感染鼠傷寒沙門菌仔豬腸道和糞中的該致病菌數(shù)量,而未包被的則無影響[87]。
CS是廣泛存在于蝦蟹等甲殼類動物外殼中甲殼素的N-脫乙?;a(chǎn)物,是迄今為止唯一發(fā)現(xiàn)的陽離子動物纖維和堿性多糖。CS是一種新型畜禽生長促進劑、免疫增強劑、消化道黏膜保護劑和廣譜抗菌劑[88]。飼糧添加300 mg/kg的CS可阻緩腸黏膜通透性升高,增強腸黏膜occludin和緊密連接蛋白ZO-1表達,提高腸黏膜緊密連接性,對大腸桿菌攻毒的早期斷奶仔豬小腸黏膜屏障功能損傷有保護作用[89]。飼糧添加100 mg/kg螯合鋅(CS-Zn)具有調(diào)節(jié)斷奶仔豬腸道菌群平衡、改善腸黏膜形態(tài)、降低血漿D-乳酸和內(nèi)毒素含量及二胺氧化酶(DAO)活性的作用,進而阻止黏膜完整性遭到破壞[90];添加100 mg/kg螯合銅(CS-Cu)具有改善仔豬腸道黏膜形態(tài)、保護其免受損傷的作用[91]。納米殼聚糖(CNP)由于納米粒子的特性而表現(xiàn)出較CS本身更高的殺菌活性,飼糧中添加50~100 mg/kg的CNP-Cu能提高斷奶仔豬的免疫機能,改善腸道菌群平衡及腸道黏膜形態(tài),提高生長性能[92]??傊?,較低劑量的金屬螯合CS或CNP,具有調(diào)節(jié)腸道菌群及黏膜形態(tài)的作用。
植物多糖具有免疫調(diào)節(jié)、抗腫瘤、抗衰老、降血糖等多種生物活性,且其毒副作用小、無殘留、不產(chǎn)生耐藥性。黃芪多糖(APS)是黃芪干燥根中的提取物,主要由鼠李糖、阿拉伯糖、木糖、甘露糖和葡萄糖等組成,具有明顯的免疫調(diào)節(jié)作用[93]。飼糧中添加500 mg/kg APS能改善斷奶仔豬生長速度,增強細胞免疫功能和Th1類細胞因子(IL-2、IFN-γ)的分泌量,逆轉(zhuǎn)免疫抑制[94]。Yin 等[95]認為斷奶仔豬飼糧中添加APS可能是通過改善機體消化、吸收功能,增加飼糧氨基酸進入體內(nèi)的循環(huán)系統(tǒng)起促生長作用。牛膝多糖(ABPS)是從牛膝根中提取的水溶性多糖。飼糧添加0.10%和0.15%的ABPS可顯著增強斷奶仔豬細胞免疫和體液免疫水平[96]。在LPS應激情況下,ABPS改變了促炎性細胞因子的釋放,顯著緩解了LPS對仔豬腸道黏膜結(jié)構(gòu)的損傷,增加了小腸VH/CD及杯狀細胞數(shù)量[97]。由于多糖的來源、化學組成及提取純化工藝不同,其應用效果也不同。
Zn和Se不僅是維持動物腸道健康的重要營養(yǎng)性微量元素,還可通過結(jié)合抗體和細胞因子來調(diào)節(jié)黏膜免疫應答。飼糧中適宜的Zn水平可促進腸黏膜分泌型免疫球蛋白A(sIgA)和IL-2的分泌,進而維持腸黏膜免疫屏障功能,同時對動物機體抗氧化能力、生產(chǎn)性能以及腸炎癥類疾病防治具有較好效果。研究表明添加藥理劑量(2 000~4 000 mg/kg)的氧化鋅能有效增強機體免疫功能,降低腹瀉率,促進仔豬生長[98-99]。但氧化鋅大部分隨糞排出,造成鋅源浪費和環(huán)境污染。目前研究較多的有沸石-氧化鋅[100]、蒙脫石-氧化鋅[101]、氨基酸螯合鋅[102]等。谷胱甘肽過氧化物酶(GPx)是動物機體抗氧化和局部或整體免疫的關(guān)鍵酶,Se作為GPx的重要組成成分,可維持腸黏膜屏障的相對穩(wěn)定。過量尤其是中毒劑量的Zn、Se水平嚴重影響胃腸黏膜結(jié)構(gòu)完整性和上皮淋巴細胞數(shù)量與結(jié)構(gòu)。飼糧微量元素水平應控制適宜。
酸化劑可增加仔豬胃內(nèi)酸度,提高胃蛋白酶活性,有利于腸道內(nèi)乳酸菌等有益菌生長,抑制大腸桿菌等有害菌繁殖,保持胃腸道微生態(tài)平衡。在斷奶仔豬飼糧中添加脂肪酸包被的微膠囊型緩釋復合酸化劑,可以通過降低腸道pH,優(yōu)化腸道微生物區(qū)系,改善腸組織形態(tài)和功能,從而提高斷奶仔豬腸道的消化力和適應性,并促進仔豬生長[103]。魚油富含 n-3多不飽和脂肪酸(PUFA),可通過降低腸道黏膜組織中NF-κB蛋白表達而抑制炎性介質(zhì)[前列腺素 E2(PEG2)、TNF-α和HSP70]分泌,緩解LPS刺激造成的仔豬腸道結(jié)構(gòu)和功能損傷。n-3 PUFA對腸道的保護機制可能是二十二碳六烯酸(DHA)抑制了生物膜花生四烯酸(AA)的釋放,同時二十碳五烯酸(EPA)與AA競爭環(huán)加氧酶和脂氧合酶,產(chǎn)生前列腺素-3和白細胞三烯-5等,減少微血管白細胞黏附及血小板活化因子的釋放,抑制IL-1及TNF-α等合成,舒張血管,改善胃腸道血液供給,保護枯否氏細胞正常清除功能[104]。Liu等[105]認為 LPS 刺激能造成仔豬外周免疫器官產(chǎn)生大量炎性因子激活下丘腦-垂體-腎上腺軸,引起神經(jīng)內(nèi)分泌紊亂,魚油能通過抑制TLR-4和核苷酸結(jié)合寡聚化結(jié)構(gòu)域(NOD)信號通路的激活,減少炎性因子的釋放,抑制下丘腦-垂體-腎上腺軸的激活。生產(chǎn)實際中使用魚油時,應注意到PUFA中的不飽和鍵極易被氧化,可使機體產(chǎn)生大量的活性氧簇,對腸道黏膜免疫系統(tǒng)造成損害。
