胡星星,朱慶磊
?
自體骨髓間充質(zhì)干細(xì)胞移植治療心肌梗死的進(jìn)展
胡星星,朱慶磊*
(解放軍總醫(yī)院老年心血管病研究所,北京 100853)
心肌梗死可引起心肌細(xì)胞的丟失,進(jìn)而引起心臟功能的下降,是心力衰竭最主要的病因。骨髓間充質(zhì)干細(xì)胞(BM-MSCs)是一類具有橫向分化為各系統(tǒng)器官和組織能力的干細(xì)胞,能補(bǔ)充丟失的心肌細(xì)胞并通過旁分泌等機(jī)制增強(qiáng)心功能,為心肌梗死提供一種全新的治療方法,極具發(fā)展?jié)摿?。本文?duì)BM-MSCs的分離培養(yǎng)、誘導(dǎo)因素、移植以及臨床研究等方面進(jìn)行了綜述。
骨髓間充質(zhì)干細(xì)胞;移植;心肌梗死
心力衰竭是一組復(fù)雜的臨床綜合征,是各種原因引起的心肌病變(壞死、炎癥、心肌損害等)及血流動(dòng)力學(xué)負(fù)荷過重(壓力負(fù)荷和容量負(fù)荷)造成心臟結(jié)構(gòu)和功能的改變,導(dǎo)致心室射血功能的低下和心室充盈的障礙。心肌梗死是目前心力衰竭最主要的病因,如今治療心力衰竭的措施主要有藥物治療、輔助裝置、心臟移植、細(xì)胞移植和基因治療。藥物治療和介入干預(yù)治療等僅能起控制和延緩心力衰竭進(jìn)程的作用,但并不能從根本上解決有功能心肌的進(jìn)行性減少和逆轉(zhuǎn)心室重塑。
心肌細(xì)胞一直被認(rèn)為是永久細(xì)胞,不可進(jìn)行增殖分化,但近年研究表明,在正常情況下,20歲年輕人的心臟每年約有1%的心肌細(xì)胞自我更新,在75歲的老年人中,這一數(shù)值為0.4%。在病理狀態(tài)下,心肌梗死邊緣區(qū)約有4%心肌細(xì)胞的為增殖相關(guān)蛋白Ki-67為陽(yáng)性[1]。雖然如此,心臟的自我修復(fù)功能仍遠(yuǎn)遠(yuǎn)不能滿足病理狀態(tài)下的心臟復(fù)原,但為心肌的細(xì)胞再生修復(fù)提供了理論依據(jù)。自體骨髓間充質(zhì)干細(xì)胞(bone marrow derived mesenchymal stem cells,BM-MSCs)自1970年被Friedenstein發(fā)現(xiàn)以來,以其容易獲得且能在體外培養(yǎng)、無免疫排斥反應(yīng)、具有較強(qiáng)的自我復(fù)制能力和多向分化能力以及其重要的旁分泌功能而備受矚目[2],而且,BM-MSCs還具有向損傷組織遷移、滯留進(jìn)行組織修復(fù)的功能[3]。本文對(duì)BM-MSCs治療心肌梗死的相關(guān)情況進(jìn)行概述。
BM-MSCs是在骨髓間充質(zhì)中一種重要的支持細(xì)胞,在外周血中量極少,并且很難用常規(guī)方法使BM-MSCs從骨髓遷移到外周血中,所以移植前需先在體外培養(yǎng)擴(kuò)增。BM-MSCs一般取動(dòng)物的長(zhǎng)骨骨髓,主要分離方法包括密度梯度離心法、全骨髓培養(yǎng)法、流式細(xì)胞儀分離法和免疫磁珠法,后兩種方法由于操作復(fù)雜、費(fèi)用昂貴,對(duì)細(xì)胞的活性也有一定影響,難以應(yīng)用推廣。目前主要根據(jù)BM-MSCs的貼壁特性采用密度梯度離心法以及全骨髓培養(yǎng)法將BM-MSCs與骨髓中不貼壁細(xì)胞分離,再根據(jù)MSCs與骨髓間充質(zhì)中其他貼壁細(xì)胞(如成纖維細(xì)胞)的貼壁能力的不同,利用胰酶消化再次純化MSCs。
BM-MSCs的鑒定主要包括以下幾個(gè)方面:(1)形態(tài)學(xué)以及自我復(fù)制能力;(2)表面標(biāo)志物鑒定,包括CD29、CD44、CD105、Sca-1陽(yáng)性,CD34、CD45、CD11-b、HLA-DR陰性[4];(3)多向分化能力鑒定。
