譙仕彥 侯成立 曾祥芳
(中國(guó)農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,北京 100193)
乳酸菌(lactic acid bacteria,LAB)是一類能發(fā)酵碳水化合物產(chǎn)生大量乳酸的革蘭氏陽(yáng)性細(xì)菌的總稱。乳酸菌廣泛分布于人體和動(dòng)物的消化道內(nèi),參與多種生理作用,影響宿主健康。目前,乳酸菌作為最主要的和最安全的益生菌來(lái)源已被廣泛關(guān)注,而乳酸菌調(diào)控腸道屏障功能已成為研究的熱點(diǎn)。乳酸菌發(fā)揮益生作用的主要機(jī)制是通過(guò)調(diào)節(jié)腸道屏障功能來(lái)實(shí)現(xiàn)的,這已被眾多體內(nèi)外試驗(yàn)所證實(shí)[1-2]。迄今為止,關(guān)于乳酸菌在豬上的應(yīng)用研究報(bào)道很多,但相對(duì)于嚙齒動(dòng)物而言,關(guān)于乳酸菌對(duì)豬腸黏膜屏障作用的研究相對(duì)較少。本文擬就乳酸菌對(duì)豬腸道屏障功能的調(diào)節(jié)作用及其機(jī)制作一綜述,以期能幫助對(duì)乳酸菌的深入認(rèn)識(shí)和科學(xué)應(yīng)用。
腸道是機(jī)體營(yíng)養(yǎng)物質(zhì)消化吸收的主要場(chǎng)所,也是機(jī)體抵御異物的第一道防線。腸道屏障功能是指腸道將腸腔環(huán)境與機(jī)體內(nèi)組織環(huán)境分隔開(kāi),防止腸道內(nèi)致病性抗原、毒素以及致病微生物侵入的功能[3]。腸道屏障主要由腸道正常菌群、黏液層、腸上皮細(xì)胞層和腸道免疫系統(tǒng)組成(圖 1)。
腸道內(nèi)寄居著1013~1014個(gè)微生物,構(gòu)成了一個(gè)復(fù)雜的生態(tài)系統(tǒng)。隨著近年來(lái)對(duì)機(jī)體微生物研究的深入,腸道微生物被認(rèn)為是腸道防御屏障的重要組成部分。對(duì)于新生動(dòng)物,腸道微生物在宿主腸道發(fā)育過(guò)程中發(fā)揮著重要作用[5]。正常情況下腸道微生態(tài)處于平衡狀態(tài),腸道內(nèi)的有益菌如雙歧桿菌、乳酸菌黏附于腸上皮細(xì)胞表面或分布于黏液層,形成菌膜屏障,抑制病原菌黏附定植[3]。乳酸菌分布于豬整個(gè)腸道的各個(gè)部分[6],可通過(guò)生物拮抗作用抑制病原微生物的生長(zhǎng)繁殖[2,7]。與長(zhǎng)白豬相比,金華豬對(duì)毒素源性大腸桿菌K88攻毒有更低的腹瀉率,其原因是腸道內(nèi)存在更多的乳酸菌數(shù)量[8]。腸道復(fù)雜的生態(tài)系統(tǒng)構(gòu)建了腸道內(nèi)的第一道屏障,不同種屬微生物間的相互依賴和制衡,在有外界環(huán)境波動(dòng)或遭受有害刺激時(shí)能更好地應(yīng)對(duì)不良因素對(duì)機(jī)體造成的負(fù)面影響,從而起到保護(hù)腸道屏障的作用[9-10]。
圖1 腸道屏障功能Fig.1 The intestinal barrier function[4]
腸道表面由單層上皮細(xì)胞排列而成,而腸上皮細(xì)胞表面覆蓋著一層黏液。黏液主要由杯狀細(xì)胞和腸上皮細(xì)胞分泌的黏蛋白(mucin)組成。黏蛋白是一種大分子的糖蛋白,主要分為腸上皮細(xì)胞頂端覆蓋的跨膜黏蛋白以及杯狀細(xì)胞分泌的凝膠狀態(tài)的黏蛋白,其中膜結(jié)合蛋白主要有MUC1、MUC3、 MUC4、 MUC12、 MUC13、 MUC16、MUC17,分 泌 蛋 白 主 要 有 MUC2、MUC5AC、MUC5B、MUC6、MUC7[11]。黏蛋白有細(xì)菌黏附結(jié)合位點(diǎn),可與腸上皮上的結(jié)合位點(diǎn)競(jìng)爭(zhēng),阻止病原微生物與腸上皮細(xì)胞結(jié)合。黏液層一方面可將腸上皮細(xì)胞與腸腔環(huán)境隔離開(kāi),另一方面為專性厭氧菌提供了良好的棲息環(huán)境,可促進(jìn)雙歧桿菌、乳酸菌等有益菌的生長(zhǎng)繁殖[12]。
腸上皮細(xì)胞是腸道黏膜屏障的重要組成部分,主要通過(guò)通透性來(lái)高效選擇腸腔內(nèi)的物質(zhì)。一方面允許營(yíng)養(yǎng)物質(zhì)和其他可溶性的成分被吸收,另一方面阻止腸腔微生物、毒素等進(jìn)入機(jī)體[13]。相鄰腸上皮細(xì)胞間通過(guò)細(xì)胞連接毗鄰,從上皮頂端到基底膜,連接復(fù)合體依次為緊密連接(tight junctions,TJs)、黏附連接、橋粒和縫隙連接[14],其中TJs與腸道營(yíng)養(yǎng)物質(zhì)的吸收和微生物的黏附關(guān)系最為密切,且TJs和黏附連接通過(guò)胞質(zhì)銜接蛋白與肌動(dòng)蛋白微絲相連,參與多種信號(hào)通路,比如調(diào)控細(xì)胞增殖、分化和極性[15]。TJs為多種蛋白相互作用下形成的復(fù)合結(jié)構(gòu),是上皮細(xì)胞選擇性通透性的決定性因素,而Claudin-1、Occludin和ZO-1是TJs結(jié)構(gòu)和功能單位中最為基礎(chǔ)和重要的組成[16]。TJs是參與控制細(xì)胞旁滲透的關(guān)鍵分子[17],將上皮細(xì)胞之間的空隙密封,阻止微生物和其他抗原物質(zhì)轉(zhuǎn)運(yùn)擴(kuò)散穿過(guò)上皮細(xì)胞。