腸道正常的功能依賴腸道黏膜上皮屏障、免疫屏障、生物屏障的完整性來維持。斷奶應激,會導致仔豬腸道屏障功能受損,表現(xiàn)為黏膜形態(tài)結(jié)構(gòu)改變、腸上皮屏障通透性增加、消化吸收功能降低、黏液層厚度下降、腸道pH升高、免疫抑制及腸道微生物菌群失衡等,且受損的腸道屏障進一步激活多個與腸道功能相關(guān)的信號通路,造成腸道功能的繼發(fā)性損傷和功能紊亂。腸道損傷修復及其營養(yǎng)調(diào)控的意義重要。
多肽類生長因子主要通過刺激腸上皮細胞增殖和分化,促進腸道生長發(fā)育,起到腸黏膜上皮屏障損傷的修復作用。包括 EGF、GLP-2、IGF-Ⅰ和TGF等。其中關(guān)于EGF,通過構(gòu)建乳酸菌表達的重組pEGF具有修復結(jié)腸損傷的調(diào)控作用;關(guān)于GLP-2,可通過 pGLP-2長效化產(chǎn)物[PEG修飾pGLP-2和pGLP-2/聚乳酸-羥基乙酸共聚物(PLGA)微球]解決其在動物體內(nèi)半衰期短的問題,進而顯著提高有效性。
微生態(tài)調(diào)控劑包括益生菌制劑和抗菌肽。益生菌制劑通過調(diào)節(jié)腸道菌群的種類和數(shù)量,改善腸道微生態(tài)平衡和增強腸道免疫功能,發(fā)揮腸道生物屏障的損傷修復作用,豬飼糧常用的有屎腸球菌、芽孢桿菌、植物乳桿菌、乳球菌、酵母菌等。動物體自身合成的抗菌肽具有抗細菌、抗真菌、抗寄生蟲和抗病毒活性,通過免疫調(diào)節(jié)起到腸道損傷修復功能,用于仔豬飼糧的主要有天蠶素、防御素、抗菌肽buforinⅡ、抗菌肽P5及復合肽等。
關(guān)于營養(yǎng)代謝調(diào)控劑,氨基酸及其衍生物包括:Gln為腸道黏膜細胞提供能源,參與谷胱甘肽合成等,促進腸道生長,修復腸道黏膜損傷;AKG是Gln的理想替代品;L-Arg是蛋白質(zhì)合成的重要原料及多種生物活性物質(zhì)的前體,可促進腸道生長、結(jié)構(gòu)改善和受損黏膜修復;NAC具有較強的抗氧化作用,對腸道屏障功能具有調(diào)節(jié)和保護作用。其他調(diào)控劑:SCFAs可調(diào)節(jié)腸上皮細胞轉(zhuǎn)運功能,調(diào)節(jié)腸道菌群結(jié)構(gòu),是腸黏膜細胞主要能量來源,其中丁酸發(fā)揮重要作用;CS是畜禽生長促進劑、免疫增強劑、消化道黏膜保護劑和廣譜抗菌劑;植物多糖具有多種生物活性,在降低仔豬腹瀉率、提高豬體免疫力、促進仔豬生長方面有重要作用;Zn和Se不僅是維持動物腸道健康的重要營養(yǎng)性微量元素,還可通過結(jié)合抗體和細胞因子來調(diào)節(jié)黏膜免疫應答。
致謝:本文資料由作者團隊成員齊珂珂博士、陶新博士和劉淑杰博士協(xié)助收集整理。
[1] TURNER J R.Intestinal mucosal barrier function in health and disease[J].Nature Rreviews Immunology,2009,9(11):799-809.
[2] WU G Y,MEIER S A,KNABE D A.Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs[J].The Journal of Nutrition,1996,126(10):2578-2584.
[3] PLUSKE J R,THOMPSON M J,ATWOOD C S,et al.Maintenance of villus height and crypt depth,and enhancement of disaccharide digestion and monosaccharide absorption,in piglets fed on cows’whole milk after weaning[J].The British Journal of Nutrition,1996,76(3):409-422.
