• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on influencing factors of ion current density measurement in corona discharge of HVDC transmission lines

    2020-05-06 05:58:56ShiqiangLIU劉士強(qiáng)ShouzhengLI李守正YuzeJIANG姜雨澤NanJIANG姜楠JieLI李杰andYanWU吳彥
    Plasma Science and Technology 2020年4期
    關(guān)鍵詞:李杰

    Shiqiang LIU (劉士強(qiáng)),Shouzheng LI (李守正),Yuze JIANG (姜雨澤),Nan JIANG (姜楠),Jie LI (李杰) and Yan WU (吳彥)

    1 School of Electrical Engineering,Dalian University of Technology,Dalian 116024,People’s Republic of China

    2 State Grid Shandong Electric Power Research Institute,Jinan 250003,People’s Republic of China

    Abstract

    Keywords: HVDC,corona discharge,reduced scale device,Wilson plate,ion current density

    1.Introduction

    Figure 1.1-(I) Schematic diagram of reduced scale line-plate experimental device,1-(II) schematic diagram of Wilson plate placement position,1-(III)schematic diagram of the height of the Wilson plate from the grounding plate.(a)Internal testing plate,(b)external shielding plate,(c) Wilson plate,(d) protective annulus,(e) shield ball,(f) HV conductor.

    The advantages of high voltage direct current(HVDC)in long distance and large capacity transmission have resulted in it being widely used throughout the world in recent years.However,since HVDC transmission lines are generally allowed to operate with a slight corona discharge above the onset voltage,considerable positive and negative ions are generated around the lines[1,2].Discharge phenomenon has been widely used in sterilization,pollutant degradation,and medical treatment[3–8],but it needs to be avoided in the field of HVDC as much as possible.The directional movement of positive and negative ions under the action of a space electric field will form the unique ion flow field of HVDC[9,10].The ground level ion current density is a significant parameter for HVDC design and operation.To estimate the ground level ion current density,a collecting plate usually called the Wilson plate,is used to intercept the ions which migrate from the transmission lines to the ground level [11].The Wilson plate is usually located flush with the grounding plate or on the grounding plate.In reality,the ion current density beneath HVDC transmission lines is generally measured and evaluated by using a 1 × 1 m2Wilson plate.In order to study the ground level ion flow field of HVDC transmission lines conveniently,a reduced scale line-plate device has been widely used in the laboratory[12].Scholars have done a lot of theoretical and experimental research on the ion flow field of HVDC transmission lines and have reached many meaningful conclusions [13–16].Fang et al analyzed the edge effect of the Wilson plate in the reduced scale model by combining experimental with numerical simulation [17].The results show that when the ratio of the width of the protective band to the height of the Wilson plate was greater than 5,the measured ion current density was accurate.Bian et al studied the influence of fine particulate matter on the variation of surface morphologies of conductors subjected to positive DC voltages.It was found that the interactions between particles played a critical role in the formation of agglomerations and parallel chains [18].Maruvada compared the results of the ground level ion current density of HVDC transmission lines between calculations and measurements [19],and he found that the most important factor influencing the electric field and ion current distributions is the corona onset gradient of the conductors.Zou et al used an aspirator-type charge meter to study the measurement method of charge densities at ground level under HVDC conductors [20].Wang et al studied the measurement of surface charges on the dielectric film under the HVDC corona wire [21].At present,scholars mainly study the ion flow field of HVDC transmission lines with the Wilson plate directly placed on the grounding plate.However,the study of a Wilson plate which is flush with the grounding plate is seldom published.Therefore,in order to obtain more accurate ground level ion current density directly,it is necessary to study the influence of external factors on the measurement of ion current density when the Wilson plate is flush with the grounding plate.

    In section 2,a new reduced scale wire-plate experimental device in which the Wilson plate is flush with the grounding plate is designed.The influence of the protective annulus width on the ion current density is studied in section 3.1,and reasonable protective annulus parameters are proposed.Furthermore,the height of the Wilson plate from the grounding plate on the ion current density is studied in section 3.2.In addition,the differences between the micro-current galvanometer method and the sampling resistance method used to measure ion current density are compared in section 3.3.Finally,the ground level ion current density distributions of unipolar and bipolar HVDC transmission lines are measured in section 3.4,respectively.The conclusions of this paper given in section 4 can provide a reference for future research.

