達(dá)志峰 賈英偉 丁潔 朱志祥 馮勇 韋建 梁炳生
?論著?
RNA 干涉介導(dǎo)大鼠成肌細(xì)胞系L6中MuRF-1與FOXO3a基因表達(dá)變化的研究
達(dá)志峰 賈英偉 丁潔 朱志祥 馮勇 韋建 梁炳生
目的探討RNAi技術(shù)體外抑制MuRF-1或FOXO3a基因表達(dá)的效果,為RNAi介導(dǎo)的失神經(jīng)骨骼肌萎縮基因治療奠定基礎(chǔ)。方法體外培養(yǎng)大鼠成肌細(xì)胞系L6,將MuRF-1和(或)FOXO3a siRNA重組質(zhì)粒在Lipofectamine 2000介導(dǎo)下轉(zhuǎn)染,優(yōu)化與檢測系統(tǒng)的轉(zhuǎn)染效率;將2 μg MuRF-1或FOXO3a基因siRNA重組質(zhì)粒轉(zhuǎn)染L6,轉(zhuǎn)染后48 h與72 h,采用實(shí)時(shí)定量PCR檢測siRNA重組質(zhì)粒對MuRF-1和FOXO3a的mRNA的抑制效果,使用Western印跡檢測siRNA重組質(zhì)粒對MuRF-1和FOXO3a蛋白水平的抑制效果。用單因素方差分析方法和LSD法進(jìn)行組間比較。結(jié)果(1)質(zhì)粒轉(zhuǎn)染后24 h,熒光顯微鏡下可見細(xì)胞中有大量明亮的綠色熒光表達(dá),顯示系統(tǒng)有較高的轉(zhuǎn)染效率。(2)實(shí)時(shí)定量PCR分析結(jié)果顯示:MuRF-1與FOXO3a各自的siRNA重組質(zhì)粒轉(zhuǎn)染后48 h,二者干擾序列在mRNA水平分別明顯抑制了MuRF-1和FOXO3a的表達(dá),抑制率達(dá)67﹪和54﹪,與對照組相比差異均有統(tǒng)計(jì)學(xué)意義(P < 0.05),聯(lián)合MuRF-1與FOXO3a兩基因siRNA重組質(zhì)粒轉(zhuǎn)染后48 h,干擾序列在mRNA水平明顯抑制了MuRF-1及FOXO3a的表達(dá),抑制率達(dá)61﹪及58﹪,與對照組相比差異有統(tǒng)計(jì)學(xué)意義(P < 0.05);轉(zhuǎn)染后72 h,MuRF-1與FOXO3a各自的siRNA重組質(zhì)粒干擾序列對MuRF-1和FOXO3a的mRNA的抑制率分別達(dá)79﹪和81﹪,聯(lián)合MuRF-1與FOXO3a兩基因siRNA重組質(zhì)粒干擾序列對MuRF-1和FOXO3a的mRNA的抑制率達(dá)77﹪及72﹪,與對照組相比差異均有統(tǒng)計(jì)學(xué)意義(P < 0.05),與48 h相比,抑制效應(yīng)更為明顯。(3)Western印跡灰度分析結(jié)果顯示:轉(zhuǎn)染后48 h,干擾序列MuRF-1明顯抑制了MuRF-1蛋白的表達(dá),抑制率達(dá)61﹪,與對照組相比差異有統(tǒng)計(jì)學(xué)意義(P <0.05),干擾序列FOXO3a明顯抑制了FOXO3a蛋白的表達(dá),抑制率達(dá)46﹪,與對照組相比差異有統(tǒng)計(jì)學(xué)意義(P < 0.05),聯(lián)合MuRF-1與FOXO3a兩基因siRNA重組質(zhì)粒干擾序列對MuRF-1和FOXO3a蛋白表達(dá)的抑制率達(dá)64﹪及42﹪,與對照組相比差異有統(tǒng)計(jì)學(xué)意義(P < 0.05);轉(zhuǎn)染后72 h,干擾序列MuRF-1對MuRF-1蛋白表達(dá)的抑制率達(dá)70﹪,與對照組相比差異有統(tǒng)計(jì)學(xué)意義(P < 0.05),干擾序列FOXO3a對FOXO3a蛋白表達(dá)的抑制率達(dá)72﹪,與對照組相比差異有統(tǒng)計(jì)學(xué)意義(P < 0.05),聯(lián)合MuRF-1與FOXO3a兩基因siRNA重組質(zhì)粒干擾序列對MuRF-1和FOXO3a蛋白表達(dá)的抑制率達(dá)73﹪及74﹪,與對照組相比差異有統(tǒng)計(jì)學(xué)意義(P < 0.05),與48 h相比,抑制效應(yīng)更為明顯,與對mRNA水平的影響一致。