[4] HALL G A,BYRNE T F.Effects of age and diet on small intestinal structure and function in gnotobiotic piglets[J].Research in Veterinary Science,1989,47(3):387-392.
[5] BR?ER S.Amino acid transport across mammalian intestinal and renal epithelia[J].Physiological Reviews,2008,88(1):249-286.
[6] NABUURS M J.Weaning piglets as a model for studying pathophysiology of diarrhea[J].The Veterinary Quarterly,1998,20(Suppl.3):S42-S45.
[7] MOTOHASHI Y,F(xiàn)UKUSHIMA A,KONDO T,et al.Lactase decline in weaning rats is regulated at the transcriptional level and not caused by termination of milk ingestion[J].The Journal of Nutriton,1997,127(9):1737-1743.
[8] TSUBOI K K,KWONG L K,D’HARLINGUE A E,et al.The nature of maturational decline of intestinal lactase activity[J].Biochimica et Biophysica Acta,1985,840(1):69-78.
[9] LACKYRAM D,YANG C B,ARCHBOLD T,et al.Early weaning reduces small intestinal alkaline phosphatase expression in pigs[J].The Journal of Nutrition,2010,140(3):461-468.
[10] HEDEMANN M S,H?JSGAARD S,JENSEN B B.Small intestinal morphology and activity of intestinal peptidases in piglets around weaning[J].Journal of Animal Physiology and Animal Nutrition,2003,87(1/2):32-41.
[11] GARBAL J I,GONZáLEZ E A,VáZQUEZ F,et al.Serogroups of Escherichia coli isolated from piglets in Spain[J].Veterinary Microbiology,1996,48(1/2):113-123.
[12] NAGY B,H?GLUND S,MOREIN B.Iscom(immunostimulating complex)vaccines containing mono-or polyvalent pili of enterotoxigenic E.coli;immune response of rabbit and swine [J].Zentralblatt für Veterin?rmedizin Reihe B,1990,37(10):728-738.
[13] GOLDMAN A S.Modulation of the gastrointestinal tract of infants by human milk.Interfaces and interactions.An evolutionary perspective[J].The Journal of Nutrition,2000,130(Suppl.2):426S-431S.
[14] LI D F,THALER R C,NELSSEN JL,et al.Effect of fat sources and combinations on starter pig performance,nutrient digestibility and intestinal morphology[J].Journal of Animal Science,1990,68(11):3694-3704.