腸黏膜免疫屏障主要由腸相關(guān)淋巴組織(gutassociated lymphoid tissue,GALT)構(gòu)成,包括黏膜固有層及上皮細(xì)胞層內(nèi)的淋巴細(xì)胞、孤立淋巴濾泡、腸系膜淋巴結(jié)、潘氏細(xì)胞等。腸道免疫系統(tǒng)受到刺激以后,可以分泌免疫球蛋白、白細(xì)胞介素和干擾素等蛋白和分子,通過(guò)免疫調(diào)節(jié)作用維持腸道上皮穩(wěn)態(tài)。由B細(xì)胞轉(zhuǎn)化為漿細(xì)胞產(chǎn)生,并穿過(guò)上皮細(xì)胞分泌至腸腔的分泌型免疫球蛋白A(sIgA)是腸道免疫屏障的重要方面,參與調(diào)控腸道菌群,維持腸道穩(wěn)態(tài)。sIgA與非特異性免疫蛋白共同作用可阻止微生物黏附于上皮細(xì)胞,阻止損傷相關(guān)的炎癥反應(yīng)[18]。黏膜免疫球蛋白 A(IgA)一方面可以中和微生物毒素和病原微生物,另一方面可以調(diào)控腸道共生菌群[19]。IgA可維持不同腸段菌群的特異性[20]。另外,腸細(xì)胞分泌的內(nèi)源抗菌肽是腸道先天性免疫的一部分。小腸內(nèi)的柱狀細(xì)胞能夠產(chǎn)生再生胰島素衍生蛋白3γ(REG3γ)和再生胰島素衍生蛋白 3β(REG3β)[21],結(jié)腸柱狀細(xì)胞主要表達(dá)β防御素和Cathelicidins,潘氏細(xì)胞能夠表達(dá)多種抗菌肽,包括α防御素和血管生成素4(ANG4)等[22]。防御素可以破壞細(xì)菌細(xì)胞壁或細(xì)胞膜來(lái)發(fā)揮抑菌或殺菌作用[23]。
仔豬新生期是其個(gè)體發(fā)育的關(guān)鍵時(shí)期,由于腸道及機(jī)體免疫機(jī)能尚未發(fā)育完善,使得機(jī)體在受到外界環(huán)境應(yīng)激的刺激下,仔豬極易遭受病原微生物侵襲,抵御能力低下,而新生期嚴(yán)重感染或應(yīng)激對(duì)仔豬未來(lái)個(gè)體發(fā)育存在不可逆轉(zhuǎn)的負(fù)面影響,從而影響個(gè)體發(fā)育的整個(gè)進(jìn)程。在新生階段給予乳酸菌干預(yù),可以調(diào)控仔豬腸道微生物菌群的形成,幫助建立以有益菌為主體的腸道微生物菌群,介導(dǎo)機(jī)體腸道發(fā)育,促進(jìn)機(jī)體消化生理成熟并增強(qiáng)抵御病原微生物感染的能力[24-25]。Liu等[26]研究發(fā)現(xiàn),給新生仔豬灌服發(fā)酵乳酸桿菌(L.fermentum)I5007可以降低腸道潛在致病菌腸桿菌及梭菌屬數(shù)量,有助于新生仔豬腸道菌群的建立。
腸道菌群建立后,乳酸菌可以影響腸道菌群結(jié)構(gòu),但這種影響作用是局部的[27]。乳酸菌可以降低仔豬腸道中潛在致病菌產(chǎn)氣莢膜梭菌(Clostridium perfringens)的數(shù)量,并且乳酸菌干預(yù)的仔豬共生乳酸菌沿著絨毛-隱窩軸的分布與腸細(xì)胞關(guān)聯(lián)更加密切[24]。Bezkorovainy[28]報(bào)道,飼糧中添加乳酸菌可提高腸道有益微生物的定植并降低腸道pH。Ohashi等[29]給斷奶仔豬飼喂保加利亞乳桿菌(L.bulgaricus)2038發(fā)酵乳,能顯著增加腸道中乳酸桿菌相對(duì)豐富度。腸道菌群結(jié)構(gòu)的變化會(huì)改變腸道中短鏈脂肪酸的組成及數(shù)量[4],丁酸具有抵抗致病微生物侵襲并增強(qiáng)腸道屏障功能的作用[30],給新生仔豬灌服發(fā)酵乳酸桿菌I5007可增加后腸丁酸的數(shù)量[26]。
小腸的絨毛高度、隱窩深度是衡量小腸消化吸收能力的重要指標(biāo)。絨毛高度/隱窩深度綜合反映小腸的功能狀態(tài),其比值的下降表明黏膜受損,消化吸收能力下降[8]。Yu 等[31]發(fā)現(xiàn)飼糧中添加發(fā)酵乳酸桿菌I5007能顯著增加斷奶仔豬回腸絨毛高度/隱窩深度。復(fù)合乳酸菌制劑可以增加腸黏膜比例、腸絨毛高度、RNA完整性以及刷狀緣氨肽酶A和N活性,從而顯著降低仔豬壞死性小腸炎評(píng)分[24]。Suo 等[32]研究表明,植物乳桿菌(L.plantarum)ZJ316可以顯著提高斷奶仔豬十二指腸、空腸以及回腸的絨毛高度。Wu等[33]研究發(fā)現(xiàn),鼠李糖乳桿菌(L.rhamnosus)GG可以抑制病毒感染引起的豬回腸細(xì)胞凋亡,并可部分抑制病毒引起的組織損傷。
腸道通透性是反映腸道黏膜屏障的重要指標(biāo),腸道通透性增大是屏障功能受損的主要表現(xiàn)之一,且易引起腹瀉等疾病的發(fā)生。植物乳桿菌DSM 9843(2099v)和羅伊氏乳桿菌(L.reuteri)R2LC能明顯改善氨甲喋呤誘導(dǎo)的鼠結(jié)腸炎的腸道通透性[34]。鼠李糖乳桿菌GG能減少乙醇誘導(dǎo)的腸黏膜高通透性及小腸和結(jié)腸中的氧化應(yīng)激,顯著減小結(jié)腸中嗜中性粒細(xì)胞的浸潤(rùn)和炎癥[35]。此外,鼠李糖乳桿菌GG還能抑制腸出血性大腸桿菌引起的MDCK-1和T84細(xì)胞旁通透性的增加[36]。植物乳桿菌 DSM 2648可降低大腸桿菌O127∶H6(E2348/69)對(duì)跨上皮電阻的負(fù)作用和定植[37]。
TJs與腸上皮細(xì)胞的通透性密切相關(guān)。鼠李糖乳桿菌GG能夠阻礙氧化應(yīng)激對(duì)Caco-2細(xì)胞TJs和屏障功能的破壞[38]。L.sobrius DSM 16698(T)可以通過(guò)抑制產(chǎn)腸毒素大腸桿菌引起的閉鎖小帶ZO-1的移位,減少閉合蛋白的數(shù)量、F-肌動(dòng)蛋白重排以及閉合蛋白的去磷酸化,維護(hù)黏膜屏障的完整性[39]。植物乳桿菌CGMCC 1258能阻止腸侵襲大腸桿菌(EIEC)引起的Caco-2單層細(xì)胞屏障功能的破壞和周邊連接肌動(dòng)蛋白微絲的改變[40]。用大腸桿菌Nissle 1917處理腸上皮細(xì)胞,可增加TJs蛋白ZO-2的表達(dá),并且重新分配ZO-2從細(xì)胞質(zhì)到細(xì)胞邊界[41]。Yeung 等[42]研究表明,不同的乳酸菌對(duì)細(xì)胞表層完整性的調(diào)節(jié)不同,脂多糖(LPS)可以破壞上皮細(xì)胞屏障功能,乳酸菌則可維持TJs的完整性。