    2.Experimental setup

    Figure 1(I) shows a schematic diagram of a reduced scale line-plate experimental device for corona discharge in HVDC transmission lines.The grounding plate is mainly composed of two parts.The inner area(a)is a 2480 × 1300 mm2testing plate and the outer area (b) is a 300 mm wide shielding plate in order to eliminate the influence of the edge effect of the testing plate on the measurement results.The distance between the inner plate and outer plate is 2 mm.A smooth aluminum conductor with a diameter of 3 mm and a length of 1600 mm is placed directly above the center of the grounding plate.To eliminate the tip discharge on both sides of the conductor,stainless steel shielding balls with a diameter of 100 mm are installed at the end of the conductor.h represents the height of aluminum conductor from the grounding plate.An aluminum conductor fastened by a nylon rod is connected with a direct DC power supply through the high voltage power supply wire.The Wilson plate is located directly below the conductor.In order to conveniently study the influence of protective annulus width on the ground level ion current density,a 1000 × 1000 mm2removable grounding plate a(2)is placed on the center of the testing plate.The output voltage of the power supply can be adjusted between 0 and 100 kV.Based on the LabVIEW platform,the programmable function of the power supply is used to control the voltage to rise at a rate of 10 kV min-1.

    Figure 2.Schematic diagram of the line-plate HVDC corona discharge.

    The ground level ion current density is measured by using a Wilson plate,which is flush with the grounding plate a(2),as shown in figure 1-(II).In order to measure the ion current density,the Wilson plate and grounding plate are separated by an air protective annulus.w denotes the width of the protective annulus.The size of the Wilson plate is 150 × 200 mm2and it has four chamfers with a radius of 10 mm.Figure 1-(III) shows a schematic diagram of the height of the Wilson plate from the grounding plate.a(1)and a(2) represent the internal grounding plate and the Wilson plate,respectively.d denotes the height of the Wilson plate from the grounding plate.

    The experiments are carried out in an environment with the temperature varying from 18.5°C–21.6°C,the relative humidity varying from 31%–42%,and the atmospheric pressure varying from 1002–1006 hPa.Besides,in order to eliminate the influence of pollutants on the surface of the conductors,absolute ethanol is used to clean the conductors before the experiments.

    3.Results and discussion

    3.1.Influence of the protective annulus width

    The existence of an air protective annulus will distort the electric field around the Wilson plate.The simulation of a two-dimensional electrostatic field of the reduced scale lineplate experimental device is carried out by using COMSOL Multiphysics software.Figure 2 shows a description of the schematic diagram of line-plate HVDC corona discharge in air at the atmospheric environment.Within the numerical model,a positive potential is applied to the HVDC conductor,the grounding plate and the Wilson plate are grounded as zero potential,and a zero charge boundary condition is used at the open boundaries.In the process of simulation,the height of the aluminum conductor h is 500 mm and the diameter of the conductor D is 3 mm.

    Figure 3.Distribution of the ground level electric field under different protective annulus widths.

    Figure 3 shows the distribution of a ground level electrostatic field at 30 kV with different w.The origin of coordinate axes is in the center of the Wilson plate.The numerical value of the lateral axis represents the distance from the origin.It can be seen that the increase of w will lead to serious distortion of the electric field at the edge of the Wilson plate.The upper right corner of figure 3 shows an enlarged view of the electric field in the right protective annulus region.It can be found that when the w is less than 2 mm,the electric field at the edge of the Wilson plate hardly distorts.When the width of the protective annulus is 1 mm,the edge electric field of the Wilson plate is basically maintained at about 25 kV m-1.However,when the width of the protective annulus increases to 8 mm,the edge electric field of the Wilson plate is seriously distorted,and the electric field varies from 13.4–36.5 kV m-1.The intense distortion of the edge electric field of the Wilson plate will seriously affect the measurement of the ion current density on the ground level.Therefore,it is important to study the effect of w on the ground level ion current density.

    In the experiment,the micro-Wilson plates with 1,2,4,6,and 8 mm protective annulus widths are selected to study the effect of w on the ground level ion current density.Figure 4 shows the variation of the ground level ion current density with w under different positive and negative voltages.It can be found that,with the increase of applied voltage,the influence of w on the measurement results is more and more obvious.With the increase of w,the ground level ion current density increases gradually,and the change of ion current density under positive voltage is more stable than that under negative voltage.However,when w is less than 2 mm,the ground level current density basically does not change with w,which indicates that the edge effect of the Wilson plate has little effect on the measurement results.This is consistent with simulation results of the electric field.

    3.2.Influence of the height of the Wilson plate from grounding plate

    In order to verify the influence of the height of the Wilson plate from the grounding plate,d is adjusted from 0–5 cm.Figure 5 shows the influence of d on ion current density under different positive and negative voltages.

    Figure 4.Influence of the protective annulus width on the ground level ion current density under different voltages.

    Figure 5.Influence of the height of the Wilson plate on the ground level ion current density under different voltages.

    It can be seen that the ground level ion current density increases approximately linearly with the increase of d under positive voltage.However,under negative voltage,when the applied voltage is low,there is no obvious linear relationship between the ground level ion current density and d,which may be due to the instability of weak corona discharge under negative voltage.Since HVDC transmission lines generally operate with a slight corona discharge.Therefore,in order to obtain more accurate measurement results,the ground level ion current density should be measured directly by the way that the Wilson plate is flush with the grounding plate as much as possible.