[15] HOPWOOD D E,HAMPSON D J.Interactions between the intestinal microflora,diet and diarrhoea,and their influences on piglet health in the immediate postweaning period[M]//PLUSKE J R,LE DIVIDICH J,VERSTEGEN M W A.Weaning the pig:concepts and consequences.Wageningen:Wageningen Academic Publishers,2003:199-218.
[16] WANG J J,CHEN L X,LI P,et al.Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation[J].The Journal of Nutrition,2008,138(6):1025-1032.
[17] TAO X,XU Z W.MicroRNA transcriptome in swine small intestine during weaning stress[J].PLoS One,2013,8(11):e79343.
[18] LIAO Y L,ZHANG M,L?NNERDAL B.Growth factor TGF-βinduces intestinal epithelial cell(IEC-6)differentiation:miR-146b as a regulatory component in the negative feedback loop[J].Genes & Nutrition,2013,8(1):69-78.
[19] ROWLAND K J,CHOI P M,WARNER B W.The role of growth factors in intestinal regeneration and repair in necrotizing enterocolitis[J].Seminars in Pediatric Surgery,2013,22(2):101-111.
[20] 李垚,單安山,李煥江,等.表皮生長因子和胰島素樣生長因子-Ⅰ對21日齡斷奶仔豬胃和小腸發(fā)育的作用[J].動物營養(yǎng)學報,2005,17(3):44-49.
[21] LEE D N,CHUANG Y S,CHIOU H Y,et al.Oral administration recombinant porcine epidermal growth factor enhances the jejunal digestive enzyme genes expression and activity of early-weaned piglets[J].Journal of Animal Physiology and Animal Nutrition,2008,92(4):463-470.
[22] JUNG K,KANG B K,KIM J Y,et al.Effects of epidermal growth factor on atrophic enteritis in piglets induced by experimental porcine epidemic diarrhoea virus[J].The Veterinary Journal,2008,177(2):231-235.
[23] XU R J,MELLOR D J,BIRTLES M J,et al.Effects of oral IGF-Ⅰor IGF-Ⅱon digestive organ growth in new born piglets[J].Biology of the Neonate,1994,66(5):280-287.
[24] HOULE V M,SCHROEDER E A,ODEL J,et al.Small intestinal disaccharidase activity and ileal villus height are increased in piglets consuming formula containing recombinant human insulin-like growth factor-Ⅰ[J].Pediatric Research,1997,42(1):78-86.
[25] BURRIN D G,WESTER T,DAVIS T A,et al.Oral administered insulin like growth factorⅠincreases intestinal mucosal growth in formula-fed neonatal pigs[J].The American Journal of Physiology,1996,270:1085-1091.
[26] GILLINGHAM M B,DAHLY E M,MURALI SG,et al.IGF-Ⅰ treatment facilitates transition from parenteral to enteral nutrition in rats with short bowel syndrome[J].American Journal of Physiology:Regulatory,Integrative and Comparative Physiology,2003,284(2):R363-R371.
[27] 李旭敏,曹勁松.口飼胰島素樣生長因子的生理功能[J].中國飼料,2006(1):27-28.
[28] EGGER D B,INGLIN R,ZEEH J,et al.Insulin-like growth factorⅠand truncated keratinocyte growth factor accelerate healing of left-sided colonic anastomoses[J].British Journal of Surgery,2001,88(1):90-98.
[29] ALEXANDER A N,CAREY H V.Insulin-like grouth factor-Ⅰstimulates Na+-dependent glutamine absorption in piglet enterocytes[J].Digestive Diseases and Sciences,2002,47(5):1129-1134.
[30] SCHOBER D A,SIMMEN F A,HADSELL D L,et al.Perinatal expression of type Ⅰ IGF receptors in porcine small intestine[J].Endocrinology,1990,126(2):1125-1132.
[31] KARNES W E.Epidermal growth factor transforming growth factor-alpha.Gut peptides:biochemistry and physiology[M].New York:Raven Press,1998:553-586.
[32] WAGNER C L,F(xiàn)ORSYTHE D W,WAGNER M T.The effect of recombinant TGF-α,human milk,and human milk macrophage media on gut epithelial proliferation is decreased in the presence of a neutralizing TGF-α antibody[J].Biology of the Neonate,1998,74(5):363-371.
[33] 王卉,劉寧.轉(zhuǎn)化生長因子α對人腸上皮細胞增殖、細胞總RNA和總蛋白質(zhì)含量的影響[J].東北農(nóng)業(yè)大學學報,2008,39(12):86-89.