在人和鼠上,有大量的研究證實(shí)乳酸菌可以促進(jìn)腸道黏蛋白(MUC1、MUC2和 MUC3)的表達(dá)[2],但在豬上研究的相對(duì)較少。Yu 等[31]研究發(fā)現(xiàn),斷奶仔豬飼糧中添加5.8×107CFU/g的發(fā)酵乳酸桿菌I5007可提高腸道黏蛋白MUC2和MUC3的表達(dá)。Wang等[43]采用蛋白質(zhì)組學(xué)方法比較研究了發(fā)酵乳酸桿菌I5007對(duì)新生仔豬空腸黏膜蛋白表達(dá)的影響,發(fā)現(xiàn)發(fā)酵乳酸桿菌I5007可提高空腸黏膜蛋白中與脂類代謝、細(xì)胞結(jié)構(gòu)及活力相關(guān)的蛋白表達(dá)。
對(duì)仔豬新生期腸道微生物進(jìn)行干預(yù),可以影響宿主免疫機(jī)能朝向更加穩(wěn)定的、不易受到侵害的方向發(fā)展[44]。羅伊氏乳桿菌可通過(guò)降低促炎因子的表達(dá),提高調(diào)節(jié)性T細(xì)胞相關(guān)細(xì)胞因子的表達(dá),介導(dǎo)腸道免疫耐性[45]。Liu 等[26]研究表明,間隔灌服發(fā)酵乳酸桿菌I5007可提高仔豬新生期血清中IgA的含量,相應(yīng)提高了機(jī)體體液免疫能力。L.sobrius DSM 16698(T)可阻滯產(chǎn)腸毒素大腸桿菌誘發(fā)的白細(xì)胞介素-8(IL-8)分泌增加,同時(shí)上調(diào)白細(xì)胞介素 -10(IL-10)的表達(dá)[39]。植物乳桿菌ATCC 8014能抑制腫瘤壞死因子-α(TNF-α)引起的Caco-2細(xì)胞IL-8分泌的下降,維持上皮細(xì)胞屏障功能,并通過(guò)改變信號(hào)傳導(dǎo)通路抑制炎癥反應(yīng)[46]。Liu 等[26]研究表明,發(fā)酵乳酸桿菌 I5007可以顯著降低仔豬回腸炎性因子白細(xì)胞介素-1β(IL-1β)的表達(dá)。Vlasova 等[47]研究發(fā)現(xiàn),乳酸菌可通過(guò)調(diào)節(jié)先天性免疫應(yīng)答來(lái)促進(jìn)新生仔豬的免疫穩(wěn)態(tài),緩解輪狀病毒引起的腹瀉。此外,選用乳酸菌作為免疫刺激要考慮劑量效應(yīng),同一種乳酸菌劑量的不同可以促進(jìn)或抑制由干擾素-γ(IFN-γ)引起的T細(xì)胞或調(diào)節(jié)性T細(xì)胞免疫反應(yīng)[48]。
乳酸菌產(chǎn)生的有機(jī)酸(主要是乳酸)是一種重要的抗菌物質(zhì),有機(jī)酸可以通過(guò)螯合金屬離子和改變細(xì)菌細(xì)胞膜通透性來(lái)發(fā)揮作用,另外,有機(jī)酸還能降低腸道pH,抑制有害菌(如沙門氏菌、致病性大腸桿菌等)的生長(zhǎng)繁殖[49]。許多乳酸菌的抑菌作用是通過(guò)乳酸來(lái)實(shí)現(xiàn)的,鼠李糖乳桿菌GG對(duì)鼠傷寒沙門菌的抑制作用是乳酸積累的結(jié)果[50]。乳酸菌產(chǎn)生的過(guò)氧化氫也是一種重要的抗菌物質(zhì),如約氏乳桿菌(L.johnsonii)NC533分泌的過(guò)氧化氫在體外可以有效殺死沙門氏菌[51]。格氏乳桿菌(L.gasseri)CRL 1421產(chǎn)生的乳酸和過(guò)氧化氫能使金黃色葡萄球菌細(xì)胞膜崩解,使其細(xì)胞內(nèi)容物滲出,從而對(duì)其起到抑制作用[52]。
一些乳酸菌可以產(chǎn)生細(xì)菌素,這些細(xì)菌素可直接作用于病原菌,抑制病原菌在腸道內(nèi)的生長(zhǎng)繁殖[53]。乳酸乳球菌產(chǎn)生的細(xì)菌素乳鏈菌肽(nisin)、嗜酸乳桿菌產(chǎn)生的細(xì)菌素lactacin B、植物乳桿菌產(chǎn)生的細(xì)菌素plantaricin、羅伊氏乳桿菌的細(xì)菌素reuterin等,它們均可通過(guò)干擾細(xì)菌細(xì)胞膜通透性來(lái)殺死細(xì)菌[54-55]。唾液乳桿菌(L.salivarius)UCC118能保護(hù)鼠免受單核細(xì)胞增生李斯特氏菌的感染,其原因是唾液乳桿菌產(chǎn)生的細(xì)菌素發(fā)揮了作用[56]。乳酸乳球菌(Lactococcus lactis)產(chǎn)生的細(xì)菌素lacticin 3147能有效抑制艱難梭狀芽胞桿菌的生長(zhǎng)[57]。此外,研究發(fā)現(xiàn)細(xì)菌素及其產(chǎn)生系統(tǒng)可以直接發(fā)揮免疫調(diào)節(jié)作用[58]。
乳酸菌能夠產(chǎn)生一些蛋白質(zhì)而不經(jīng)過(guò)直接的接觸細(xì)胞發(fā)揮對(duì)腸道屏障的調(diào)節(jié)作用。例如鼠李糖乳桿菌GG的p40和p75蛋白可抑制細(xì)胞因子誘發(fā)的上皮細(xì)胞凋亡,降低TNF誘發(fā)的上皮細(xì)胞損傷并促進(jìn)人和小鼠結(jié)腸上皮細(xì)胞生長(zhǎng)[59]。格氏乳桿菌BL23也編碼p40和p75同源蛋白,并且發(fā)揮類似的作用[60]。業(yè)已發(fā)現(xiàn),鼠李糖乳桿菌GG編碼的p40蛋白通過(guò)表皮生長(zhǎng)因子受體介導(dǎo)的信號(hào)途徑對(duì)腸道屏障功能發(fā)揮作用[61]。