雖然BM-MSCs體外可培養(yǎng)擴(kuò)增,但移植入體內(nèi)的BM-MSCs能滯留在心肌的少之又少,移植4d后在心臟中存留的BM-MSCs只占移植總量的0.44%[5],而且能向心肌細(xì)胞轉(zhuǎn)化的比例也非常低,所以,需要人工干預(yù)提高BM-MSCs在心臟的滯留率以及向心肌細(xì)胞的轉(zhuǎn)化率。
BM-MSCs在相似心肌內(nèi)的環(huán)境下能轉(zhuǎn)化成心肌細(xì)胞。將小鼠的BM-MSCs與心肌細(xì)胞以1∶10的比例共培養(yǎng)3周后,BM-MSCs已不能和心肌細(xì)胞鑒別開來[6]。將成人的BM-MSCs以1∶1的比例與成人心肌細(xì)胞共培養(yǎng)48h后表達(dá)心肌標(biāo)志物肌鈣蛋白(TnT)、β肌動(dòng)蛋白(β-actin)、主要組織相容性復(fù)合體(MHC)[7],說明共培養(yǎng)能促進(jìn)BM-MSCs向心肌細(xì)胞的分化。
加強(qiáng)DNA脫甲基作用的藥物能促進(jìn)BM-MSCs向心肌細(xì)胞轉(zhuǎn)化,例如阿扎胞苷(5-氮胞苷,5-Aza)以及5-乙酰唑胺—2-脫氧胞苷酸[8]。1995年,Wakitani等[9]用含5-Aza的培養(yǎng)基培養(yǎng)大鼠BM-MSCs7~l0d后,電鏡下可見細(xì)胞內(nèi)長(zhǎng)的多核肌管,并表達(dá)心肌鈣蛋白I(cTnI)和cTnT。Tomita等[11]用5-Aza誘導(dǎo)后能提高BM-MSCs移植治療心力衰竭的療效。但也有學(xué)者研究發(fā)現(xiàn)未經(jīng)誘導(dǎo)和經(jīng)誘導(dǎo)的BM-MSCs移植于心肌4周后,兩組心功能的改善無顯著性差異。還有其他的一些物質(zhì),如Ⅴ型膠原、高密度脂蛋白膽固醇均對(duì)BM-MSCs的分化有積極的影響。
基因轉(zhuǎn)染指的是將具生物學(xué)功能的核酸轉(zhuǎn)移或運(yùn)送到細(xì)胞內(nèi)并使核酸在細(xì)胞內(nèi)維持其生物功能的方法[12]。轉(zhuǎn)染Bcl-2的BM-MSCs抗凋亡能力增強(qiáng)[13]。轉(zhuǎn)染Akt基因后的BM-MSCs移植入大鼠心肌梗死模型,能提高心功能[14]。BM-MSCs通過整合素連接激酶轉(zhuǎn)染后移植可抑制成纖維細(xì)胞的增殖并減少纖維合成,改善心肌梗死后的心室順應(yīng)性[15]。HO-1增強(qiáng)BM-MSCs對(duì)缺氧復(fù)氧損傷的耐受力[16]。以上幾個(gè)基因只是眾多研究中的一小部分。雖然基因轉(zhuǎn)染在體外試驗(yàn)和動(dòng)物實(shí)驗(yàn)中被證明能提高干細(xì)胞生存率和轉(zhuǎn)化率,但在臨床中還未進(jìn)行大規(guī)模試驗(yàn),其安全性還有待考量。
原則上越早移植越能夠防止以后發(fā)生心肌重構(gòu)、限制心肌細(xì)胞分離、減少膠原沉淀和瘢痕形成。但動(dòng)物研究發(fā)現(xiàn)干細(xì)胞移植有時(shí)間窗[17]。急性心肌梗死(AMI)后早期(1周內(nèi))可能由于明顯的心肌缺血壞死和炎癥反應(yīng)、再灌注后氧爆發(fā)和嚴(yán)重的過氧化損傷,以及隨后出現(xiàn)的壞死物質(zhì)液化吸收(如6~9d)等,影響移植干細(xì)胞的存活與分化。中期(AMI后1周至瘢痕形成前)移植期間炎癥反應(yīng)逐漸減弱,瘢痕尚未形成,較利于移植細(xì)胞的存活和發(fā)揮作用。晚期(指梗死瘢痕形成后的階段)瘢痕區(qū)缺乏血供,不利于移植細(xì)胞的存活;瘢痕還限制了干細(xì)胞和宿主心肌細(xì)胞的連接,容易形成“細(xì)胞島”而提供心律失常的基質(zhì)。但Quevedo[18]的實(shí)驗(yàn)在豬心肌梗死后12周給予BM-MSCs移植,12周后移植組的心功能較安慰劑組有明顯改善,說明BM-MSCs移植對(duì)于心肌梗死瘢痕形成以后的心功能修復(fù)仍然有一定作用。臨床上對(duì)于移植時(shí)間的研究并沒有深入,一般為梗死后兩周進(jìn)行移植,此時(shí)正處于中期,炎癥反應(yīng)輕而瘢痕又沒有完全形成,對(duì)于逆轉(zhuǎn)梗死后心室重塑有利。