[34] 張帆,胡鳳愛,鄭靜,等.腸內(nèi)營養(yǎng)對梗阻性黃疸大鼠腸黏膜上皮細胞凋亡及增殖的影響[J].濱州醫(yī)學院學報,2012,35(3):192-195.
[35] HOWE K L,REARDON C,WAND A,et al.Transforming growth factor-βregulation of epithelial tight junction proteins enhances barrier function and blocks enterohemorrhagic Escherichia coli O157∶H7-induced increased permeability[J].The American Journal of Pathology,2005,167(6):1587-1597.
[36] DRUCKER D J,EHRLICH P,ASA S L,et al.Induction of intestinal epithelial proliferation by glucagonlike peptide 2[J].Proceedings of the National Academy of Sciences of the United States of America,1996,93(15):7911-7916.
[37] QI K K,WU J,WAN J,et al.Purified PEGylated porcine glucagon-like peptide-2 reduces the severity of colonic injury in a murine model of experimental colitis[J].Peptides,2014,52:11-18.
[38] HSIEH J,LONGUET C,MAIDA A,et al.Glucagonlike peptide-2 increases intestinal lipid absorption and chylomicron production via CD36[J].Gastroenterology,2009,137(3):997-1005.
[39] DRUCKER D J,DE FOREST L,BRUBAKER P L.Intestinal response to growth factors administered alone or in combination with human[Gly2]glucagonlike peptide 2[J].The American Journal of Physiology,1997,273:G1252-G1262.
[40] SIGALET D L,DE HEUVEL E,WALLACE L,et al.Effects of chronic glucagon-like peptide-2 therapy during weaning in neonatal pigs[J].Regulatory Peptides,2014,188:70-80.
[41] DRUCKER D J,YUSTA B,BOUSHEY R P,et al.Human[Gly2]GLP-2 reduces the severity of colonic injury in a murine model of experimental colitis[J].The American Journal of Physiology:Gastrointestinal and Liver Physiology,1999,276:G79-G91.
[42] ALAVI K,SCHWARTZ M Z,PALAZZO J P,et al.Treatment of inflammatory bowel disease in a rodent model with the intestinal growth factor glucagon-like peptide-2[J].Journal of Pediatric Surgery,2000,35(6):847-851.
[43] EDERSEN N B,HJOLLUND K R,JOHNSEN A H,et al.Porcine glucagon-like peptide-2:structure,signaling,metabolism and effects[J].Regulotary Peptides,2008,146(1/2/3):310-320.
[44] 吳杰,齊珂珂,徐子偉,等.豬胰高血糖素樣肽-2(pGLP-2)微球的制備及其對結(jié)腸炎小鼠腸道損傷修復的研究[J].農(nóng)業(yè)生物技術(shù)學報,2014,22(2):150-157.
[45] QI K K,WU J,XU Z W.Effects of PEGylated porcine glucagon-like peptide-2 therapy in weaning piglets challenged with lipopolysaccharide[J].Peptides,2014,58:7-13.
[46] SIEPERT B,REINHARDT N,KREUZER S,et al.Enterococcus faecium NCIMB 10415 supplementation affects intestinal immune-associated gene expression in post-weaning piglets[J].Veterinary Immunology and Immunopathology,2014,157(1/2):65-77.
[47] 辛娜,張乃鋒,刁其玉,等.芽孢桿菌制劑對斷奶仔豬生長性能、胃腸道發(fā)育的影響[J].畜牧獸醫(yī)學報,2012,43(6):901-908.
[48] SCHAREK-TEDIN L,PIEPER R,VAHJEN W,et al.Bacillus cereus var.Toyoi modulates the immune reaction and reduces the occurrence of diarrhea in piglets challenged with Salmonella Typhimurium DT104[J].Journal of Animal Science,2013,91(12):5696-5704.
[49] 梁明振,李莉,劉浩.丁酸梭狀芽孢桿菌對斷奶仔豬腸道微生物區(qū)系的影響[J].中國畜牧雜志,2013,49(23):64-67.
[50] GUERRA-ORDAZ A A,GONZáLEZ-ORTIZ G,LA RAGIONE R M,et al.Lactulose and Lactobacillus plantarum:a potential complementary synbiotic to control post-weaning colibacillosis in piglets[J].Applied and Environmental Microbiology,2014,doi:10.1128/AEM.00770-14.