乳酸菌一方面通過(guò)競(jìng)爭(zhēng)營(yíng)養(yǎng)物質(zhì)來(lái)抑制病原菌的生長(zhǎng)繁殖,另一方面,乳酸菌定植在腸上皮細(xì)胞,競(jìng)爭(zhēng)性排斥腸道內(nèi)源性及外源性潛在致病菌對(duì)腸上皮細(xì)胞的黏附、定植。德氏乳桿菌和嗜酸乳桿菌可以在其菌體表面螯合氫氧化鐵,從而限制腸道內(nèi)病原菌的利用[62]。大量的文獻(xiàn)報(bào)道表明,乳酸菌可以抑制病原菌在腸上皮細(xì)胞上的定植[7,39]。在腸道定植和黏附是乳酸菌發(fā)揮作用的前提,乳酸菌可通過(guò)菌體表面的磷壁酸、多糖、S-層蛋白等與宿主細(xì)胞進(jìn)行特異性黏附,這種特異性黏附在乳酸菌競(jìng)爭(zhēng)與排斥功能中發(fā)揮了重要的作用[63]。
乳酸菌的細(xì)胞壁主要由肽聚糖、磷壁酸(lipoteichoic acid,LTA)、表面蛋白(surface layer protein,SLP)和胞外多糖(exopolysaccharides,EPS)組成(圖2)。這些分子包含微生物相關(guān)分子模式(microorganism-associated molecular patterns,MAMPs),可以識(shí)別宿主腸黏膜上的特定模式識(shí)別 受 體 (pattern recognition receptors,PRRs)。PRRs在感染和先天性免疫過(guò)程中起著重要的作用,其中 Toll樣受體(toll-like receptors,TLRs)和NOD樣受體(nucleotide binding oligomerizationdomain-like receptors,NLRs)分別作為胞外和胞內(nèi)模式識(shí)別受體。乳酸菌的菌體表面成分是乳酸菌發(fā)揮作用的重要因子,通過(guò)MAMPs與PRRs之間的作用產(chǎn)生一系列的免疫信號(hào),調(diào)節(jié)腸道屏障功能(圖3)。
圖2 乳酸菌菌體表面結(jié)構(gòu)Fig.2 The surface structure of lactic acid bacteria[64]
肽聚糖及其衍生的胞壁肽是乳酸菌發(fā)揮益生功能的活性化合物。肽聚糖是乳酸菌細(xì)胞壁的主要成分,主要通過(guò)Toll樣受體2(TLR2)的介導(dǎo)來(lái)發(fā)揮其在先天性免疫中的作用[58]。TLR2優(yōu)先識(shí)別二氨基庚二酸型(Dap型)肽聚糖片段,并且可識(shí)別L-賴氨酸型(Lys型)肽聚糖片段,但親和度較低[58]。然而肽聚糖和其他非酰化細(xì)胞壁成分誘導(dǎo)TLR2信號(hào)傳導(dǎo)的能力是有爭(zhēng)論的[65],一些研究表明,確認(rèn)為肽聚糖沾染的脂蛋白是干擾因素[66]。在細(xì)胞內(nèi),肽聚糖通過(guò) NOD樣受體進(jìn)行信號(hào)傳導(dǎo)[65-67],NOD 樣受體 1(NOD1)的配體是γ-D-谷氨酰基-內(nèi)消旋二氨基庚二酸(γ-D-glu-meso-DAP,存在于包括乳酸菌在內(nèi)的所有革蘭氏陽(yáng)性菌的肽聚糖結(jié)構(gòu)中),NOD樣受體2(NOD2)的配體是胞壁酸二肽(MurNAc-L-Ala-D-isoGln,MDP,存在于所有的肽聚糖中)[68]。然而一些研究認(rèn)為,NLRs-肽聚糖相互作用僅發(fā)生在特定的益生菌中[69]。唾液乳桿菌 Ls33通過(guò)NOD2介導(dǎo)的信號(hào)途徑誘導(dǎo)局部IL-10的產(chǎn)生,發(fā)揮抗炎作用,而嗜酸乳桿菌NCFM則沒(méi)有這種效果,這是因?yàn)榫闘s33肽聚糖結(jié)構(gòu)中有一種胞壁肽(M-tri-Ly)的存在,這種配體以依賴 NOD2、不依賴髓樣分化因子88(MyD88)的方式發(fā)揮作用[67]。
LTA存在于許多乳酸菌的細(xì)胞壁中,根據(jù)其在細(xì)胞表面上的固定方式,通常分為壁磷壁酸(wall-teichoic acid,WTA)和脂磷壁酸(lipoteichoic,LTA)。
WTA不深入質(zhì)膜,通過(guò)磷酸二酯鍵共價(jià)錨定在肽聚糖的N-乙酰胞壁酸殘基上,LTA則跨過(guò)肽聚糖層,其末端磷酸共價(jià)連接于質(zhì)膜中糖脂的寡糖基部分[58]。LTA不僅可以作為黏附分子與腸上皮細(xì)胞結(jié)合,而且作為配體可以與宿主免疫細(xì)胞上的TLR2結(jié)合,調(diào)節(jié)腫瘤壞死因子的水平。在植物乳桿菌WCFS1和L-137上,TLR2受體的識(shí)別需要LTA骨架的D-丙氨酰化,而在植物乳桿菌KCTC10887BP和鼠李糖乳桿菌 GG71上,TLR2受體的識(shí)別要求并不嚴(yán)格[58]。由于試驗(yàn)設(shè)計(jì)的差異,關(guān)于LTA微妙結(jié)構(gòu)的差異與免疫反應(yīng)之間的關(guān)系并不明確。最近的研究表明,植物乳桿菌WCFS1的突變體(LTA不能D-丙氨?;?誘導(dǎo)較少的TLR2依賴的促炎因子分泌,提高了對(duì)小鼠結(jié)腸炎模型的保護(hù)作用[70]。另外,在鼠李糖乳桿菌GG突變體上也得到了類似的結(jié)果[71]。這些研究表明,LTA骨架的修飾可以增加抗炎免疫調(diào)節(jié)。格氏乳桿菌Shirota和植物乳桿菌ATCC 14917的WTA在LTA通過(guò)TLR2途徑介導(dǎo)IL-10產(chǎn)生過(guò)程中發(fā)揮協(xié)同作用[72]。但是關(guān)于WTA在TLR2信號(hào)通路中的作用還存在爭(zhēng)議[58]。