    3.3.Influence of the measurement methods

    The ion current density on the Wilson plate is measured by a micro-current galvanometer (direct method) and sampling resistance method (indirect method),respectively.The direct method uses the FMAC15/1 micro-current galvanometer to measure the ion current,directly.The indirect method uses the Tektrotix DMM4020 high sensitivity digital voltmeter to measure the voltage of the sampling resistance firstly,and then converts it into ion current.The sampling resistors are high accuracy inductance-free resistors with a 0.1%error.The values of the sampling resistors are 0.1,1,2,and 5 M,respectively.Figure 6 shows the variation of ground level ion current density under different positive and negative voltages.

    It can be seen that when the sampling resistance is 0.1 M,the results measured by two methods are basically identical under positive voltage,but there are some deviations under negative voltage,which may be due to the instability of negative corona discharge.However,with the increase of the value of sampling resistance,the ground level ion current density measured by the sampling resistance method decreases gradually,due to the influence of internal resistance of digital voltmeter.

    Figure 6.Comparison of the ion current density of different measurement methods under different voltages.

    Figure 7.Working principle of the digital voltmeter.

    In the measurement process of ion current density,the working principle of a digital voltmeter is shown in figure 7.The ion current produced by corona discharge is equivalent to a direct current source Is.R and Rirepresent the sampling resistance and internal resistance of the instrument,respectively.

    It can be found that the R and Ribelong to the parallel relationship,so the voltage measured by a digital voltmeter is the value of parallel to the resistances.Because the internal resistance of the digital voltmeter is 10 M,which is the same order of magnitude as the sampling resistances,the measurement results need to be corrected.The corrected results of ground level ion current density under different positive and negative voltages are shown in figure 8.

    It can be seen that the ion current density corrected by the sampling resistance method under positive voltage is basically the same as that measured by the micro-current galvanometer method.However,the results obtained by the two methods are slightly different under negative voltage,which may be due to the instability of negative corona discharge and the inconsistency of conductor surface conditions.

    3.4.Applications

    Based on the above research results,the distributions of ground level ion current density under unipolar and bipolar HVDC transmission lines are measured.Figure 9 shows the reduced scale line-plate experimental device for measuring 7 points of ion current density.The size of the Wilson plate is 168 × 218 mm2and it has four chamfers with a radius of 19 mm.The width of the protective annulus is 1 mm.The Wilson plates are 175 mm apart from each other.In the experiment,the Wilson plate is flush with the grounding plate and the ground level ion current density is measured directly by the micro-current galvanometer method.

    3.4.1.Distribution of the ground level ion current density under unipolarity.Figure 10 shows the ground level ion current density distribution of unipolar high voltage conductor under different positive and negative voltages.The conductor is placed at 500 mm above the grounding plate,of which the diameter is 3 mm and the length is 1600 mm.It can be found that the distribution of ground level ion current density of positive polarity is basically symmetrical,while that of negative polarity is not symmetrical with the increase of voltage,which may be due to the uneven distribution of burrs on the conductor surface.With the increase of applied voltage,the ground level ion current density increases rapidly,and the change of the ion current density is the most obvious in the region directly below the conductor (position 4).The ion current mainly concentrates in the region between position 2 and position 6 where the ion current decreases rapidly with the increase of distance from position 4.At the same applied voltage,the ground level ion current density of negative polarity is greater than that of positive polarity,which is due to the following two reasons: (1) the corona onset voltage of negative polarity (–60 kV)is lower than that of positive polarity(70 kV),which makes the negative corona discharge more intense; (2) the rate of the movement of electrons is much faster than that of positive ions,which results in the current of electrons reaching the ground level being larger than that of positive ions.

    Figure 8.Comparison of ion current density after the correction of different measurement methods under different voltages.

    Figure 9.Experimental device for measuring multi-points of the ion current density.

    3.4.2.Distribution of the ground level ion current density under bipolarity.Figure 11 shows the ground level ion current density distribution of bipolar high voltage conductors under different voltages.The conductors are placed 500 mm above the grounding plate,of which the diameter is 3 mm and the length is 1600 mm.The distance between the two conductors is 510 mm.It can be seen that,with the increase of voltage,the ion current density at position 4 fluctuates near zero,and there is a process from positive to negative.The reasons are as follows: the corona discharge is weak at 50 kV.Because of the instability of negative corona discharge,position 4 exhibits a very small positive ion current.However,because the threshold voltage of negative corona discharge is lower than that of positive corona discharge,the ion current density at position 4 shows an obvious negative value when the voltage is higher.Besides,it can be found that,with the increase of voltage,the zero value of the ion current density in the central region of the grounding plate appears between position 4 and position 5.

