• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrafast magneto-optical dynamics in nickel(111)single crystal studied by the integration of ultrafast reflectivity and polarimetry probes

    2024-03-25 09:30:48HaoKuang匡皓JunxiaoYu余軍瀟JieChen陳潔ElsayedAliRunzeLi李潤(rùn)澤andPeterRentzepis
    Chinese Physics B 2024年3期
    關(guān)鍵詞:陳潔潤(rùn)澤

    Hao Kuang(匡皓), Junxiao Yu(余軍瀟), Jie Chen(陳潔),H.E.Elsayed-Ali, Runze Li(李潤(rùn)澤),?, and Peter M.Rentzepis

    1School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China

    2Center for Transformative Science,ShanghaiTech University,Shanghai 201210,China

    3Center for Ultrafast Science and Technology,Key Laboratory for Laser Plasmas(Ministry of Education),Collaborative Innovation Center of IFSA(CICIFSA),School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China

    4Department of Electrical and Computer Engineering,Old Dominion University,Norfolk,Virginia 23529,USA

    5Department of Electrical and Computer Engineering,Texas A&M University,College Station,Texas 77843,USA

    Keywords: ultrafast spin dynamics,non-equilibrium dynamics,multi-probe

    1.Introduction

    In recent years, ultrafast demagnetization by photoexcitation has attracted pronounced research efforts due to its potential applications in next-generation ultrafast magnetic storage devices, magneto-optical devices, spintronics studies and others.[1]The ultrafast optical excitation of magnetic materials typically involves nonequilibrium relaxation dynamics among different degrees of freedom,including electron,spin,lattice and even orbital subsystems.For ferromagnetic metals, it is generally believed that irradiation of femtosecond optical pulses will create a nascent hot electron gas, and the Drude model is generally used to evaluate the metal’s optical responses to such excitations.[2]The coupling of energies within the electronic subsystem into the spin or lattice subsystems subsequently induces transient change in magnetic order or the periodic arrangement of atoms.In the 1990s,it was demonstrated that the demagnetization of nickel single crystal subjected to femtosecond laser irradiation occurred within hundreds of femtoseconds,[3]a time scale that is much smaller than the spin-lattice interaction mechanism that is of the order of picoseconds.Similar observations were made in other ferromagnetic 3d transition metals, such as cobalt and iron, upon ultrafast photon excitations.[4-6]Therefore,an effective means for the evaluation of coupling dynamics among different degrees of freedom is to create nonequilibrium states with ultrafast pulses and observe the sequential relaxation processes leading to equilibrium states.[7-9]For example, recent experiments have reported Morin phase transitions, giant Kerr rotations, coherent spin-wave transport and spin-polarized gaps.[10-14]Despite those extensive studies on the time scale of couplings among different degrees of freedom, one outstanding question raised in the past few years is

    where does the spin angular momentum go during the ultrafast demagnetization process? The rapid development of ultrafast diffraction methods in recent years has shone a light on this question from an interesting perspective.For example, it has been proved in an iron thin film that the missing spin angular moment will transfer to the lattice to cause a shear motion in order to maintain the conservation of angular momentum.[5]This angular momentum transfer occurs within a time interval of picoseconds and is named the ultrafast Einstein-de Hass effect,a counterpart of the macroscopic classical Einstein-de Hass effect.A similar effect was observed in other ferromagnetic materials such as nickel,[15]and antiferromagnetic materials such as FePS3.[16]Overall, the evolution of nonequilibrium dynamics associated with magnetic materials requires various experimental methods that are individually sensitive to the response of different degrees of freedom.For example,the hot electron gas is typically probed through ultrafast optical reflectivity or transmission measurements;the spin angular momentum can be revealed by observing the transient change of optical polarizations,and the lattice structural dynamics require ultrafast diffractions using femtosecond electron or x-ray pulses that are generated either on laboratory size apparatus or large facilities.However,photon-induced nonequilibrium dynamics generally involve couplings among different degrees of freedom.The integration of ultrafast reflectivity,polarimetry and diffraction probes may provide a unified time frame for studying the same sample area under the same photonexcitation conditions.

    Here, we employed ultrafast reflectivity and polarimetry probes to investigate carrier relaxation dynamics and ultrafast spin dynamics in Ni(111)single crystals,which serve as a typical model system for the study of magnetism owing to their partially filled 3d band electrons.Our experimental results indicate that, within the temporal resolution of our system,the electron and spin degrees of freedom indistinguishably respond to ultrafast deposition of laser pulse energies.However,the electron/lattice and spin/lattice couplings indicated different time scales,which is,to some extent,an interesting result because it is typically believed that the transfer of energy from the electron system is of the same order as the transfer of spin angular momentum to the lattice.However, one may need to integrate an ultrafast diffraction probe to further confirm those couplings with the lattice degree of freedom.This study may shine a light on the demand for integrating multiple ultrafast probes to explore couplings among electron, spin and lattice degrees of freedom in condensed matter.