EPS是乳酸菌在生長(zhǎng)代謝過(guò)程中分泌到細(xì)胞壁外的一類糖類化合物,根據(jù)其分布位置可分為2種形式:一種緊密依附在細(xì)菌表面形成莢膜稱為莢膜多糖(capsular polysaccharide,CPS),一種松散地分布在細(xì)菌表面稱為黏液多糖(slime polysaccharides,SPS)。鼠李糖乳桿菌 GG突變株產(chǎn)生CPS的能力下降,反而提高了鼠李糖乳桿菌的黏附能力和生物膜形成能力[73]。相反,高水平的CPS可以保護(hù)鼠李糖乳桿菌GG抵抗腸道先天性免疫因子,如鼠李糖乳桿菌 LL-37[74]。格氏乳桿菌Shirota的胞外多糖抑制巨噬細(xì)胞促炎性免疫反應(yīng)[75]。由于 CPS的糖原組成復(fù)雜,妨礙了CPS相關(guān)信號(hào)通路的研究。就目前而言,CPS在宿主免疫調(diào)節(jié)中的作用仍不明確。
SLP是乳酸菌細(xì)胞壁最外層的單分子亞結(jié)晶體排列蛋白,在乳酸菌黏附過(guò)程中起重要作用,一方面調(diào)節(jié)乳酸菌結(jié)合上皮細(xì)胞的能力,另一方面能夠抑制病原菌的黏附。乳酸桿菌表面蛋白的同源性主要集中于C端,該區(qū)域主要負(fù)責(zé)蛋白對(duì)細(xì)胞外膜的錨定作用,而N端的區(qū)域主要與蛋白的自身組裝及對(duì)細(xì)胞的黏附作用相關(guān),變異較大。SLP是復(fù)雜的細(xì)胞壁結(jié)構(gòu)的一部分,除了黏附功能以外,對(duì)SLP的其他功能了解得并不多,很多方面還處于假說(shuō)階段[58]。嗜酸乳桿菌NCFM 可以被樹(shù)突狀細(xì)胞表面特異性非整聯(lián)蛋白,又稱CD209(dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintergrin,DC-SIGN)識(shí)別(圖3),而表面蛋白A(SlpA)缺陷株不能被識(shí)別,SlpA缺陷株反而引起人DCs92更多的促炎細(xì)胞因子譜[76]。其他乳酸菌的SLP是否具有同樣的功能仍不清楚。分揀酶依賴性蛋白(sortase-dependent proteins,SDP)是鑲嵌到細(xì)胞壁上帶有LPxTG基序的表面蛋白,在乳酸菌與宿主相互作用之間發(fā)揮重要作用[77]。最新的研究表明,植物乳桿菌的SDP在宿主免疫調(diào)節(jié)中發(fā)揮重要作用[78]。
大量研究證實(shí),乳酸菌具有很好的改善豬腸道屏障功能的作用,這種作用與乳酸菌對(duì)腸道菌群結(jié)構(gòu)、腸絨毛結(jié)構(gòu)、上皮細(xì)胞通透性和TJs、黏液的分泌和免疫功能的調(diào)節(jié)有關(guān)。眾多研究者從乳酸菌的表面分子組成中尋求微生物相關(guān)分子模式與宿主上皮細(xì)胞(包括樹(shù)突狀細(xì)胞)分子識(shí)別受體間的關(guān)系,進(jìn)而解析乳酸菌調(diào)節(jié)腸道屏障功能的分子機(jī)制。但這種機(jī)制仍然具有很多的不確定性,且都是由體外細(xì)胞試驗(yàn)開(kāi)展的。乳酸菌對(duì)腸道功能的調(diào)節(jié)具有很強(qiáng)的菌株特異性,且人和動(dòng)物的腸道環(huán)境非常復(fù)雜。近年來(lái),基因組學(xué)、蛋白質(zhì)組學(xué)和代謝組學(xué)的發(fā)展,為從體內(nèi)試驗(yàn)的角度探索乳酸菌的確切作用機(jī)制提供了新的認(rèn)識(shí)和研究手段。
圖3 乳酸菌與腸上皮細(xì)胞和樹(shù)突細(xì)胞之間的相互作用機(jī)制Fig.3 The molecular interactions of lactic acid bacteria in general with intestinal epithelial cells and dendritic cells[58]
[1] MENNIGEN R,BRUEWER M.Effect of probiotics on intestinal barrier function[J].Annals of the New York Academy of Sciences,2009,1165(1):183-189.
[2] OHLAND C L,MACNAUGHTON W K.Probiotic bacteria and intestinal epithelial barrier function[J].A-merican Journal of Physiology:Gastrointestinal and Liver Physiology,2010,298(6):G807-G819.
[3] BAUMGART D C,DIGNASS A U.Intestinal barrier function[J].Current Opinion in Clinical Nutrition and Metabolic Care,2002,5(6):685-694.
[4] MAYNARD C L,ELSON C O,HATTON R D,et al.Reciprocal interactions of the intestinal microbiota and immune system[J].Nature,2012,489(7415):231-241.
[5] SOMMER F,B?CKHED F.The gut microbiota-masters of host development and physiology[J].Nature Reviews Microbiology,2013,11(4):227-238.
[6] WALTER J.Ecological role of lactobacilli in the gastrointestinal tract:implications for fundamental and biomedical research[J].Applied and Environmental Microbiology,2008,74(16):4985-4996.