[51] LE BON M,DAVIESH E,GLYNN C,et al.Influence of probiotics on gut health in the weaned pig[J].Livestock Science,2010,133(1/2/3):179-181.
[52] KIM K H,INGALE SL,KIM JS,et al.Bacteriophage and probiotics both enhance the performance of growing pigs but bacteriophage are more effective[J].Animal Feed Science and Technology,2014,196:88-95.
[53] 李云峰,鄧軍,張錦華,等.枯草芽孢桿菌對仔豬小腸局部天然免疫及TLR表達的影響[J].畜牧獸醫(yī)學報,2011,42(4):562-566.
[54] 鄧軍,李云鋒,楊倩.枯草芽孢桿菌和豬源乳酸桿菌混合飼喂對仔豬腸絨毛發(fā)育的影響[J].畜牧獸醫(yī)學報,2013,44(2):295-301.
[55] DENG J,LI Y F,ZHANG J H,et al.Co-administration of Bacillus subtilis RJGP16 and Lactobacillus salivarius B1 strongly enhances the intestinal mucosal immunity of piglets[J].Research in Veterinary Science,2013,94(1):62-68.
[56] 任建波,毛宗林,張立彬.天蠶素抗菌肽替代桿菌肽鋅對斷奶仔豬生產(chǎn)性能及腹瀉的影響[J].中國畜牧雜志,2013,49(14):59-61,65.
[57] WU SD,ZHANG F R,HUANG Z M,et al.Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli[J].Peptides,2012,35(2):225-230.
[58] PENG Z X,WANG A R,F(xiàn)ENG Q Y,et al.High-level expression,purification and characterisation of porcine β-defensin 2 in Pichia pastoris and its potential as a cost-efficient growth promoter in porcine feed[J].Applied Microbiology and Biotechnology,2014,98(12):5487-5497.
[59] TANG Z R,DENG H,ZHANG X L,et al.Effects of orally administering the antimicrobial peptide buforinⅡon small intestinal mucosal membrane integrity,the expression of tight junction proteins and protective factors in weaned piglets challenged by enterotoxigenic Escherichia coli[J].Animal Feed Science and Technology,2013,186(3/4):177-185.
[60] YOON JH,INGALE SL,KIM JS,et al.Effects of dietary supplementation with antimicrobial peptide-P5 on growth performance,apparent total tract digestibility,faecal and intestinal microflora and intestinal morphology of weanling pigs[J].Journal of the Science of Food and Agriculture,2013,93(3):587-592.
[61] XIAO H,TAN B E,WU M M,et al.Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol:Ⅱ.Intestinal morphology and function[J].Journal of Animal Science,2013,91(10):4750-4756.
[62] EWASCHUK JB,MURDOCH G K,JOHNSON I R,et al.Glutamine supplementation improves intestinal barrier function in a weaned piglet model of Escherichia coli infection[J].The British Journal of Nutrition,2011,106(6):870-877.
[63] YI G F,CARROLL J A,ALLEE G L,et al.Effect of glutamine and spray-dried plasma on growth performance,small intestinal morphology,and immune responses of Escherichia coli K88+-challenged weaned pigs[J].Journal of Animal Science,2005,83(3):634-643.
[64] 張軍民,高振川.谷氨酰胺對早期斷奶仔豬血漿、肝和腸中γ-谷氨酰轉(zhuǎn)肽酶活性的影響[J].中國獸醫(yī)學報,2010,30(9):1269-1272.
[65] 肖英平,洪奇華,劉秀婷,等.谷氨酰胺對斷奶仔豬生長性能、營養(yǎng)物質(zhì)表觀消化率、空腸堿性磷酸酶活性及與腸道健康相關(guān)因子基因表達的影響[J].動物營養(yǎng)學報,2012,24(8):1438-1446.
[66] 周琳,曹廣添,張帥,等.斷奶仔豬小腸黏膜脂肪酸結(jié)合蛋白和二肽轉(zhuǎn)運載體1 mRNA表達發(fā)育性變化及谷氨酰胺對其的影響[J].動物營養(yǎng)學報,2012,24(4):701-711.
[67] ZHONG X,ZHANG X H,LI X M,et al.Intestinal growth and morphology is associated with the increase in heat shock protein 70 expression in weaning piglets through supplementation with glutamine[J].Journal of Animal Science,2011,9(11):3634-3642.
[68] SHAN Y P,SHAN A S,LI J P,et al.Dietary supplementation of arginine and glutamine enhances the growth and intestinal mucosa development of weaned piglets[J].Livestock Science,2012,150(1/2/3):369-373.