(4)MuRF-1的siRNA重組質(zhì)粒與聯(lián)合MuRF-1與FOXO3a兩基因siRNA重組質(zhì)粒干擾序列MuRF-1對MuRF-1的mRNA和蛋白抑制效果相比差異無統(tǒng)計(jì)學(xué)意義(P >0.05),F(xiàn)OXO3a的siRNA重組質(zhì)粒與聯(lián)合MuRF-1與FOXO3a兩基因siRNA重組質(zhì)粒干擾序列FOXO3a對FOXO3a的mRNA和蛋白抑制效果相比差異無統(tǒng)計(jì)學(xué)意義(P > 0.05)。結(jié)論(1)RNA干擾技術(shù)在體外能夠明顯抑制泛素連接酶MuRF-1和叉頭蛋白轉(zhuǎn)錄因子FOXO3a基因的表達(dá)。(2)體外研究中MuRF-1與FOXO3a兩基因siRNA重組質(zhì)粒聯(lián)合轉(zhuǎn)染與各基因siRNA重組質(zhì)粒單獨(dú)轉(zhuǎn)染其干擾序列對MuRF-1或FOXO3a的mRNA和蛋白抑制效果無差別。(3)活體實(shí)驗(yàn)中MuRF-1與FOXO3a兩基因siRNA重組質(zhì)粒聯(lián)合轉(zhuǎn)染與各基因siRNA重組質(zhì)粒單獨(dú)轉(zhuǎn)染其干擾序列對MuRF-1或FOXO3a的mRNA和蛋白抑制效果尚不明確,這為RNAi介導(dǎo)的失神經(jīng)骨骼肌萎縮基因治療提供了一種新的思路。
肌萎縮; MuRF-1; FOXO3a; L6; 去神經(jīng)支配; RNA干擾; 基因表達(dá)
隨著科學(xué)技術(shù)的迅猛發(fā)展,工農(nóng)業(yè)生產(chǎn)日趨機(jī)械化、現(xiàn)代化,另外國內(nèi)私家車數(shù)量大量增加,由此引發(fā)眾多的各種生產(chǎn)和交通事故,從而加大了周圍神經(jīng)損傷的發(fā)生率和致殘率,尤其是臂叢神經(jīng)損傷,可導(dǎo)致嚴(yán)重的肢體功能障礙,給患者造成巨大的痛苦[1]。延緩神經(jīng)損傷后骨骼肌的萎縮,為肌肉重獲神經(jīng)支配爭取時(shí)間,是手內(nèi)肌功能恢復(fù)的關(guān)鍵。最新研究發(fā)現(xiàn)泛素連接酶MuRF-1與“feak-headbox”(FOXO)轉(zhuǎn)錄因子是調(diào)控骨骼肌萎縮最關(guān)鍵的兩個(gè)分子,叉頭蛋白轉(zhuǎn)錄因子3a(fork-head protein,F(xiàn)oxO3a)是肌肉蛋白降解的分子開關(guān)之一[2-3]。另一方面,病理狀態(tài)下蛋白質(zhì)降解的主要機(jī)制是通過泛素蛋白酶體水解通路的激活[4]。Bodine等[5]利用基因敲除小鼠研究發(fā)現(xiàn),MuRF-1能有效緩解肌肉萎縮過程,證實(shí)泛素連接酶是骨骼肌肉萎縮過程中的關(guān)鍵酶。本研究通過RNA干涉技術(shù),在大鼠成肌細(xì)胞系L6中特異性地阻斷MuRF-1和FOXO3a,探討其中MuRF-1和FOXO3a基因與蛋白的表達(dá)變化,探索失神經(jīng)骨骼肌萎縮的發(fā)生機(jī)制,為RNAi介導(dǎo)的失神經(jīng)骨骼肌萎縮基因治療打下基礎(chǔ)。
一、材料