    In addition,the ground level ion current density in the negative conductor region is significantly higher than that in the positive conductor region.This is the same as unipolar corona discharge.Furthermore,at the same applied voltage,the ground level ion current density in the positive and negative regions of the bipolar conductors is lower than that in the positive and negative unipolar conductors,which is due to the neutralization of positive and negative charged ions produced by the corona discharge of bipolar conductors in the space region.

    4.Conclusions

    In this paper,based on the reduced scale line-plate experimental device in which the Wilson plate is flush with the grounding plate,the influencing factors of the ground level ion current density measurement system are analyzed.The conclusions reached are as follows.

    When the width of the protective annulus is less than 2 mm,the influence of the edge effect on the measurement results of the ground level ion current density can be neglected.The internal resistance of a digital voltmeter seriously affects the measurement results.In order to obtain more accurate values,the measurement results need to be corrected.The ground level ion current density should be measured directly by the way that the Wilson plate is flush with the grounding plate as much as possible.

    Under unipolar conductor,the surface morphology of a conductor has a great influence on the symmetrical distribution of ion current density.Under bipolar conductors,the ion current density in the central region of the grounding plate undergoes a process from positive to negative.At the same applied voltage,the ground level ion current density of positive corona discharge is lower than that of negative corona discharge.

    Figure 10.Distribution of the ground level ion current density under unipolarity.

    Figure 11.Distribution of the ground level ion current density under bipolarity.

    Acknowledgments

    This work are supported by National Natural Science Foundation of China (Nos.51877027,51877028) and State Key Laboratory of Electrical Insulation and Power Equipment(EIPE18206).