[69] HAYNES T E,LI P,LI X,et al.L-glutamine or L-alanyl-L-glutamine prevents oxidant-or endotoxin-induced death of neonatal enterocytes[J].Amino Acids,2009,37(1):131-142.
[70] 袁雪波,馬黎,陳克嶙,等.丙氨酰谷氨酰胺二肽對哺乳仔豬生長性能、小腸形態(tài)學和血清生化指標的影響[J].動物營養(yǎng)學報,2011,23(1):94-101.
[71] WANG H,JIA G,CHEN Z L,et al.The effect of glycyl-glutamine gipeptide concentration on enzyme activity,cell proliferation and apoptosis of jejunal tissues from weaned piglets[J].Agricultural Sciences in China,2011,10(7):1088-1095.
[72] JIANG Z Y,SUN L H,LIN Y C,et al.Effects of dietary glycyl-glutamine on growth performance,small intestinal integrity,and immune responses of weaning piglets challenged with lipopolysaccharide[J].Journal of Animal Science,2009,87(12):4050-4056.
[73] 胡泉舟,侯永清,丁斌鷹,等.α-酮戊二酸對仔豬小腸組織學形態(tài)與功能的影響[J].動物營養(yǎng)學報,2008,20(6):662-667.
[74] 劉堅,侯永清,丁斌鷹,等.α-酮戊二酸對脂多糖應激斷奶仔豬空腸黏膜蛋白合成和抗氧化能力的影響[J].中國畜牧雜志,2010,46(11):35-38.
[75] HOU Y Q,YAO K,WANG L,et al.Effects of α-ketoglutarate on energy status in the intestinal mucosa of weaned piglets chronically challenged with lipopolysaccharide[J].The British Journal of Nutrition,2011,106(3):357-363.
[76] YAO K,GUAN S,LI T J,et al.Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets[J].The British Journal of Nutrition,2011,105(5):703-709.
[77] WU X,RUAN Z,GAO Y L,et al.Dietary supplementation with L-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn-and soybean meal-based diet[J].Amino Acids,2010,39(3):831-839.
[78] WANG Y X,ZHANG L L,ZHOU G L,et al.Dietary L-arginine supplementation improves the intestinal development through increasing mucosal Akt and mammalian target of rapamycin signals in intra-uterine growth retarded piglets[J].The British Journal of Nutrition,2012,108(8):1371-1381.
[79] ZHAN Z,OU D,PIAO X,et al.Dietary arginine supplementation affects microvascular development in the small intestine of early-weaned pigs[J].The Journal of Nutrition,2008,138(7):1304-1309.
[80] 伍國華,李嬌,侯永清,等.N-乙酰半胱氨酸對脂多糖單次刺激仔豬腸黏膜免疫應激的影響[J].動物營養(yǎng)學報,2012,24(9):1793-1798.
[81] HOU Y Q,WANG L,ZHANG W,et al.Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide[J].Amino Acids,2012,43(3):1233-1242.
[82] HOU Y Q,WANG L,YI D,et al.N-acetylcysteine reduces inflammation in the small intestine by regulating redox,EGF and TLR4 signaling[J].Amino Acids,2013,45(3):513-522.
[83] WANG Q J,HOU Y Q,YI D,et al.Protective effects of N-acetylcysteine on acetic acid-induced colitis in a porcine model[J].BMC Gastroenterol,2013,13:133.
[84] KOTUNIA A,WOLI?SKI J,LAUBITZ D.Effect of sodium butyrate on the small intestine development in neonatal piglets fed[correction of feed]by artificial sow[J].Journal of Physiology and Pharmacology:an Official Journal of the Polish Physiological Society,2004,55(Suppl.2):59-68.
[85] MANZANILLA E G,NOFRARIAS M,ANGUITA M,et al.Effects of butyrate,avilamycin,and a plant extract combination on the intestinal equilibrium of earlyweaned pigs[J].Journal of Animal Science,2006,84(10):2743-2751.
[86] 王純剛,張克英,丁雪梅.丁酸鈉對輪狀病毒攻毒和未攻毒斷奶仔豬生長性能和腸道發(fā)育的影響[J].動物營養(yǎng)學報,2009,21(5):719-726.