    2.Method

    The experiments were performed on a homemade pumpprobe system that integrates femtosecond optical reflectivity and polarimetry probes within the same time frame,namely,a precisely controllable and measurable timing between the reflectivity and polarimetry probes.A Ti:sapphire laser amplifier that operates at a 1 kHz repetition rate with a laser pulse duration of 35 fs and a central wavelength of 800 nm(1.55 eV)was used.The main pulse from the laser amplifier is split into pump and probe pulses whose optical path differences are precisely controlled by a mechanical stage.The probe pulse is converted to 400 nm (3.10 eV) by a second-harmonic crystal(a 0.2 mm thick beta barium borate crystal cut atθ=29.2°andφ=0°to provide type I phase matching), chopped with a frequency of 220 Hz and focused by a plano-convex lens onto the sample with a spot size of~0.2 mm.The 400 nm probe pulse is focused on the sample with a spot size about five times smaller than the pump beam to ensure that the observed sample area is evenly excited.For ultrafast reflectivity measurements, the reflected probe pulse is directed to a photodiode through appropriate filters and attenuators in order to convert transient optical intensities at each delay time into electronic signals that are analyzed by a lock-in amplifier.For ultrafast polarimetry measurements,the probe pulse is directed to a Wollaston prism and a balanced photon detector to record the intensity changes of two different optical polarization directions.The signal-to-noise ratio of such measurements is optimized by combining a boxcar and lock-in amplifier.For both measurements, the angle between the pump and probe beam is smaller than 5°to achieve a nearly co-linear configuration.The Ni(111)single crystal is kept at room temperature on a sample holder.The thickness of the crystal is 500μm.A static external magnetic field of 0.6 T is applied to the crystal as measured by a Hall sensor.For all experiments presented in this paper, the laser fluence was below the damage threshold of the sample, which remained intact when checked with an optical microscope after data acquisition.

    3.Results and discussion

    The carrier dynamics of Ni(111)single crystal were obtained by means of ultrafast reflectivity measurements and the data are depicted in Fig.1.The change in optical intensity is described by the change of the output voltage from the photon detector and denoted as ΔR.Before recording any experimental data it was confirmed that the photon detector responds linearly with regard to the received probe light intensity.The time zero is defined by the onset of observable changes in reflectivity.Upon femtosecond laser excitation,the optical reflectivity rapidly reaches its extreme value, indicating the creation of a non-equilibrium state of electron carriers.Because the excitation photon energy of 1.55 eV is insufficient to create interband transitions, and the pump fluences in this study are also small enough, only electrons near the Fermi level are excited.Therefore, it is assumed that electrons mainly experience thermal excitation during photon absorption.According to the Drude model,[17]electrons within the optical penetration depth became energetic upon absorbing photons, and the optical reflectivity of the probe pulse generally changes rapidly within the first few hundred femtoseconds until it reaches the extreme value.The reflectivity follows a restoring process as the energies transfer from the electron subsystem to the spin and lattice degrees of freedom through electron-spin and electron-phonon couplings,as well as heat diffusion from within the skin depth to the specimen bulk.For five different pump energies, the trends are similar.To further confirm if the carrier relaxation dynamics are dominated by a single-particle process we normalized the reflectivity using its extreme value under each pump fluence and plotted the results as Fig.1(b).It is clear that,under different pump fluences, the recovery follows almost the same characteristic time,which agrees with the Drude model assumed above,and a single-particle relaxation mechanism is applicable.[17]It is worth mentioning that, around the hundreds of picoseconds time interval,the normalized signals exhibit a very small deviation from each other.This might indicate the slight existence of non-thermal effects;[18-20]however, the overall carrier relaxation dynamics are still dominated by the thermal relaxation mechanism,which is further confirmed by the linear plot of extreme values versus pump fluence in Fig.1(c).Assuming that the carrier relaxation dynamics involve only electrons,the recovery rate can be obtained through exponential fitting to the experimental data, which indicates a time constant of 40 ps.This is a time scale that is larger than some previously reported values(this is probably because we employed a thick sample of~500 μm).Therefore, the measured reflectivity reflects not only the couplings between the electron subsystem with the spin and lattice subsystems that are mainly within the optical skin depth but also the diffusion of the deposited optical energy from the surface to the bulk of the crystal.The detailed dynamics of those two processes demand sophisticated numerical modeling.Here, we employed a bi-exponential fitting to obtain a preliminary insight.It delivers two characteristic times of~20 ps and~160 ps,which may correspond to the electron-phonon coupling and heat diffusion, respectively.It is also worth mentioning that,even for nanometer-think nickel crystals, the measured electron-phonon coupling time varies among different experimental techniques,possibly due to system deviations amongex situmeasurements.[15,21-23]Therefore, this further indicates an urgent demand for thein situintegration of multiple ultrafast probes to establish a unified time frame and excitation conditions for the studies of couplings among different degrees of freedom.To further evaluate the couplings between the spin and lattice subsystems,we performed ultrafast polarimetry measurement using the same probing area of the sample and under the same pump conditions used in the ultrafast reflectivity experiments.