    猜你喜歡
    李杰
    Memristor’s characteristics: From non-ideal to ideal
    A spintronic memristive circuit on the optimized RBF-MLP neural network
    基于SPSS軟件建立ARIMA模型
    客聯(lián)(2022年3期)2022-05-31 04:28:08
    Effect of megapore particles packing on dielectric barrier discharge, O3 generation and benzene degradation
    Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial*
    人民海軍首次海戰(zhàn)
    源流(2021年11期)2021-03-25 10:32:07
    小胖熊半夜歷險(xiǎn)記
    Zero-Sequence Current Suppression Strategy for Open-End Winding Permanent Magnet Synchronous Motor Based on Model Predictive Control
    ?。楱#镅酲耍颞Γ?多duō 多duo
    Numerical investigation of the time-resolved bubble cluster dynamics by using the interface capturing method of multiphase flow approach*
    日本wwww免费看| 亚洲精品aⅴ在线观看| 九草在线视频观看| h日本视频在线播放| 网址你懂的国产日韩在线| ponron亚洲| 欧美激情久久久久久爽电影| 国产精品国产高清国产av| 欧美不卡视频在线免费观看| 波多野结衣高清无吗| 高清日韩中文字幕在线| 亚洲欧美清纯卡通| 国产 一区 欧美 日韩| 欧美不卡视频在线免费观看| 看非洲黑人一级黄片| 亚洲av一区综合| 国产中年淑女户外野战色| 啦啦啦观看免费观看视频高清| 免费无遮挡裸体视频| 亚洲精品自拍成人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品电影一区二区三区| 久久久久久久国产电影| 亚洲一区高清亚洲精品| 精品99又大又爽又粗少妇毛片| 国产美女午夜福利| 久久精品久久久久久久性| 国产免费又黄又爽又色| 亚洲欧美精品综合久久99| 国产一区有黄有色的免费视频 | 人妻系列 视频| 国产精品麻豆人妻色哟哟久久 | 男女啪啪激烈高潮av片| 26uuu在线亚洲综合色| 中国国产av一级| 国模一区二区三区四区视频| 麻豆av噜噜一区二区三区| 秋霞伦理黄片| 国产精品1区2区在线观看.| 在线观看av片永久免费下载| 七月丁香在线播放| 99在线人妻在线中文字幕| 99国产精品一区二区蜜桃av| 最近的中文字幕免费完整| 精品人妻一区二区三区麻豆| 亚洲性久久影院| 国产爱豆传媒在线观看| 亚洲一级一片aⅴ在线观看| 搡老妇女老女人老熟妇| 一级黄片播放器| 成人一区二区视频在线观看| 波野结衣二区三区在线| 91av网一区二区| 九色成人免费人妻av| 午夜亚洲福利在线播放| 午夜福利视频1000在线观看| 国产v大片淫在线免费观看| 国产午夜精品论理片| 网址你懂的国产日韩在线| 国产午夜精品久久久久久一区二区三区| 免费播放大片免费观看视频在线观看 | 国产一区亚洲一区在线观看| 淫秽高清视频在线观看| 亚洲av一区综合| 成人漫画全彩无遮挡| 1024手机看黄色片| 亚洲欧美精品综合久久99| 日韩一区二区视频免费看| 伊人久久精品亚洲午夜| 少妇高潮的动态图| 亚洲精品aⅴ在线观看| 亚洲国产精品sss在线观看| 日本与韩国留学比较| 日日啪夜夜撸| 美女脱内裤让男人舔精品视频| 日韩欧美国产在线观看| 亚洲国产精品成人久久小说| 一二三四中文在线观看免费高清| 久久人人爽人人爽人人片va| 97人妻精品一区二区三区麻豆| 精品国产露脸久久av麻豆 | 国产人妻一区二区三区在| 国产黄片视频在线免费观看| 99在线人妻在线中文字幕| 最新中文字幕久久久久| 亚洲精品自拍成人| 熟女电影av网| 天天一区二区日本电影三级| av在线老鸭窝| 蜜桃亚洲精品一区二区三区| 国产亚洲精品久久久com| 一级二级三级毛片免费看| 亚洲国产欧美在线一区| 婷婷色综合大香蕉| 亚洲精品乱码久久久久久按摩| 国产精品1区2区在线观看.