[7] LI X J,YUE L Y,GUAN X F,et al.The adhesion of putative probiotic lactobacilli to cultured epithelial cells and porcine intestinal mucus[J].Journal of Applied Microbiology,2008,104(4):1082-1091.
[8] GAO Y,HAN F,HUANG X,et al.Changes in gut microbial populations,intestinal morphology,expression of tight junction proteins,and cytokine production between two pig breeds after challenge with Escherichia coli K88:a comparative study[J].Journal of Animal Science,2013,91(12):5614-5625.
[9] HOOPER L V,MACPHERSON A J.Immune adaptations that maintain homeostasis with the intestinal microbiota[J].Nature Reviews Immunology,2010,10(3):159-169.
[10] SHANAHAN F.Probiotics in perspective[J].Gastroenterology,2010,139(6):1808-1812.
[11] JOHANSSON M E V,SJ?VALL H,HANSSON G C.The gastrointestinal mucus system in health and disease[J].Nature Reviews Gastroenterology and Hepatology,2013,10(6):352-361.
[12] TURNER J R.Intestinal mucosal barrier function in health and disease[J].Nature Reviews Immunology,2009,9(11):799-809.
[13] PODOLSKY D K.Mucosal immunity and inflammation.Ⅴ.Innate mechanisms of mucosal defense and repair:the best offense is a good defense[J].American Journal of Physiology,1999,277(3 Pt 1):G495-G499.
[14] GUTTMAN JA,F(xiàn)INLAY B B.Tight junctions as targets of infectious agents[J].Biochimica et Biophysica Acta(BBA):Biomembranes,2009,1788(4):832-841.
[15] CHIBA H,OSANAI M,MURATA M,et al.Transmembrane proteins of tight junctions[J].Biochimica et Biophysica Acta(BBA):Biomembranes,2008,1778(3):588-600.
[16] FURUSE M.Molecular basis of the core structure of tight junctions[J].Cold Spring Harbor Perspectives in Biology,2010,2(1):a002907.
[17] MIYAUCHI E,MORITA H,TANABE S.Lactobacillus rhamnosus alleviates intestinal barrier dysfunction in part by increasing expression of zonula occludens-1 and myosin light-chain kinase in vivo[J].Journal of Dairy Science,2009,92(6):2400-2408.
[18] MACPHERSON A J,MCCOY K D,JOHANSEN F E,et al.The immune geography of IgA induction and function[J].Mucosal Immunology,2008,1(1):11-22.
[19] HAPFELMEIER S,LAWSON M A E,SLACK E,et al.Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses[J].Science,2010,328(5986):1705-1709.
[20] SUZUKI K,MEEK B,DOI Y,et al.Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(7):1981-1986.
[21] VAISHNAVA S,YAMAMOTO M,SEVERSON K M,et al.The antibacterial lectin regⅢ gamma promotes the spatial segregation of microbiota and host in the intestine[J].Science,2011,334(6053):255-258.