    Fig.1.Time-dependent reflectivity changes of Ni (111) single crystal after femtosecond laser excitation.(a) The reflectivity changes under five different pump fluences ranging from 2.4 mJ·cm-2 to 5.5 mJ·cm-2.(b)The normalized reflectivity changes.For each pump fluence,the time-dependent reflectivity is normalized using the maximum change of reflectivity that appears around 2.4 ps after laser excitation.(c) A log-log plot depicting the maximum changes of reflectivity as a function of pump fluence;the slope is 0.92.The maximum reflectivity change is extracted from(a)on the left.

    Fig.2.Mechanism of ultrafast changes in magnetic momentum.(a) Configuration of the ultrafast polarimetry experiment.The S-polarized pump pulse perpendicularly impinges the nickel crystal, and the P-polarized probe pump is reflected by the sample with a small angle of 5°with respect to the pump beam.The polarization changes of the probe beam are recorded at each delay time for further analysis.The sample is uniformly situated in a static external magnetic field, Hext =0.6 T, which is tilted by a small angle of α =12° with respect to the normal direction,Z,of the crystal.(b)Illustration of the magnetic momentum before,at and after time zero.Transient changes in magnetic momentum due to pump laser pulses will result in a deviation of the magnetization direction from the external static field and a restoring process that exhibits precession of the spin angular momentum.

    The ultrafast spin dynamics are revealed by the polarimetry probe, and the essential experimental configuration is demonstrated in Fig.2.Before time zero, the ferromagnetic nickel crystal is fixed on a room-temperature sample holder and fully magnetized by an applied static external field of 0.6 T.However,upon excitation by the pump pulse,the rapid deposition of photon energy not only creates a nascent nonequilibrium state for the electrons and causes changes in optical reflectivity but also affects the spin angular momentum of the electrons.Therefore, the total magnetic momentum of the optical-skin-depth area is no longer a saturated value determined by the applied external field but rather a time-dependent value associated with the non-equilibrium dynamics of the relaxation of spin angular momentum to other degrees of freedom.As reported in previous literature,[1]the laser-induced changes to the internal magnetic fields of the sample may be denoted asδH, and the total equivalent magnetic field is,therefore, a superposition of the applied static fieldHextand ΔMto create an effective magnetic field,Heff,around which occurs spin precession and enables the internal magnetic momentum to restore to align with the applied external field.The relaxation of spin angular momentum is obtained by analyzing the time-dependent polarization change,as depicted in Fig.3.Time zero is the same as that defined in the ultrafast reflectivity measurements.The magneto-optical signal exhibits a rapid drop within a femtosecond time interval due to the disturbance of the pump pulse.It is clear that the ultrafast polarimetry signal involves a damping oscillation that lasts over hundreds of picoseconds.For ultrafast polarimetry experiments,such oscillations are associated with the spin precessions after femtosecond demagnetization.[21]Here, we performed a fast Fourier transform and extracted a 28 GHz oscillation period.Given the applied field of 0.6 T,this is a reasonable value for ferromagnetic materials.We further performed pump fluencedependent experiments; the results are summarized in Fig.4.As the pump fluence increases, the oscillation amplitude of the polarimetry signal follows the same trend, but the period and damping rate remain unchanged.This indicates that the increased pump fluence introduces more considerable disturbance to the internal magnetic field.However, it does not alter the coupling rate between the spin and other degrees of freedom.The amplitude of the first three oscillations under each data set is plotted versus pump fluence and illustrated in Fig.4(b).The log-log plot displays a linear relation with a slope of 1.1±0.2.Therefore, for all these measurements the photon-induced non-equilibrium dynamics remain in a linear region with respect to the pump fluence.

    Fig.3.The magneto-optical signal,recorded under 5.5 mJ·cm-2 pump fluence, depicted with its fast Fourier transform (FFT).The results indicate a precession frequency of 28 GHz for the magnetic momentum.The damping of the oscillation period is clearly observable, indicating a recovery of the total magnetic momentum.

    It is interesting to compare the carrier dynamics with the spin dynamics obtained by the integrated ultrafast reflectivity and polarimetry probes.The precession of the magnetization is described by the Landau-Lifshitz-Gilbert equation,[24]and it is around the effective field, as has already been reported in various ferromagnetic materials.Such a precession follows the initial demagnetization of the Ni film induced by the excitation laser pulse,and it typically occurs within the thermalization time of the spins.Apparently, with increased pump fluence, a more significant demagnetization is desirable and eventually leads to a larger effective field.Therefore, the oscillation amplitudes shown in Fig.4(a) scale with respect to the pump laser fluences.The log-log plots in Fig.4(b) indicate a linear relation with a slope of 1.1±0.2.This suggests that the effective field scales linearly with excitation laser fluence.However, it is worth mentioning that according to the reflectivity signal obtained in our experiments there is no direct sign of acoustic phonons,which is observable in previous ultrafast diffraction experiments on nickel.[25]Integration of an ultrafast diffraction probe with optical probes may further benefit the measurement of couplings with the lattice degree of freedom.