[87] BOYEN F,HAESEBROUK F,VANPARYS A,et al.Coated fatty acids alter virulence properties of Salmonella typhimurium and decrease intestinal colonization of pigs[J].Veterinary Microbiology,2008,132(3/4):319-327.
[88] CHUNG Y C,CHEN C Y.Antibacterial characteristics and activity of acid-soluble chitosan[J].Bioresource Technology,2008,99(8):2806-2814.
[89] XIAO D F,TANG Z R,YIN Y L,et al.Effects of dietary administering chitosan on growth performance,jejuna morphology,jejunal mucosal sIgA,occluding,claudin-1 and TLR4 expression in weaned piglets challenged by enterotoxigenic Escherichia coli[J].International Immunopharmacology,2013,17(3):670-676.
[90] 謝正軍,劉國花,李云濤,等.殼聚糖鋅對斷奶仔豬小腸組織學形態(tài)與功能的影響[J].中國畜牧雜志,2012,48(1):32-37.
[91] 朱葉萌,謝正軍,李云濤,等.殼聚糖銅對斷奶仔豬生產(chǎn)性能、腸道菌群及黏膜形態(tài)的影響[J].中國農(nóng)業(yè)科學,2011,44(2):387-394.
[92] WANG M Q,DU Y J,WANG C,et al.Effects of copper-loaded chitosan nanoparticles on intestinal microflora and morphology in weaned piglets[J].Biological Trace Element Research,2012,149(2):184-189.
[93] JIN M L,ZHAO K,HUANG Q S,et al.Structural features and biological activities of the polysaccharides from Astragalus membranaceus[J].International Journal of Biological Macromolecules,2014,64:257-266.
[94] YUAN S L,PIAO X S,Li D F,et al.Effects of dietary Astragalus polysaccharide on growth performance and immune function in weaned pigs[J].Animal Science,2006,82(4):501-507.
[95] YIN F G,LIU Y L,YIN Y L,et al.Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets[J].Amino Acids,2009,37(2):263-270.
[96] CHEN Q H,LIU Z Y,HE J H.Achyranthes bidentata polysaccharide enhances immune response in weaned piglets[J].Immunopharmacology and Immunotoxicology,2009,31(2):253-260.
[97] 秦文雅.牛膝多糖對免疫應激仔豬腸道的影響及其作用機理[D].碩士學位論文.長沙:湖南農(nóng)業(yè)大學,2012.
[98] 胡彩虹,錢仲倉,劉海萍,等.高鋅對早期斷奶仔豬腸黏膜屏障和腸上皮細胞緊密連接蛋白表達的影響[J].畜牧獸醫(yī)學報,2009,40(11):1638-1644.
[99] STRARKE I C,PIEPER R,NEUMANN K,et al.The impact of high dietary zinc oxide on the development of the intestinal microbiota in weaned piglets[J].FEMS Microbiology Ecology,2014,87(2):416-427.
[100] HU C H,XIAO K,SONG J,et al.Effects of zinc oxide supported on zeolite on growth performance,intestinal microflora and permeability,and cytokines expression of weaned pigs[J].Animal Feed Science and Technology,2013,181(1/2/3/4):65-71.
[101] HU C H,GU L Y,LUAN Z S,et al.Effects of montmorillonite-zinc oxide hybrid on performance,diarrhea,intestinal permeability and morphology of weanling pigs[J].Animal Feed Science and Technology,2012,177(1/2):108-115.
[102] CAINE W R,METZLER-ZEBELI B U,MCFALL M,et al.Supplementation of diets for gestating sows with zinc amino acid complex and gastric intubation of suckling pigs with zinc-methionine on mineral status,intestinal morphology and bacterial translocation in lipopolysaccharide-challenged early-weaned pigs[J].Research in Veterinary Science,2009,86(3):453-462.
[103]晏家友,賈剛,王康寧,等.緩釋復合酸化劑對斷奶仔豬消化道酸度及腸道功能的影響[J].畜牧獸醫(yī)學報,2009,40(12):1747-1754.
[104]吳志鋒.魚油對脂多糖刺激仔豬腸道損傷的保護作用[D].碩士學位論文.武漢:武漢工業(yè)學院,2011.
[105] LIU Y L,CHEN F,ODLE J,et al.Fish oil alleviates activation of the hypothalamic-pituitary-adrenal axis associated with inhibition of TLR4 and NOD signaling pathways in weaned piglets after a lipopolysaccharide challenge[J].The Journal of Nutrition,2013,143(11):1799-1807.