理論上說,移植的細(xì)胞數(shù)量越多,存活的干細(xì)胞也應(yīng)該更多,對(duì)于患者越有利。不過事實(shí)也許并非如此。首先,對(duì)于干細(xì)胞的獲得和培養(yǎng)的能力有限;另外,移植的BM-MSCs量越大,并不代表其修復(fù)心臟的功能越強(qiáng)。Dixon等[19]學(xué)者用大量的動(dòng)物做實(shí)驗(yàn),結(jié)果表明干細(xì)胞治療心肌梗死在細(xì)胞濃度上可能有一個(gè)閾值。低濃度的干細(xì)胞能抑制梗死邊緣區(qū)的心肌肥大,但高濃度(450×106)的這一功能卻被削弱。往梗死邊緣區(qū)注射高濃度的干細(xì)胞導(dǎo)致氧和營(yíng)養(yǎng)的需求增加,從而增大了心肌的代謝負(fù)擔(dān),濃度越高可能會(huì)導(dǎo)致炎癥反應(yīng)越嚴(yán)重,從而改變心肌細(xì)胞的微環(huán)境,影響心肌細(xì)胞的修復(fù)生長(zhǎng)。
現(xiàn)在應(yīng)用于移植研究的方法包括經(jīng)靜脈注射植入、經(jīng)左室注射植入、經(jīng)冠狀靜脈竇植入、經(jīng)心內(nèi)膜心肌內(nèi)注射植入、直視下局部注射植入及介入方法經(jīng)冠狀動(dòng)脈注射植入。動(dòng)物實(shí)驗(yàn)中一般采取開胸直視下心肌內(nèi)直接注射,而在臨床上一般采取開胸直視下局部注射以及經(jīng)冠狀動(dòng)脈注射植入。臨床上心外膜注射移植只適用于外科搭橋的患者;而相對(duì)于心內(nèi)膜注射來說,介入方法技術(shù)較成熟,操作也較簡(jiǎn)單。經(jīng)冠狀動(dòng)脈注入需要的移植細(xì)胞量大,嚴(yán)重時(shí)可能造成血栓,在血管有病變和狹窄時(shí)尤其如此[20]。最近有學(xué)者研究細(xì)胞薄膜技術(shù)(cell sheet),通過一種溫度敏感培養(yǎng)皿得到無支架BM-MSCs細(xì)胞薄膜,將其替代心包外膜以達(dá)到移植的目的,此項(xiàng)技術(shù)能增加BM-MSCs在心肌上的滯留率,比支架心肌內(nèi)注射對(duì)照組增加6.4倍[21]。
(1)分化為心肌細(xì)胞,減少了梗死區(qū)有功能心肌細(xì)胞的下降程度[22];(2)在梗死心肌中生長(zhǎng)發(fā)育的心肌樣細(xì)胞提高了心肌組織的彈性、韌性和收縮性,增加梗死部位心肌的厚度,阻止了梗死后的心室重塑過程[23];(3)旁分泌機(jī)制:分泌各種細(xì)胞因子促進(jìn)心肌細(xì)胞再生、新生血管形成、抗炎、影響心肌代謝、延緩心室重塑并增加心肌收縮力,從而達(dá)到修復(fù)心臟的效果[24,25];(4)細(xì)胞融合;(5)向心肌細(xì)胞、血管內(nèi)皮細(xì)胞以及血管平滑肌3系分化,參與梗死心肌的修復(fù)[18]。
率先將BM-MSCs移植應(yīng)用于臨床的是日本的Hamano研究小組[26]。2001年,他們?cè)诮o7例陳舊性心肌梗死患者行冠狀動(dòng)脈搭橋手術(shù)時(shí),進(jìn)行了自體骨髓單個(gè)核細(xì)胞移植,發(fā)現(xiàn)5例患者中有3例心肌灌注長(zhǎng)期改善,2例無明顯變化。2006年最大的隨機(jī)安慰劑對(duì)照試驗(yàn)鹿特丹急性梗死再灌注-急性心肌梗死實(shí)驗(yàn)(Reperfusion of Acute Infarction Rottardam-AMI,REPAIR-AMI)[27]表明,BM-MSCs移植不僅能增強(qiáng)左心室功能,而且能降低心肌梗死后1年的死亡終點(diǎn)事件、再次心肌梗死或者血管成形術(shù)的概率。