大鼠骨骼肌成肌細(xì)胞系L6購自美國ATCC公司,pcDNA6.2-GW/EmGFP-miR質(zhì)粒購自上海銳賽生物技術(shù)有限公司,胎牛血清、DMEM(高糖)細(xì)胞培養(yǎng)液、胰蛋白酶為美國Gibco公司產(chǎn)品,Genelute Plassmid Miniprep Kit為美國Sigma公司產(chǎn)品,Lipofectamine 2000轉(zhuǎn)染試劑盒為美國Invitrogen公司產(chǎn)品,兔抗大鼠FOXO3a(一抗)為美國Cell Signal公司產(chǎn)品,兔抗大鼠MuRF-1(一抗)為美國Santa Cruz公司產(chǎn)品,山羊抗兔IgG為北京中杉金橋生物技術(shù)有限公司產(chǎn)品,總RNA抽提試劑(Trizol)購自上海生工工程有限公司,cDNA合成隨機(jī)引物及PCR引物委托上海生工工程有限公司進(jìn)行合成。
二、實(shí)驗(yàn)方法
1.獲 取MuRF-1和FOXO3a兩 基 因 的siRNA重組質(zhì)粒:參照文獻(xiàn)[5]獲取MuRF-1和FOXO3a基因miRNA干擾序列,委托上海銳賽生物技術(shù)有限公司構(gòu)建并鑒定siRNA重組質(zhì)粒。
2.分組說明:陰性對照組(序列siRNA CON組)、實(shí)驗(yàn)組A(含MuRF-1基因siRNA重組質(zhì)粒)、實(shí)驗(yàn)組B(含F(xiàn)OXO3a基因siRNA重組質(zhì)粒)、實(shí)驗(yàn)組C(含MuRF-1與FOXO3a基因siRNA重組質(zhì)粒);轉(zhuǎn)染:取對數(shù)生長期的大鼠成肌細(xì)胞系L6,用胰酶消化后,將細(xì)胞接種于6孔細(xì)胞培養(yǎng)板中,加入適量含10﹪胎牛血清的DMEM(高糖)完全培養(yǎng)液,置于37℃、5﹪CO2培養(yǎng)。待細(xì)胞融合度達(dá)60﹪~70﹪時(shí),取2 μg siRNA重組質(zhì)粒和5 μl Lipofectamine 2000,分別加入Opti-MEM培養(yǎng)液中,終體積為500 μl,室溫孵育20 min;吸取細(xì)胞培養(yǎng)板中的培養(yǎng)液,將DNA-脂質(zhì)體復(fù)合物轉(zhuǎn)移入6孔細(xì)胞培養(yǎng)板中,輕柔混勻,加培養(yǎng)液至終體積2 ml,置37℃、5﹪CO2孵育48 ~ 72 h,并以未加任何試劑的大鼠成肌細(xì)胞系L6作為對照。其間24 h給細(xì)胞更換DMEM完全培養(yǎng)液。
3.分別于轉(zhuǎn)染后48 h和72 h棄細(xì)胞培養(yǎng)液,按說明書提取細(xì)胞總RNA,并反轉(zhuǎn)錄成cDNA。應(yīng)用熒光定量PCR試劑檢測轉(zhuǎn)染后細(xì)胞的MuRF-1和FOXO3a基因表達(dá),并用PCR軟件分析達(dá)到熒光閾值時(shí)的循環(huán)次數(shù)(cycle threshold,Ct值),用2-ΔΔCt來計(jì)算各組標(biāo)本FOXO3a和MuRF-1基因的表達(dá)強(qiáng)度(表1)。
4.轉(zhuǎn)染48 h和72 h后的細(xì)胞,棄上清,用適量細(xì)胞蛋白裂解液提取蛋白,經(jīng)離心獲得蛋白上清液并行蛋白定量,經(jīng)SDS-PAGE蛋白電泳后,通過電轉(zhuǎn)將蛋白轉(zhuǎn)移至PVDF膜上。封閉后加入一抗(兔抗大鼠FOXO3a多克隆抗體1:300,兔抗大鼠MuRF-1多克隆抗體1:100)和二抗(山羊抗兔IgG1:4000),最后ECL化學(xué)發(fā)光法顯色,并用BIO-RAD圖像處理軟件進(jìn)行灰度測定,以各因子灰度與內(nèi)參照灰度之比代表組織內(nèi)FOXO3a和MuRF-1蛋白的含量,以各灰度比與對照組灰度比的比值作為各蛋白因子的表達(dá)強(qiáng)度。
三、統(tǒng)計(jì)學(xué)分析方法
用SPSS 19.0統(tǒng)計(jì)軟件處理各組數(shù)據(jù),所有PCR及Western印跡檢測數(shù)據(jù)用± s表示。采用單因素方差分析方法和LSD法進(jìn)行各組比較和組間比較,以P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。