| 日韩成人伦理影院| 欧美另类亚洲清纯唯美| 亚洲人与动物交配视频| 能在线免费看毛片的网站| 国产亚洲最大av| 日韩大片免费观看网站 | 青春草亚洲视频在线观看| 久久久成人免费电影| 欧美日韩国产亚洲二区| 女人被狂操c到高潮| 国产精品久久久久久av不卡| 久久久久久大精品| 亚洲精品乱久久久久久| 欧美bdsm另类| 亚洲精品乱码久久久久久按摩| 一个人看的www免费观看视频| 麻豆成人av视频| av专区在线播放| 老女人水多毛片| 女的被弄到高潮叫床怎么办| 三级毛片av免费| 亚洲av免费高清在线观看| 国产免费视频播放在线视频 | 成年女人永久免费观看视频| 日韩大片免费观看网站 | 久久99热这里只频精品6学生 | 中文乱码字字幕精品一区二区三区 | 国产av在哪里看| 一区二区三区高清视频在线| 在线天堂最新版资源| 欧美不卡视频在线免费观看| 国产午夜精品论理片| 国产在线男女| 日本熟妇午夜| 国产av在哪里看| 欧美一区二区国产精品久久精品| 亚洲一级一片aⅴ在线观看| 色综合亚洲欧美另类图片| 哪个播放器可以免费观看大片| 2022亚洲国产成人精品| 91久久精品电影网| 全区人妻精品视频| 亚洲经典国产精华液单| 亚洲欧美日韩东京热| 97超碰精品成人国产| 联通29元200g的流量卡| 尤物成人国产欧美一区二区三区| 欧美成人免费av一区二区三区| 亚洲一区高清亚洲精品| 99热全是精品| 在线免费观看不下载黄p国产| 久久久久网色| 日韩欧美精品免费久久| 日韩av在线大香蕉| 精品免费久久久久久久清纯| 国产视频首页在线观看| 床上黄色一级片| 97超视频在线观看视频| 色综合亚洲欧美另类图片| 亚洲欧洲国产日韩| av国产免费在线观看| av在线观看视频网站免费| 久久久久久九九精品二区国产| 日本黄色视频三级网站网址| .国产精品久久| 国产黄片美女视频| 白带黄色成豆腐渣| 欧美性猛交黑人性爽| 九色成人免费人妻av| 国产av不卡久久| АⅤ资源中文在线天堂| 又粗又硬又长又爽又黄的视频| 国产一区亚洲一区在线观看| 国产成年人精品一区二区| 日韩大片免费观看网站 | 卡戴珊不雅视频在线播放| 精品免费久久久久久久清纯| 日本av手机在线免费观看| 欧美性猛交╳xxx乱大交人| 成年女人永久免费观看视频| 床上黄色一级片| 国产亚洲午夜精品一区二区久久 | 亚洲国产成人一精品久久久| 特大巨黑吊av在线直播| 国产v大片淫在线免费观看| 成人鲁丝片一二三区免费| 久久草成人影院| 中文字幕免费在线视频6| 中文字幕免费在线视频6| 国产激情偷乱视频一区二区| 99久久精品一区二区三区| 看黄色毛片网站| 亚洲成av人片在线播放无| 在线播放无遮挡| 伦精品一区二区三区| 亚洲在久久综合| 白带黄色成豆腐渣| 国产老妇女一区| 午夜福利在线观看免费完整高清在| 丝袜喷水一区| 国产高清三级在线| 亚洲电影在线观看av| 美女国产视频在线观看| videossex国产| 人妻少妇偷人精品九色| 久久99热6这里只有精品| 高清视频免费观看一区二区 | 日韩中字成人| 国产精品人妻久久久影院| 91久久精品国产一区二区三区| 欧美色视频一区免费| 久久久a久久爽久久v久久| 全区人妻精品视频| 亚洲综合色惰| 少妇裸体淫交视频免费看高清| 水蜜桃什么品种好| 国产成人精品一,二区| 久久精品91蜜桃| www日本黄色视频网| 在线观看美女被高潮喷水网站| 国产69精品久久久久777片| 日日摸夜夜添夜夜添av毛片| 亚洲精品,欧美精品| 岛国在线免费视频观看| 亚洲图色成人| 在线天堂最新版资源| 久久精品影院6| 国产成人aa在线观看| 欧美日韩国产亚洲二区| 亚洲美女视频黄频| 亚洲av免费高清在线观看| 国产伦精品一区二区三区四那| 只有这里有精品99| 成人午夜高清在线视频| 亚洲精品一区蜜桃| 永久网站在线| 美女黄网站色视频| 久久国内精品自在自线图片| 精品人妻一区二区三区麻豆| 黄色日韩在线| 黄片wwwwww| 美女内射精品一级片tv| 午夜久久久久精精品| 国产精品99久久久久久久久| 免费观看在线日韩| av免费在线看不卡| 国产亚洲精品久久久com| 中文字幕免费在线视频6| 久久久久国产网址| 国产女主播在线喷水免费视频网站 | 小说图片视频综合网站| 搡女人真爽免费视频火全软件| 毛片一级片免费看久久久久| 极品教师在线视频| 内射极品少妇av片p| 国产精品无大码| 99九九线精品视频在线观看视频| 成人鲁丝片一二三区免费| 婷婷色麻豆天堂久久 | 国产午夜福利久久久久久| av视频在线观看入口| 小蜜桃在线观看免费完整版高清| 国产av不卡久久| 亚洲不卡免费看| 国产av在哪里看| 日韩亚洲欧美综合| 一个人看的www免费观看视频| 中国国产av一级| 久久久精品大字幕| 久久精品久久久久久噜噜老黄 | 国内揄拍国产精品人妻在线| 久热久热在线精品观看| 2021天堂中文幕一二区在线观| 中文乱码字字幕精品一区二区三区 | 午夜福利在线观看免费完整高清在| 日日干狠狠操夜夜爽| 波多野结衣巨乳人妻| 国产精品,欧美在线| 国产精品久久久久久久久免| 国产午夜精品久久久久久一区二区三区| 中文乱码字字幕精品一区二区三区 | 在线免费观看的www视频| 