    Fig.4.The pump fluence-dependent precessions of the total magnetic momentum are presented with the amplitude of the first three oscillation periods.The linear fitting with the log-log plots also indicates a linear relation concerning the excitation laser fluences.The damping oscillations are characterized by a time constant of ~120 ps, significantly larger than the electron relaxation time.This indicates that it took a long time for the spin degree of freedom to exchange energy with the electron and lattice subsystems,showing a much slower interaction with respect to electron-phonon coupling.

    4.Conclusion

    With ultrafast reflectivity and polarimetry probes, we have studied the relaxation of carrier dynamics and evolution of spin angular momentum in Ni(111)single crystal.Within the linear excitation fluences and the presence of a 0.6 T static magnetic field, the carrier relaxation time is tens of picoseconds; in contrast, restoring magnetic momentum takes about 120 ps.To further elucidate the deviation between the two time scales, characterization with ultrafast diffraction probes to further reveal the couplings between spin and lattice degrees of freedom may be needed.

    Acknowledgements

    Project supported by the National Key R&D Program of China(Grant Nos.2022YFA1604402 and 2022YFA1604403),the National Natural Science Foundation of China (NSFC)(Grant No.11721404), the Shanghai Rising-Star Program(Grant No.21QA1406100), and the Technology Innovation Action Plan of the Science and Technology Commission of Shanghai Municipality (Grant No.20JC1416000).Dr Rentzepis acknowledges support by the Air Force Office of Scientific Research (AFOSR) (Grant No.FA9550-20-1-0139)and the Texas A&M Engineering Experimental Station(TEES).Dr Li thanks the Shanghai Soft X-ray Free Electron Laser Project for providing the Ti:sapphire laser time to perform this study.