骨髓轉(zhuǎn)移增強(qiáng)ST抬高型梗死再生實(shí)驗(yàn)(BOOST試驗(yàn))[28]中,移植組左心室功能比對(duì)照組增強(qiáng)得更早,但是這種差異在18個(gè)月后消失,此時(shí)對(duì)照組的心功能已經(jīng)趕上了移植組的水平。但是另一項(xiàng)雙盲、隨機(jī)試驗(yàn)卻與上述兩項(xiàng)試驗(yàn)結(jié)果相反,試驗(yàn)人員用自體骨髓單核細(xì)胞移植到心肌梗死24h內(nèi)成功再灌注的患者體內(nèi),結(jié)果顯示,患者的左室射血分?jǐn)?shù)并沒有增加,但是心肌梗死面積卻顯著減少,局部左心室功能增強(qiáng)[29]。2012年的慢性缺血性心臟衰竭間充質(zhì)基質(zhì)細(xì)胞試驗(yàn)(MSC-HF)是一項(xiàng)兩期、雙盲、隨機(jī)、單中心的臨床研究,也得到了陽(yáng)性結(jié)果[30]。干細(xì)胞治療心肌梗死的臨床研究仍在不斷進(jìn)行,取得了令人鼓舞的結(jié)果,但還有很多問題有待解決,需要進(jìn)一步的探討和研究。
雖然BM-MSCs為干細(xì)胞移植的良好選擇,但其安全性仍受各界關(guān)注。應(yīng)注意體外干細(xì)胞培養(yǎng)的截止時(shí)間,傳代過多的干細(xì)胞可能會(huì)引發(fā)各種疾病,如突變獲得染色體異常[31]、異位骨化、移植部位脂肪組織形成[32]、移植部位鈣化等[33]。另外一些安全性考慮還有對(duì)非靶器官的影響、免疫反應(yīng)、細(xì)胞可能無限制生長(zhǎng)以及發(fā)生白血病[34]等。
組織學(xué)分析顯示,相對(duì)于對(duì)照組,BM-MSCs移植組的心肌梗死面積、心肌纖維化、以及由于缺血引起的心肌凋亡都有顯著減少。但這些修復(fù)后的心肌并沒有達(dá)到梗死前的水平。在移植區(qū)仍然遺留有50%的損傷。這些遺留的瘢痕可能會(huì)導(dǎo)致心電阻滯。移植區(qū)遺留的間質(zhì)纖維化可能誘發(fā)繼發(fā)性心電紊亂。Segers等[35]指出纖維瘢痕不僅能中等程度地阻礙細(xì)胞再生,而且還能阻礙心電傳播,促進(jìn)折返。移植區(qū)嚴(yán)重的炎癥能阻礙傳導(dǎo)和復(fù)極化,而且能影響祖細(xì)胞的轉(zhuǎn)錄和存活。
進(jìn)行BM-MSCs移植使心臟收縮功能得到顯著提高,但卻并不能使存活率得到同比例的增高[36?38]。產(chǎn)生這種不一致的原因可能是這些BM-MSCs細(xì)胞移植入心臟以后并不能轉(zhuǎn)化為有電生理功能的心肌細(xì)胞,而是使移植細(xì)胞在移植區(qū)形成不一致的異質(zhì)區(qū),有可能使心臟出現(xiàn)室性心律失常[39]。
BM-MSCs在骨髓中的含量很低,僅占骨髓中單個(gè)核細(xì)胞的1/106~l/105。細(xì)胞在擴(kuò)增過程中保持多向分化的潛能性,但該能力會(huì)隨著過度擴(kuò)增和不恰當(dāng)操作而減弱。AMI經(jīng)干細(xì)胞移植后,移植干細(xì)胞在梗死區(qū)會(huì)因?yàn)槿毖驮俟嘧ⅰ⒀装Y因子等惡劣環(huán)境的作用而大量死亡。研究表明干細(xì)胞移植后在第一個(gè)24h內(nèi)大多數(shù)均死亡,只有15%可能生存到12周。李克等[40]將攜帶人端粒酶逆轉(zhuǎn)錄酶(human telomerase reverse transcriptase,hTERT)目的基因的質(zhì)粒通過脂質(zhì)體轉(zhuǎn)染法轉(zhuǎn)入人BM-MSCs中,顯示外源性hTERT基因可以在人BM-MSCs中獲得異位表達(dá),并能誘導(dǎo)人BM-MSCs的端粒酶活性,使BM-MSCs的壽命明顯延長(zhǎng)而且不影響其維持干細(xì)胞的多向分化潛能特性。亦有通過紅細(xì)胞生成素、堿性成纖維細(xì)胞生長(zhǎng)因子、中藥提取物等促進(jìn)BM-MSCs增殖的報(bào)道。但如何提高BM-MSCs移植后的存活率依然值得深入研究和探討。其他諸如BM-MSCs移植后歸巢及心肌細(xì)胞分化的誘導(dǎo)、干細(xì)胞的分離和培養(yǎng)等問題都需進(jìn)一步的研究。