欧美成人精品欧美一级黄| 纵有疾风起免费观看全集完整版 | 狂野欧美白嫩少妇大欣赏| 熟女电影av网| 一级毛片我不卡| 人妻制服诱惑在线中文字幕| 久久99热这里只频精品6学生 | 欧美精品国产亚洲| 亚洲av成人精品一区久久| 久久精品国产自在天天线| 三级国产精品片| 成人毛片a级毛片在线播放| 午夜福利在线观看吧| 不卡视频在线观看欧美| 一级毛片久久久久久久久女| 日日摸夜夜添夜夜添av毛片| 最近视频中文字幕2019在线8| 青春草视频在线免费观看| 七月丁香在线播放| 日韩欧美国产在线观看| 午夜a级毛片| 免费看av在线观看网站| 村上凉子中文字幕在线| 久久99热6这里只有精品| 男的添女的下面高潮视频| 精品久久久久久久末码| 色综合色国产| 一二三四中文在线观看免费高清| 国产毛片a区久久久久| 偷拍熟女少妇极品色| 赤兔流量卡办理| 99久久中文字幕三级久久日本| 三级毛片av免费| 国产v大片淫在线免费观看| 国产亚洲精品久久久com| 国产乱人偷精品视频| 国产av码专区亚洲av| 国产午夜精品久久久久久一区二区三区| 国产高清有码在线观看视频| 亚洲图色成人| 欧美日韩一区二区视频在线观看视频在线 | 美女国产视频在线观看| 亚洲四区av| 欧美潮喷喷水| 亚洲乱码一区二区免费版| 少妇猛男粗大的猛烈进出视频 | 国产黄色小视频在线观看| 国产精品蜜桃在线观看| 在线a可以看的网站| 精品久久久久久久久av| 色视频www国产| 国产精品1区2区在线观看.| 菩萨蛮人人尽说江南好唐韦庄 | 国产一级毛片在线| 国语自产精品视频在线第100页| 亚洲美女视频黄频| 亚洲高清免费不卡视频| 国产成人精品一,二区| 又粗又爽又猛毛片免费看| 一边亲一边摸免费视频| 干丝袜人妻中文字幕| 内射极品少妇av片p| 日韩欧美精品v在线| 丝袜美腿在线中文| 日韩欧美国产在线观看| 亚洲精品乱码久久久久久按摩| 久久99热这里只频精品6学生 | 国产精品不卡视频一区二区| 男人舔女人下体高潮全视频| 99久久精品国产国产毛片| 国产欧美日韩精品一区二区| 国产女主播在线喷水免费视频网站 | 日本黄大片高清| 国产成年人精品一区二区| 午夜爱爱视频在线播放| 日韩在线高清观看一区二区三区| 色噜噜av男人的天堂激情| 男人和女人高潮做爰伦理| 国产激情偷乱视频一区二区| 国产一区二区三区av在线| 男女视频在线观看网站免费| 日韩视频在线欧美| 哪个播放器可以免费观看大片| 久久午夜福利片| 天堂av国产一区二区熟女人妻| 日本色播在线视频| 午夜免费激情av| 国产又色又爽无遮挡免| 亚洲美女视频黄频| 在线免费十八禁| 国产一级毛片七仙女欲春2| 毛片一级片免费看久久久久| 久久久久久久久中文| 国产三级中文精品| 日本免费a在线| 中文在线观看免费www的网站| 在线观看66精品国产| 国产精品一区二区三区四区久久| a级毛色黄片| 看十八女毛片水多多多| АⅤ资源中文在线天堂| 久久久国产成人精品二区| 日本免费在线观看一区| 天天躁日日操中文字幕| 高清午夜精品一区二区三区| 1024手机看黄色片| 日韩精品青青久久久久久| 秋霞在线观看毛片| 亚洲精品日韩av片在线观看| 亚洲不卡免费看| 99热网站在线观看| 国产色婷婷99| 国产一区二区在线av高清观看| 看片在线看免费视频| 91久久精品国产一区二区三区| kizo精华| 日韩成人av中文字幕在线观看| 不卡视频在线观看欧美| 18禁在线无遮挡免费观看视频| 小说图片视频综合网站| 好男人在线观看高清免费视频| 91久久精品电影网| 99热这里只有是精品在线观看| 亚洲自拍偷在线| 18禁动态无遮挡网站| 国内揄拍国产精品人妻在线| 国产 一区 欧美 日韩| 亚洲国产欧美在线一区| 看黄色毛片网站| 欧美一区二区亚洲| 白带黄色成豆腐渣| 日本一二三区视频观看| 久久热精品热| 又爽又黄无遮挡网站| 26uuu在线亚洲综合色| 午夜福利成人在线免费观看| 久久99精品国语久久久| 免费在线观看成人毛片| 亚洲激情五月婷婷啪啪| 国产精品一区www在线观看| 成人毛片60女人毛片免费| 日本欧美国产在线视频| 在线a可以看的网站| 日韩av在线大香蕉| 少妇熟女aⅴ在线视频| 啦啦啦韩国在线观看视频| 人妻制服诱惑在线中文字幕| 乱人视频在线观看| 亚洲丝袜综合中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av成人av| 国产激情偷乱视频一区二区| 免费看美女性在线毛片视频| 天天一区二区日本电影三级| 一区二区三区乱码不卡18| av在线蜜桃| 精品无人区乱码1区二区| 深夜a级毛片| 国产精品蜜桃在线观看| 最近最新中文字幕免费大全7| 成人美女网站在线观看视频| 亚洲最大成人av| 亚洲欧美日韩东京热| av国产久精品久网站免费入址| 亚洲欧美精品自产自拍| 人妻系列 视频| av国产免费在线观看| 亚洲精品一区蜜桃| 国产成人福利小说| 国产成人一区二区在线| 