    猜你喜歡
    陳潔潤(rùn)澤
    《湖中漫行》樂(lè)譜
    Effects of O2 addition on the plasma uniformity and reactivity of Ar DBD excited by ns pulsed and AC power supplies
    An Interesting Class:賈潤(rùn)澤
    樂(lè)譜2
    RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers?
    鄭潤(rùn)澤作品
    陳潔雕塑作品
    書(shū)香詩(shī)韻 潤(rùn)澤童心
    輔導(dǎo)員(2017年9期)2017-06-01 12:10:06
    智慧簡(jiǎn)約,人文潤(rùn)澤——我的教育教學(xué)追求
    潤(rùn)澤科技董事長(zhǎng)周超男女士接受本刊專(zhuān)訪(fǎng)
    河北遙感(2015年4期)2015-07-18 11:05:05
    高潮久久久久久久久久久不卡| 老司机深夜福利视频在线观看| 黄色毛片三级朝国网站| 欧美乱码精品一区二区三区| 中文字幕精品免费在线观看视频| 亚洲专区字幕在线| 美国免费a级毛片| 国产精品国产高清国产av| 亚洲欧美激情在线| 999久久久精品免费观看国产| 国产无遮挡羞羞视频在线观看| 波多野结衣高清无吗| 新久久久久国产一级毛片| 99久久人妻综合| 国产又色又爽无遮挡免费看| 国产精品香港三级国产av潘金莲| 18禁国产床啪视频网站| 91成年电影在线观看| 国产有黄有色有爽视频| 亚洲国产欧美一区二区综合| 国产成人一区二区三区免费视频网站| a在线观看视频网站| 青草久久国产| 在线观看午夜福利视频| 99热国产这里只有精品6| 99热国产这里只有精品6| 高清黄色对白视频在线免费看| 日韩高清综合在线| 亚洲人成电影观看| 日日干狠狠操夜夜爽| 欧美日韩乱码在线| 久久99一区二区三区| 黄片大片在线免费观看| 性少妇av在线| 高清在线国产一区| 一级毛片精品| 妹子高潮喷水视频| 亚洲专区国产一区二区| 动漫黄色视频在线观看| 久久人人精品亚洲av| 亚洲国产精品sss在线观看 | 啦啦啦 在线观看视频| 亚洲九九香蕉| 极品教师在线免费播放| 日韩欧美三级三区| 婷婷六月久久综合丁香| 欧美在线黄色| 国产免费av片在线观看野外av| 在线永久观看黄色视频| 亚洲精品久久成人aⅴ小说| 99久久人妻综合| 天天躁夜夜躁狠狠躁躁| 日韩成人在线观看一区二区三区| 久久国产精品男人的天堂亚洲| 国产主播在线观看一区二区| 18禁国产床啪视频网站| 天天添夜夜摸| 国产成人精品在线电影| 国产伦人伦偷精品视频| 在线看a的网站| 久久人妻福利社区极品人妻图片| 国产伦人伦偷精品视频| 久久九九热精品免费| 亚洲精华国产精华精| 久久性视频一级片| 欧美黄色淫秽网站| 亚洲国产中文字幕在线视频| www.精华液| 窝窝影院91人妻| 亚洲国产欧美网| 亚洲男人的天堂狠狠| 丁香六月欧美| 9191精品国产免费久久| 精品卡一卡二卡四卡免费| 妹子高潮喷水视频| 精品久久久久久,| 一区福利在线观看| 大陆偷拍与自拍| 免费观看人在逋| 日韩大码丰满熟妇| 国产成人欧美在线观看| www.熟女人妻精品国产| 看片在线看免费视频| 亚洲午夜理论影院| 丰满饥渴人妻一区二区三| 亚洲欧美日韩另类电影网站| 波多野结衣高清无吗| 午夜免费观看网址| 露出奶头的视频| 黄频高清免费视频| av超薄肉色丝袜交足视频| 日韩一卡2卡3卡4卡2021年| 久久伊人香网站| 日日摸夜夜添夜夜添小说| 久久精品亚洲熟妇少妇任你| 激情视频va一区二区三区| 亚洲国产欧美日韩在线播放| 韩国精品一区二区三区| 精品一品国产午夜福利视频| 国产亚洲欧美在线一区二区| 日韩av在线大香蕉| x7x7x7水蜜桃| www.精华液| 亚洲欧美精品综合久久99| 在线播放国产精品三级| 黄色a级毛片大全视频| 50天的宝宝边吃奶边哭怎么回事| 男男h啪啪无遮挡| 午夜日韩欧美国产| 91九色精品人成在线观看| 在线观看免费视频日本深夜| 国产亚洲精品第一综合不卡| 日本 av在线| 欧美午夜高清在线| 国产精品二区激情视频| 国产一区二区三区在线臀色熟女 | 91老司机精品| 午夜免费鲁丝| 免费日韩欧美在线观看| 亚洲一区二区三区色噜噜 | 日本免费a在线| 中亚洲国语对白在线视频| 精品熟女少妇八av免费久了| 大码成人一级视频| 黑人欧美特级aaaaaa片| 欧美 亚洲 国产 日韩一| 自线自在国产av| 国产精品香港三级国产av潘金莲| 国产精品九九99| 亚洲av第一区精品v没综合| 欧美乱妇无乱码| 日本撒尿小便嘘嘘汇集6| 