干細(xì)胞治療心肌梗死還處在研究的初級(jí)階段,雖然有很多問題還不清楚,由于BM-MSCs取材容易,臨床上應(yīng)用又不受倫理道德限制,具有廣闊的治療前景。但真正要在臨床上推廣,還需要進(jìn)行大量臨床前實(shí)驗(yàn)研究以確定其安全性和有效性。隨著實(shí)驗(yàn)技術(shù)和研究方法的進(jìn)步,以及對(duì)相關(guān)機(jī)制研究的深人,BM-MSCs將對(duì)心力衰竭的治療產(chǎn)生深遠(yuǎn)的影響。
[1] Beltrami AP, Urbanek K, Kajstura J,. Evidence that human cardiac myocytes divide after myocardial infarction[J]. N Engl J Med, 2001, 344(15): 1750?1757.
[2] Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status[J]. Stem Cells, 2010, 28(3): 585?596.
[3] Ansilla E, Marin GH, Drago H,. Blood stream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine[J]. Transplant Proc, 2006, 38(3): 967?969.
[4] Gindraux F, Selmani Z, Obert L,. Human and rodent bone marrow mesenchymal stem cells that express primitive stem cell markers can be directly enriched by using the CD49 molecule[J]. Cell Tissue Res, 2007, 327(3): 471?483.
[5] Toma C, Pittenger MF, Cahill KS,. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart[J]. Circulation, 2002, 105(1): 93?98.
[6] Li X, Yu X, Lin Q,. Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment[J]. J Mol Cell Cardiol, 2007, 42(2): 295?303.
[7] Rangappa S, Entwistle JW, Wechsler AS,. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype[J]. J Thorac Cardiovasc Surg, 2003, 126(1): 124?132.
[8] Xu W, Zhang X, Qian H,. Mesenchymal stem cells from adult human bone marrow differentiate into a myocardial cell phenotype[J]. Exp Biol Med (Maywood), 2004, 229(5): 623?663.
[9] Wakitani S, Saito T, Caplan AI,. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-aza—cytidine[J]. Muscle Nerve, 1995, 18(12): 1417?1142.