[22] NIJNIK A,HANCOCK R E W.Host defence peptides:antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections[J].Emerging Health Threats Journal,2009,2:e1.
[23] MUNIZ L R,KNOSP C,YERETSSIAN G.Intestinal antimicrobial peptides during homeostasis,infection,and disease[J].Frontiers in Immunology,2012,3:310.
[24] SIGGERS R H,SIGGERS J,BOYE M,et al.Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs[J].The Journal of Nutrition,2008,138(8):1437-1444.
[25] HANSEN C H F,NIELSEN D S,KVERKA M,et al.Patterns of early gut colonization shape future immune responses of the host[J].PLoS One,2012,7(3):e34043.
[26] LIU H,ZHANG J,ZHANG S H,et al.Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets[J].Journal of Agricultural and Food Chemistry,2014,62(4):860-866.
[27] FUENTES S,EGERT M,JIMéNEZ-VALERA M,et al.Administration of Lactobacillus casei and Lactobacillus plantarum affects the diversity of murine intestinal lactobacilli,but not the overall bacterial community structure[J].Research in Microbiology,2008,159(4):237-243.
[28] BEZKOROVAINY A.Probiotics:determinants of survival and growth in the gut[J].The American Journal of Clinical Nutrition,2001,73(Suppl.2):399S-405S.
[29] OHASHI Y,TOKUNAGA M,TAKETOMO N,et al.Stimulation of indigenous lactobacilli by fermented milk prepared with probiotic bacterium,Lactobacillus delbrueckii subsp bulgaricus strain 2038,in the pigs[J].Journal of Nutritional Science and Vitaminology,2007,53(1):82-86.
[30] GUILLOTEAU P,MARTIN L,EECKHAUT V,et al.From the gut to the peripheral tissues:the multiple effects of butyrate[J].Nutrition Research Reviews,2010,23(2):366-384.
[31] YU H F,WANG A N,LI X J,et al.Effect of viable Lactobacillus fermentum on the growth performance,nutrient digestibility and immunity of weaned pigs[J].Journal of Animal and Feed Sciences,2008,17(1):61-69.
[32] SUO C,YIN Y S,WANG X N,et al.Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality[J].BMC Veterinary Research,2012,8:89.
[33] WU S P,YUAN L J,ZHANG Y G,et al.Probiotic Lactobacillus rhamnosus GG mono-association suppresses human rotavirus-induced autophagy in the gnotobiotic piglet intestine[J].Gut Pathogens,2013,5(1):22.
[34] MAO Y,YU J L,LJUNGH A,et al.Intestinal immune response to oral administration of Lactobacillus reuteri R2LC,Lactobacillus plantarum DSM 9843,pectin and oatbase on methotrexate-induced enterocolitis in rats[J].Microbial Ecology in Health and Disease,1996,9(6):261-269.
[35] FORSYTH C B,F(xiàn)ARHADIA A,JAKATE S M,et al.Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress,gut leakiness,and liver injury in a rat model of alcoholic steatohepatitis[J].Alcohol,2009,43(2):163-172.
[36] JOHNSON-HENRY K C,DONATO K A,SHEN-TU G,et al.Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli O157∶H7-induced changes in epithelial barrier function[J].Infection and Immunity,2008,76(4):1340-1348.
[37] ANDERSON RC,COOKSON A L,MCNABB W C,et al.Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function[J].FEMS Microbiology Letters,2010,309(2):184-192.
[38] SETH A,YAN F,POLK D B,et al.Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC-and MAP kinase-dependent mechanism[J].American Journal of Physiology:Gastrointestinal and Liver Physiology,2008,294(4):G1060-G1069.
[39] ROSELLI M,F(xiàn)INAMORE A,BRITTI M S,et al.The novel porcine Lactobacillus sobrius strain protects intestinal cells from enterotoxigenic Escherichia coli K88 infection and prevents membrane barrier damage[J].The Journal of Nutrition,2007,137(12):2709-2716.
[40] QIN H,ZHANG Z,HANG X,et al.L.plantarum prevents enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells[J].BMC Microbiology,2009,9:63.
[41] ZYREK A A,CICHON C,HELMSS,et al.Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCζredistribution resulting in tight junction and epithelial barrier repair[J].Cellular Microbiology,2007,9(3):804-816.
[42] YEUNG C Y,CHIANG CHIAU J S,CHAN W T,et al.In vitro prevention of Salmonella lipopolysaccharide-induced damages in epithelial barrier function by various Lactobacillus strains[J].Gastroenterology Research and Practice,2013,doi:10.1155/2013/973209.
[43] WANG X Q,YANG F,LIU C,et al.Dietary supplementation with the probiotic Lactobacillus fermentum I5007 and the antibiotic aureomycin differentially affects the small intestinal proteomes of weanling piglets[J].The Journal of Nutrition,2012,142(1):7-13.
[44] MIHATSCH W A,BRAEGGER C P,DECSI T,et al.Critical systematic review of the level of evidence for routine use of probiotics for reduction of mortality and prevention of necrotizing enterocolitis and sepsis in preterm infants[J].Clinical Nutrition,2012,31(1):6-15.
[45] WALTER J,BRITTON R A,ROOSS.Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm[J].Proceedings of National Academy of Sciences of the United States of America,2011,108:4645-4652.
[46] KO J S,YANG H R,CHANG J Y,et al.Lactobacillus plantarum inhibits epithelial barrier dysfunction and interleukin-8 secretion induced by tumor necrosis factor-α [J].World Journal of Gastroenterology,2007,13(13):1962-1965.
[47] VLASOVA A N,CHATTHA K S,KANDASAMY S,et al.Lactobacilli and bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs[J].PLoS One,2013,8(10):e76962.