9色porny在线观看| 免费在线观看视频国产中文字幕亚洲| 女同久久另类99精品国产91| 成人国产一区最新在线观看| 欧美在线黄色| 成人免费观看视频高清| 一级,二级,三级黄色视频| 欧美日韩福利视频一区二区| 亚洲国产中文字幕在线视频| 中亚洲国语对白在线视频| cao死你这个sao货| 免费在线观看亚洲国产| 脱女人内裤的视频| 久久精品亚洲熟妇少妇任你| 国产野战对白在线观看| 国产有黄有色有爽视频| www国产在线视频色| 亚洲av片天天在线观看| 一二三四在线观看免费中文在| 国产免费av片在线观看野外av| 欧美黑人欧美精品刺激| 久久亚洲真实| 一级片'在线观看视频| 欧美乱色亚洲激情| 亚洲国产欧美日韩在线播放| 18禁国产床啪视频网站| 精品国产乱码久久久久久男人| 国产精品 国内视频| 亚洲一区高清亚洲精品| 天堂影院成人在线观看| 欧美 亚洲 国产 日韩一| 大型黄色视频在线免费观看| 国产精品二区激情视频| 在线观看午夜福利视频| 中文字幕色久视频| 91精品国产国语对白视频| 色老头精品视频在线观看| 日韩精品青青久久久久久| 91麻豆精品激情在线观看国产 | 亚洲 欧美一区二区三区| 亚洲精品在线美女| 国产精品国产av在线观看| 日本a在线网址| 无人区码免费观看不卡| 成人18禁高潮啪啪吃奶动态图| 欧美成人午夜精品| 涩涩av久久男人的天堂| www.999成人在线观看| 欧美在线一区亚洲| 免费在线观看亚洲国产| 丝袜美足系列| 久久国产精品影院| 99国产极品粉嫩在线观看| 亚洲熟妇中文字幕五十中出 | 国产亚洲精品一区二区www| 欧美一区二区精品小视频在线| 在线免费观看的www视频| av网站免费在线观看视频| 可以免费在线观看a视频的电影网站| 在线观看免费高清a一片| 成人av一区二区三区在线看| 精品乱码久久久久久99久播| 亚洲五月天丁香| 精品欧美一区二区三区在线| 国产熟女xx| 新久久久久国产一级毛片| 国产精品爽爽va在线观看网站 | 麻豆久久精品国产亚洲av | 免费一级毛片在线播放高清视频 | 美女午夜性视频免费| 久久人妻福利社区极品人妻图片| 国产精品一区二区免费欧美| 天天影视国产精品| 欧美人与性动交α欧美精品济南到| 不卡av一区二区三区| 国产精品二区激情视频| 黑人猛操日本美女一级片| 亚洲专区中文字幕在线| 色精品久久人妻99蜜桃| 丝袜美足系列| 91精品三级在线观看| 首页视频小说图片口味搜索| 不卡一级毛片| 中文字幕另类日韩欧美亚洲嫩草| 亚洲 欧美一区二区三区| 国产不卡一卡二| 69精品国产乱码久久久| 欧美激情久久久久久爽电影 | 美女 人体艺术 gogo| 九色亚洲精品在线播放| 免费女性裸体啪啪无遮挡网站| 夜夜躁狠狠躁天天躁| 欧美在线黄色| 国产97色在线日韩免费| 天天躁夜夜躁狠狠躁躁| 久久午夜亚洲精品久久| 国产精品1区2区在线观看.| 国产成人精品在线电影| 亚洲精品久久午夜乱码| 他把我摸到了高潮在线观看| 少妇的丰满在线观看| 99久久久亚洲精品蜜臀av| 免费搜索国产男女视频| 国产免费男女视频| 19禁男女啪啪无遮挡网站| 久久精品国产99精品国产亚洲性色 | 99久久99久久久精品蜜桃| 亚洲视频免费观看视频| 熟女少妇亚洲综合色aaa.| 久久人人97超碰香蕉20202| 久久精品成人免费网站| 美国免费a级毛片| 十八禁网站免费在线| 亚洲avbb在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区二区三区四区五区乱码| 免费在线观看影片大全网站| 亚洲人成电影观看| 国产精品98久久久久久宅男小说| 男女之事视频高清在线观看| 精品久久久精品久久久| 午夜福利在线免费观看网站| 日日摸夜夜添夜夜添小说| 精品国产美女av久久久久小说| 首页视频小说图片口味搜索| 人人妻,人人澡人人爽秒播| 午夜免费激情av| 久久精品亚洲熟妇少妇任你| av在线天堂中文字幕 | 黄色女人牲交| 国产激情久久老熟女| 97碰自拍视频| 日本一区二区免费在线视频| 亚洲成人久久性| 电影成人av| 国产亚洲精品一区二区www| 长腿黑丝高跟| 精品一区二区三区av网在线观看| 天天影视国产精品| 亚洲成国产人片在线观看| 日本免费一区二区三区高清不卡 | 欧美久久黑人一区二区| 亚洲视频免费观看视频| 国产精品永久免费网站| 欧美黑人精品巨大| 日韩av在线大香蕉| 国产成人免费无遮挡视频| 精品国产美女av久久久久小说| 狂野欧美激情性xxxx| 精品电影一区二区在线| 麻豆国产av国片精品| 亚洲精品成人av观看孕妇| 性色av乱码一区二区三区2| 一级毛片高清免费大全| 国产一区二区激情短视频| 欧美日韩亚洲国产一区二区在线观看| 成人三级黄色视频| 成人国语在线视频| 亚洲成人免费av在线播放| av福利片在线| 