[10] Friedenstein AJ, Chailakhjan RK, Lalykina KS,. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells[J]. Cell Tissue Kinet, 1970, 3(4): 393?403.
[11] Tan G, Shim W, Gu Y,. Effect of myocardial matrix and integrins on cardiac differentiation of human mesenchymal stem cells[J]. Differentiation, 2010, 79(2): 260?271.
[12] Greener I, Donahue JK. Gene therapy strategies for cardiac electrical dysfunction[J]. J Mol Cell Cardiol, 2010, 50(5): 759?765.
[13] Li W, Ma N, Ong LL,. Bcl-2 Engineered MSCs inhibited apoptosis and improved heart function[J]. Stem Cells, 2007, 25(8): 2118?2127.
[14] Mangi AA, Noiseux N, Kong D,. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts[J]. Nat Med, 2003, 9(9): 1195?1201.
[15] Mao Q, Lin CX. Mesenchymal stem cells overexpressing integrin-linked kinase attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions[J]. Mol Med Rep, 20137(5):1617?1623.
[16] Tang YL, Tang Y, Zhang YC,. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated hemeoxygenase-1 vector[J]. J Am Coll Cardiol, 2005, 46(7): 1339?1350.
[17] Jia M, Lu PQ, Yang JY,. Influence of transplanting mesenchymal stem cells at different time on functional restoration after myocardial infarction[J]. J Clin Rehabil Tissue Eng Res, 2007, 33(2), 45?47. [賈 敏, 盧沛琦, 楊繼要, 等. 心肌梗死后不同時(shí)間移植骨髓間充質(zhì)干細(xì)胞對(duì)心臟功能修復(fù)的作用[J]. 中國(guó)組織工程研究與臨床康復(fù), 2007, 33(2): 45?47.]
[18] Quevedo HC, Hatzistergos KE, Oskouei BN,. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathytrilineage differentiating capacity[J]. Proc Natl Acad Sci USA, 2009, 106(33), 14022?14027.
[19] Dixon JA, Gorman RC, Stroud RE,. Mesenchymal cell transplantation and myocardial remodeling after myocardial infarction[J]. Circulation, 2009, 15, 120(11): S220?S229.
[20] Suzuki K, Brand NJ, Smolenski RT,. Development of a novel method for cell transplantation through the coronary artery[J]. Circulation, 2000,102(3): 359?364.
[21] Narita T, Shintani Y, Ikebe C,. The use of scaffold-free cell sheet technique to refine mesenchymal stromal cell-based therapy for heart failure[J]. Mol Ther, 2013, 21(4): 860?867.
[22] Lin Q, Chen SY. The mechanism of bone marrow derived mesenchymal stem cells in treatment of myocardial infarction[J]. Chin Heart J, 2008, 20(4), 498?500. [林 強(qiáng), 陳書艷. 骨髓間充質(zhì)干細(xì)胞治療急性心肌梗死的機(jī)制[J]. 心臟雜志, 2008, 20(4): 498?500.]
[23] Shake JG, Gruber PJ, Baumgmmer WA,. Mesenchymal stem cell implantation in a swine myocardial infarct model:engraftment and functional effects[J]. Ann Thorac Surg, 2002, 73(6): 1919?1926.
[24] Zhang SH, Jia ZQ, Guo JX,. Transplantation of bone marrow cells upregulated vascular endothelial growth factor and its receptor and improved ischemic myocardial function[J]. J Peking Univ, Health Sci, 2003, 4(1): 245?247. [張少衡, 賈竹青, 郭靜萱, 等. 骨髓細(xì)胞移植上調(diào)血管內(nèi)皮生長(zhǎng)因子及其受體的表達(dá)并改善缺血心臟功能[J]. 北京大學(xué)學(xué)報(bào)醫(yī)學(xué)版, 2003, 4(1): 245?247.]
[25] Wen Z, Zheng S, Okamoto R,. Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction[J]. J Cell Mol Med, 2011, 15(5), 1032?1043.
[26] Hamano K, Nishida M, Hirata K,. Local implantation of autologous bone marrow cells for therapeutic angiogenesis with ischemic heart disease:clinical trial and preliminary results[J]. Jpn Circ J, 2001, 65(9), 845?847.