[48] WEN K,LI G H,BUI T,et al.High dose and low dose Lactobacillus acidophilus exerted differential immune modulating effects on T cell immune responses induced by an oral human rotavirus vaccine in gnotobiotic pigs[J].Vaccine,2012,30(6):1198-1207.
[49] PARVEZ S,MALIK K A,KANG S A,et al.Probiotics and their fermented food products are beneficial for health[J].Journal of Applied Microbiology,2006,100(6):1171-1185.
[50] DE KEERSMAECKER SC J,VERHOEVEN T L A,DESAIR J,et al.Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid[J].FEMS Microbiology Letters,2006,259(1):89-96.
[51] PRIDMORE R D,PITTET A C,PRAPLAN F,et al.Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity[J].FEMS Microbiology Letters,2008,283(2):210-215.
[52] OTERO M C,NADER-MACIAS M E.Inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus gasseri isolated from the vaginal tract of cattle[J].Animal Reproduction Science,2006,96(1/2):35-46.
[53] COTTER P D,HILL C,ROSS R P.Bacteriocins:developing innate immunity for food[J].Nature Reviews Microbiology,2005,3(10):777-788.
[54] BIERBAUM G,SAHL H G.Lantibiotics:mode of action,biosynthesis and bioengineering[J].Current Pharmaceutical Biotechnology,2009,10(1):2-18.
[55] CLEUSIX V,LACROIX C,VOLLENWEIDER S,et al.Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria[J].BMC Microbiology,2007,7:101.
[56] CORR S C,LI Y,RIEDEL C U,et al.Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(18):7617-7621.
[57] REA M C,CLAYTON E,O’CONNOR P M,et al.Antimicrobial activity of lacticin 3,147 against clinical Clostridium difficile strains[J].Journal of Medical Microbiology,2007,56(Pt 7):940-946.
[58] BRON P A,VAN BAARLEN P,KLEEREBEZEM M.Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa[J].Nature Reviews Microbiology,2012,10(1):66-78.
[59] YAN F,CAO H W,COVER T L,et al.Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth[J].Gastroenterology,2007,132(2):562-575.
[60] B?UERL C,PéREZ-MARTíNEZ G,YAN F,et al.Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23[J].Journal of Molecular Microbiology and Biotechnology,2010,19(4):231-241.
[61] YAN F,CAO H W,COVER T L,et al.Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism[J].The Journal of Clinical Investigation,2011,121(6):2242-2253.
[62] ELLI M,ZINK R,RYTZ A,et al.Iron requirement of Lactobacillus spp.in completely chemically defined growth media[J].Journal of Applied Microbiology,2000,88(4):695-703.
[63] DEEPIKA G,CHARALAMPOPOULOS D.Surface and adhesion properties of lactobacilli[J].Advances in Applied Microbiology,2010,70:127-152.
[64] LEBEER S,VANDER LEYDEN J,DE KEERSMAECKER S C J.Genes and molecules of lactobacilli supporting probiotic action[J].Microbiology and Molecular Biology Reviews,2008,72(4):728-764.
[65] TRAVASSOSL H,GIRARDIN SE,PHILPOTT D J,et al.Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition[J].EMBO Reports,2004,5(10):1000-1006.
[66] VOLZ T,NEGA M,BUSCHMANN J,et al.Natural Staphylococcus aureus-derived peptidoglycan fragments activate NOD2 and act as potent costimulators of the innate immune system exclusively in the presence of TLR signals[J].The FASEB Journal,2010,24(10):4089-4102.
[67] FERNANDEZ E M,VALENTI V,ROCKEL C,et al.Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide[J].Gut,2011,60(8):1050-1059.
[68] DELCOUR J,F(xiàn)ERAIN T,DEGHORAIN M,et al.The biosynthesis and functionality of the cell-wall of lactic acid bacteria[J].Antonie Van Leeuwenhoek,1999,76(1/2/3/4):159-184.
[69] ZEUTHEN L H,F(xiàn)INK L N,F(xiàn)R?KI?R H.Toll-like receptor 2 and nucleotide-binding oligomerization domain-2 play divergent roles in the recognition of gutderived lactobacilli and bifidobacteria in dendritic cells[J].Immunology,2008,124(4):489-502.
[70] GRANGETTE C,NUTTEN S,PALUMBO E,et al.Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(29):10321-10326.
[71] CLAESI JJ,LEBEER S,SHEN C,et al.Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis[J].Clinical & Experimental Immunology,2010,162(2):306-314.
[72] KAJI R,KIYOSHIMA-SHIBATA J,NAGAOKA M,et al.Bacterial teichoic acids reverse predominant IL-12 production induced by certain Lactobacillus strains into predominant IL-10 production via TLR2-dependent ERK activation in macrophages[J].The Journal of Immunology,2010,184(7):3505-3513.
[73] LEBEER S,VERHOEVEN T L A,F(xiàn)RANCIUS G,et al.Identification of a gene cluster for the biosynthesis of a long,galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase[J].Applied and Environmental Microbiology,2009,75(11):3554-3563.
[74] LEBEER S,CLAES I J J,VERHOEVEN T L A,et al.Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine[J].Microbial Biotechnology,2011,4(3):368-374.
[75] YASUDA E,SERATA M,SAKO T.Suppressive effect on activation of macrophages by Lactobacillus casei strain shirota genes determining the synthesis of cell wall-associated polysaccharides[J].Applied and Environmental Microbiology,2008,74(15):4746-4755.
[76] KONSTANTINOV SR,SMIDT H,DE VOSW M,et al.S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(49):19474-19479.
[77] BOEKHORST J,DE BEEN M W,KLEEREBEZEM M,et al.Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs[J].Journal of Bacteriology,2005,187(14):4928-4934.
[78] REMUS D M,BONGERS R S,MEIJERINK M,et al.Impact of Lactobacillus plantarum sortase on target protein sorting,gastrointestinal persistence,and host immune response modulation[J].Journal of Bacteriology,2013,195(3):502-509.