亚洲成人久久性| a在线观看视频网站| a级毛片黄视频| 亚洲九九香蕉| 国产精品电影一区二区三区| 亚洲成av片中文字幕在线观看| 多毛熟女@视频| 久久国产乱子伦精品免费另类| 成人黄色视频免费在线看| 国产亚洲av高清不卡| 免费人成视频x8x8入口观看| 亚洲国产精品合色在线| 精品免费久久久久久久清纯| 超碰成人久久| 日本免费a在线| 精品卡一卡二卡四卡免费| 亚洲精品美女久久av网站| 最近最新中文字幕大全电影3 | 国产精品98久久久久久宅男小说| av网站免费在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 这个男人来自地球电影免费观看| 一区二区三区国产精品乱码| 两个人免费观看高清视频| 最近最新中文字幕大全免费视频| 丰满人妻熟妇乱又伦精品不卡| 午夜精品国产一区二区电影| 亚洲黑人精品在线| 国产在线精品亚洲第一网站| 99久久人妻综合| 中国美女看黄片| 一区二区三区国产精品乱码| 精品人妻在线不人妻| 一级作爱视频免费观看| 欧美精品啪啪一区二区三区| 欧美日本中文国产一区发布| 亚洲成国产人片在线观看| 欧美亚洲日本最大视频资源| а√天堂www在线а√下载| 亚洲精品久久午夜乱码| 巨乳人妻的诱惑在线观看| 午夜精品在线福利| 亚洲专区字幕在线| 亚洲视频免费观看视频| 夜夜夜夜夜久久久久| 亚洲 欧美 日韩 在线 免费| 精品免费久久久久久久清纯| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧美日韩无卡精品| 男人操女人黄网站| 一边摸一边抽搐一进一出视频| 免费高清视频大片| 精品午夜福利视频在线观看一区| ponron亚洲| 男女之事视频高清在线观看| 亚洲精品国产色婷婷电影| 亚洲av成人不卡在线观看播放网| 亚洲中文av在线| 成熟少妇高潮喷水视频| 超碰97精品在线观看| а√天堂www在线а√下载| 久久伊人香网站| 精品电影一区二区在线| 狠狠狠狠99中文字幕| 亚洲精品av麻豆狂野| 国产又色又爽无遮挡免费看| 女警被强在线播放| 超碰成人久久| 亚洲片人在线观看| 日本一区二区免费在线视频| 亚洲国产精品合色在线| 中文字幕人妻丝袜一区二区| av片东京热男人的天堂| 在线观看66精品国产| 91成年电影在线观看| 日本三级黄在线观看| 久久人人97超碰香蕉20202| 日韩人妻精品一区2区三区| 91精品国产国语对白视频| 久久狼人影院| 久久香蕉激情| 亚洲av五月六月丁香网| videosex国产| svipshipincom国产片| 老熟妇仑乱视频hdxx| 一个人观看的视频www高清免费观看 | 久久久国产欧美日韩av| 制服诱惑二区| 国产精品一区二区精品视频观看| 中文字幕人妻丝袜制服| 久久久久久久久中文| 欧美日本中文国产一区发布| 国产精品永久免费网站| 免费看a级黄色片| 久久香蕉激情| 夜夜看夜夜爽夜夜摸 | 久久久国产一区二区| 国产成人欧美| 满18在线观看网站| 看免费av毛片| 精品国产一区二区三区四区第35| 午夜精品久久久久久毛片777| a级毛片黄视频| 亚洲狠狠婷婷综合久久图片| 正在播放国产对白刺激| 亚洲欧美日韩无卡精品| 久久久国产成人免费| 午夜激情av网站| 五月开心婷婷网| 91大片在线观看| 亚洲国产精品999在线| tocl精华| 水蜜桃什么品种好| 男女之事视频高清在线观看| 精品高清国产在线一区| 亚洲成人国产一区在线观看| 91麻豆av在线| 亚洲精品在线观看二区| 老司机午夜福利在线观看视频| 亚洲国产看品久久| 多毛熟女@视频| 国产一卡二卡三卡精品| 日日夜夜操网爽| 久久久久久大精品| 亚洲va日本ⅴa欧美va伊人久久| 满18在线观看网站| 一级a爱视频在线免费观看| 18禁裸乳无遮挡免费网站照片 | 国产精品野战在线观看 | 变态另类成人亚洲欧美熟女 | 黄片大片在线免费观看| 亚洲精品成人av观看孕妇| 亚洲精华国产精华精| 精品福利观看| 51午夜福利影视在线观看| 男男h啪啪无遮挡| 色综合站精品国产| xxxhd国产人妻xxx| 国产精品二区激情视频| 制服人妻中文乱码| 久久精品aⅴ一区二区三区四区| 自拍欧美九色日韩亚洲蝌蚪91| 母亲3免费完整高清在线观看| 精品卡一卡二卡四卡免费| 日韩欧美三级三区| 久久久久国产一级毛片高清牌| 亚洲av成人不卡在线观看播放网| 制服诱惑二区| 欧美成人午夜精品| 日韩人妻精品一区2区三区| 色老头精品视频在线观看| 日韩欧美国产一区二区入口| 成人免费观看视频高清| 成年人黄色毛片网站| 亚洲 欧美 日韩 在线 免费| 十八禁网站免费在线| 久久人人爽av亚洲精品天堂| 国产av一区二区精品久久| 国产精品亚洲av一区麻豆| 亚洲中文字幕日韩| 日韩大码丰满熟妇| 手机成人av网站| 大香蕉久久成人网| www.