[27] Schachinger V, Erbs S, Elsasser A,. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial[J]. Eur Heart J, 2006, 27(23): 2775?2783.
[28] Meyer GP, Wollert KC, Lotz J,. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (Bone Marrow Transfer to Enhance ST-Elevation Infarct Regeneration) trial[J]. Circulation, 2006, 113(10): 1287?1294.
[29] Janssens S, Dubois C, Boqaert J,. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial[J]. Lancet, 2006, 367(9505): 113?121.
[30] Mathiasen AB, Jarqensen E, Qayyum AA,. Rationale and design of the first randomized, double-blind, placebo-controlled trial of intramyocardial injection of autologous bone-marrow derived Mesenchymal Stromal Cells in chronic ischemic Heart Failure (MSC-HF Trial)[J]. Am Heart J, 2012, 164(3): 285?291.
[31] Aguilar S, Nye E, Chan J,. Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung[J]. Stem Cells, 2007, 25(8): 1586?1594.
[32] Tolar J, Nauta AJ, Osborn MJ,. Sarcoma derived from cultured mesenchymal stem cells[J]. Stem Cells, 2007, 25(2): 371?379.
[33] Breitbach M, Bostani T, Roel W,. Potential risks of bone marrow cell transplantation into infarcted hearts[J]. Blood, 2007, 110(4): 1362?1369.
[34] Mishra PJ, Mishra PJ, Humeniuk R,. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells[J]. Cancer Res, 2008, 68(11): 4331?4339.
[35] Segers VF, Lee RT. Stem-cell therapy for cardiac disease[J]. Nature, 2008, 451(2): 937?942.
[36] Song H,Chang W, Lim S,. Tissue transglutaminase is essential for integrin-mediated survival of bone marrow-derived mesenchymal stem cells[J]. Stem Cells, 2007, 25(6): 1431?1438.
[37] Chang W, Song BW,Lim S,. Mesenchymal stem cells pretreated with delivered Hph-1-Hsp70 protein are protected from hypoxia-mediated cell death and rescue heart functions from myocardial injury[J]. Stem Cells 2009, 27(9): 2283?2292.
[38] Song SW, Chang W, Song BW,. Integrin-linked kinase is required in hypoxic mesenchymal stem cells for strengthening cell adhesion to ischemic myocardium[J]. Stem Cells, 2009, 27(6): 1358?1365.
[39] Song H, Hwang HJ, Chang W,. Cardiomyocytes from phorbol myristate acetate-activated mesenchymal stem cells restore electromechanical function in infarcted rat hearts[J]. PNAS, 2011, 108(1): 296?301.
[40] Li K, Liu RM, Han XF,. Ectopic hTERT gene expression in human bone marrow mesenchymal stem cells[J]. Chin J Pathophysiol, 2007, 23(7): 1357?1362. [李 克, 劉瑞敏, 韓雪飛, 等. 端粒酶逆轉(zhuǎn)錄酶基因修飾人骨髓間質(zhì)干細(xì)胞的實(shí)驗(yàn)研究[J]. 中國(guó)病理生理雜志, 2007, 23(7): 1357?1362.]
(編輯: 王雪萍)
Autologous bone marrow mesenchymal stem cells transplantation in treatment of myocardial infarction: recent advances
HU Xing-Xing, ZHU Qing-Lei*
(Institute of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China)
Myocardial infarction is the main cause of heart failure, causing the loss of myocardial cells, and then declining the cardiac function. Bone marrow derived mesenchymal stem cells (BM-MSCs) are stem cells with capacity for self-renewal and potential to differentiate into a broad tissue distribution. BM-MSCs after transplantation can survive in the myocardium and then improve cardiac function through paracrine and other mechanisms. The cell transplantation provides a new approach for treatment of myocardial infarction and has great application potential. In this paper, we reviewed the current understanding of BM-MSCs isolation, induction, transplantation and recent clinical research on the therapy for cardiac diseases.
bone marrow mesenchymal stem cells; transplantation; myocardial infarction
(81070200).
R541.4
A
10.3724/SP.J.1264.2014.00017
2013?07?01;
2013?09?02
國(guó)家自然科學(xué)基金(81070200)
朱慶磊, E-mail: qlzhu@yahoo.com