嫩草影院入口| 精品一区二区三区人妻视频| 国产精品一二三区在线看| 精华霜和精华液先用哪个| 高清在线视频一区二区三区 | 精品久久久久久久久久久久久| 亚洲自偷自拍三级| 日韩成人伦理影院| 久久久久久久午夜电影| 国产探花在线观看一区二区| 男女啪啪激烈高潮av片| 亚洲欧美成人综合另类久久久 | 三级男女做爰猛烈吃奶摸视频| 狠狠狠狠99中文字幕| 欧美一级a爱片免费观看看| 欧美bdsm另类| 欧美丝袜亚洲另类| 伊人久久精品亚洲午夜| 国产欧美另类精品又又久久亚洲欧美| 亚洲av成人精品一区久久| АⅤ资源中文在线天堂| 亚洲av成人精品一区久久| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产精品成人久久小说| 天天躁夜夜躁狠狠久久av| 一本久久精品| 日韩,欧美,国产一区二区三区 | 午夜激情欧美在线| 熟女电影av网| videossex国产| 夫妻性生交免费视频一级片| 我要搜黄色片| 欧美高清成人免费视频www| 五月伊人婷婷丁香| 一级黄片播放器| 日韩一本色道免费dvd| 亚洲欧美中文字幕日韩二区| 日本免费在线观看一区| 国产精品熟女久久久久浪| 观看免费一级毛片| 亚洲精品乱久久久久久| 最近最新中文字幕大全电影3| 国产亚洲5aaaaa淫片| 亚洲国产色片| 国内少妇人妻偷人精品xxx网站| 一级黄片播放器| 永久网站在线| 国产淫片久久久久久久久| 两个人的视频大全免费| 国国产精品蜜臀av免费| 又黄又爽又刺激的免费视频.| 七月丁香在线播放| 日本三级黄在线观看| 亚洲av成人精品一二三区| 亚洲国产成人一精品久久久| 国产精品久久久久久精品电影| 久久精品国产亚洲网站| 一区二区三区高清视频在线| av女优亚洲男人天堂| 一区二区三区高清视频在线| 99在线视频只有这里精品首页| 夜夜看夜夜爽夜夜摸| 午夜爱爱视频在线播放| 亚洲精品,欧美精品| 韩国高清视频一区二区三区| 亚洲激情五月婷婷啪啪| 国产乱来视频区| 汤姆久久久久久久影院中文字幕 | 日韩av在线大香蕉| 国产精品一区二区三区四区免费观看| 岛国在线免费视频观看| 少妇高潮的动态图| 卡戴珊不雅视频在线播放| 你懂的网址亚洲精品在线观看 | ponron亚洲| 国产精品一区www在线观看| 国产精品美女特级片免费视频播放器| 欧美高清成人免费视频www| 国产亚洲最大av| av在线亚洲专区| 国产免费视频播放在线视频 | 亚洲人成网站高清观看| 国产成年人精品一区二区| 国产免费又黄又爽又色| 亚洲18禁久久av| 成人一区二区视频在线观看| 在线免费观看的www视频| 成人美女网站在线观看视频| 久久久久久久久大av| av女优亚洲男人天堂| 一级黄片播放器| 国产精品麻豆人妻色哟哟久久 | 久久久久久久国产电影| 又爽又黄a免费视频| 亚洲国产精品sss在线观看| 韩国av在线不卡| 亚洲经典国产精华液单| 亚洲av电影在线观看一区二区三区 | 中文在线观看免费www的网站| 精品久久久久久久久亚洲| 久99久视频精品免费| 欧美精品一区二区大全| 最近的中文字幕免费完整| 91午夜精品亚洲一区二区三区| 久久99热这里只频精品6学生 | 国产精品久久久久久久电影| 久久韩国三级中文字幕| 亚洲av中文字字幕乱码综合| 久久久久久伊人网av| 蜜桃亚洲精品一区二区三区| 大话2 男鬼变身卡| 岛国在线免费视频观看| 亚洲国产日韩欧美精品在线观看| 99在线人妻在线中文字幕| 亚洲人成网站高清观看| 91av网一区二区| 亚洲欧美一区二区三区国产| 看十八女毛片水多多多| 精品免费久久久久久久清纯| 波多野结衣巨乳人妻| 九色成人免费人妻av| 别揉我奶头 嗯啊视频| 精华霜和精华液先用哪个| 久久99热6这里只有精品| 精品一区二区三区人妻视频| 亚洲婷婷狠狠爱综合网| 国产探花极品一区二区| 亚洲欧洲日产国产| 天堂影院成人在线观看| 少妇人妻一区二区三区视频| 日韩一区二区三区影片| 国产成人精品久久久久久| 亚洲综合精品二区| .国产精品久久| 国产成人a∨麻豆精品| 黄色一级大片看看| 日韩强制内射视频| 国产淫语在线视频| 黑人高潮一二区| 日韩欧美国产在线观看| 黄片wwwwww| 久久久国产成人精品二区| 中文字幕av成人在线电影| 99久国产av精品国产电影| 欧美最新免费一区二区三区| 精品免费久久久久久久清纯| 尾随美女入室| 国产视频首页在线观看| 国产成人a区在线观看| 精品国产三级普通话版| 国产乱人偷精品视频| 亚洲av男天堂| 久热久热在线精品观看| 亚洲精品成人久久久久久| 韩国高清视频一区二区三区| 国产av在哪里看| 精品无人区乱码1区二区| 午夜福利在线在线| 国产亚洲一区二区精品| 亚洲精品乱码久久久久久按摩| 午夜老司机福利剧场| 亚洲在久久综合| 亚洲av电影在线观看一区二区三区 | 亚洲国产精品国产精品| 成人三级黄色视频| 麻豆乱淫一区二区| 日本免费一区二区三区高清不卡|