自偷自拍.com| 成人三级做爰电影| 午夜福利,免费看| 在线观看免费高清a一片| 精品国产乱码久久久久久男人| 欧美不卡视频在线免费观看 | 侵犯人妻中文字幕一二三四区| 成年人黄色毛片网站| 国产深夜福利视频在线观看| 高清av免费在线| 亚洲男人天堂网一区| 91精品国产国语对白视频| 久久人妻熟女aⅴ| 亚洲专区国产一区二区| 免费在线观看黄色视频的| 国产三级在线视频| www.精华液| 亚洲av成人av| 日韩免费高清中文字幕av| 一级,二级,三级黄色视频| 亚洲国产欧美日韩在线播放| 国产成人欧美在线观看| 欧美激情 高清一区二区三区| 在线观看免费高清a一片| 亚洲av第一区精品v没综合| 国产视频一区二区在线看| 日本一区二区免费在线视频| 国产又色又爽无遮挡免费看| 黄色怎么调成土黄色| 叶爱在线成人免费视频播放| 精品少妇一区二区三区视频日本电影| 精品熟女少妇八av免费久了| 国产又爽黄色视频| 黄色a级毛片大全视频| 99精国产麻豆久久婷婷| 精品少妇一区二区三区视频日本电影| 三级毛片av免费| 国产精品香港三级国产av潘金莲| 免费观看精品视频网站| 日韩欧美免费精品| 国产视频一区二区在线看| 国产成人av教育| avwww免费| 免费在线观看日本一区| 亚洲七黄色美女视频| 中文亚洲av片在线观看爽| 精品国产一区二区久久| 精品人妻在线不人妻| 一级毛片精品| 免费人成视频x8x8入口观看| 一进一出抽搐gif免费好疼 | 亚洲av成人av| 亚洲va日本ⅴa欧美va伊人久久| 一区二区三区精品91| 国产av在哪里看| 黄色丝袜av网址大全| videosex国产| 一级a爱视频在线免费观看| 一进一出抽搐动态| 欧美黑人精品巨大| 99国产精品99久久久久| 老鸭窝网址在线观看| 三上悠亚av全集在线观看| 精品午夜福利视频在线观看一区| 99国产精品免费福利视频| 又黄又粗又硬又大视频| 午夜精品在线福利| 黑人巨大精品欧美一区二区蜜桃| 国产亚洲欧美98| 日韩 欧美 亚洲 中文字幕| 欧美中文综合在线视频| 成人国产一区最新在线观看| av在线播放免费不卡| 国产精品美女特级片免费视频播放器 | 国产精品 国内视频| 亚洲欧美日韩另类电影网站| 欧美成狂野欧美在线观看| 成人av一区二区三区在线看| 日韩一卡2卡3卡4卡2021年| 亚洲国产精品sss在线观看 | 亚洲精品在线美女| 别揉我奶头~嗯~啊~动态视频| 嫩草影视91久久| 在线av久久热| 午夜a级毛片| 久久午夜综合久久蜜桃| 精品乱码久久久久久99久播| 欧美最黄视频在线播放免费 | 高清av免费在线| 午夜免费观看网址| 亚洲精品久久午夜乱码| 亚洲人成77777在线视频| 国产精品久久久久成人av| 99国产精品一区二区蜜桃av| 精品少妇一区二区三区视频日本电影| 成年人黄色毛片网站| 成人国产一区最新在线观看| 首页视频小说图片口味搜索| av欧美777| 久久热在线av| 日韩三级视频一区二区三区| 亚洲欧美一区二区三区久久| 欧美成人性av电影在线观看| 国产精品国产高清国产av| 18禁裸乳无遮挡免费网站照片 | 别揉我奶头~嗯~啊~动态视频| 国产深夜福利视频在线观看| www国产在线视频色| 久久精品国产综合久久久| 亚洲成av片中文字幕在线观看| 亚洲av片天天在线观看| 久久精品国产亚洲av高清一级| 国产精品98久久久久久宅男小说| 久久久久国内视频| 国产成人欧美| 黄色片一级片一级黄色片| 99久久人妻综合| 性少妇av在线| 国产深夜福利视频在线观看| 极品人妻少妇av视频| 国产xxxxx性猛交| 最近最新中文字幕大全电影3 | 国产精品久久电影中文字幕| 国产欧美日韩精品亚洲av| 精品国产国语对白av| 51午夜福利影视在线观看| 一二三四在线观看免费中文在| 香蕉国产在线看| 乱人伦中国视频| 色综合欧美亚洲国产小说| 亚洲成人国产一区在线观看| 亚洲精品av麻豆狂野| 国产有黄有色有爽视频| 9热在线视频观看99| 两性夫妻黄色片| 亚洲av成人不卡在线观看播放网| 精品欧美一区二区三区在线| 久久天堂一区二区三区四区| 精品国内亚洲2022精品成人| 久久中文字幕一级| 97人妻天天添夜夜摸| 波多野结衣一区麻豆| 午夜影院日韩av| √禁漫天堂资源中文www| 长腿黑丝高跟| 一本综合久久免费| 色精品久久人妻99蜜桃| 一进一出抽搐gif免费好疼 | 在线观看一区二区三区激情| 正在播放国产对白刺激| 国产一区二区在线av高清观看| 一本综合久久免费| 在线观看午夜福利视频| 日韩欧美国产一区二区入口| 欧洲精品卡2卡3卡4卡5卡区| 久久久水蜜桃国产精品网| 老司机深夜福利视频在线观看| 18禁裸乳无遮挡免费网站照片 | 久久久久久亚洲精品国产蜜桃av| 国产欧美日韩精品亚洲av|