一、獲取MuRF-1和FOXO3a兩基因的siRNA重組質(zhì)粒
根據(jù)大鼠MuRF-1(Gene ID:140939)和FOXO3a(Gene ID:294515)的基因序列分別自行設(shè)計(jì)并合成miRNA oligo,并行測序分析證實(shí)其序列完全準(zhǔn)確(表2)。
表1 實(shí)時(shí)定量PCR引物
表2 目的基因miRNA oligo序列
二、MuRF-1和FOXO3a基因siRNA重組質(zhì)粒瞬時(shí)轉(zhuǎn)染后mRNA表達(dá)變化結(jié)果(圖1 ~ 2)
轉(zhuǎn)染后48 h,MuRF-1與FOXO3a各自的siRNA重組質(zhì)粒干擾序列在mRNA水平分別明顯抑制了MuRF-1和FOXO3a的表達(dá),抑制率達(dá)67﹪和54﹪,與對照組相比差異均有統(tǒng)計(jì)學(xué)意義(t對照-MuRF-1= 6.401,P < 0.001;t對照-FOXO3a = 5.563,P = 0.001),聯(lián)合MuRF-1與FOXO3a兩基因siRNA重組質(zhì)粒轉(zhuǎn)染后48 h,干擾序列在mRNA水平明顯抑制了MuRF-1及FOXO3a的表達(dá),抑制率達(dá)61﹪及58﹪,與對照組相比差異有統(tǒng)計(jì)學(xué)意義[t對照-聯(lián)合(MuRF-1)= 5.828,P = 0.001;t對照-聯(lián)合(FOXO3a)= 5.975,P = 0.001]。
轉(zhuǎn)染后72 h,MuRF-1與FOXO3a各自的siRNA重組質(zhì)粒干擾序列對MuRF-1和FOXO3a的mRNA的抑制率分別達(dá)79﹪和81﹪,聯(lián)合MuRF-1與FOXO3a兩基因siRNA重組質(zhì)粒干擾序列對MuRF-1和FOXO3a的mRNA的抑制率達(dá)77﹪及72﹪,與對照組相比差異均有統(tǒng)計(jì)學(xué)意義[t對照-MuRF-1 = 10.425,P < 0.001;t對照-FOXO3a = 9.872,P < 0.001;t對照-聯(lián)合(MuRF-1)= 10.034,P < 0.001;t對照-聯(lián)合(FOXO3a)= 8.878,P < 0.001],與48 h相比,抑制效應(yīng)更為明顯。MuRF-1與FOXO3a兩基因siRNA重組質(zhì)粒聯(lián)合轉(zhuǎn)染與各基因siRNA重組質(zhì)粒單獨(dú)轉(zhuǎn)染其干擾序列對MuRF-1或FOXO3a的mRNA抑制效果相比較差異無統(tǒng)計(jì)學(xué)意義[48 h:tMuRF-1-聯(lián) 合(MuRF-1)=0.573,P = 0.587,tFOXO3a-聯(lián)合(FOXO3a)= 0.412,P = 0.695;72 h:tMuRF-1-聯(lián)合(MuRF-1)= 0.391,P = 0.709,tFOXO3a-聯(lián)合(FOXO3a)=1.110,P = 0.310]。三、MuRF-1和FOXO3a基因siRNA重組質(zhì)粒瞬時(shí)轉(zhuǎn)染后蛋白表達(dá)變化結(jié)果(圖3 ~ 5)
轉(zhuǎn)染后48 h,干擾序列MuRF-1明顯抑制了MuRF-1蛋白的表達(dá),抑制率達(dá)61﹪,與對照組相比差異有統(tǒng)計(jì)學(xué)意義(t對照-MuRF-1 = 4.679,P = 0.003),干擾序列FOXO3a明顯抑制了FOXO3a蛋白的表達(dá),抑制率達(dá)46﹪,與對照組相比差異有統(tǒng)計(jì)學(xué)意義(t對照-FOXO3a = 3.117,P = 0.021),聯(lián)合MuRF-1與FOXO3a兩基因siRNA重組質(zhì)粒干擾序列對MuRF-1和FOXO3a蛋白表達(dá)的抑制率達(dá)64﹪及42﹪,與對照組相比差異有統(tǒng)計(jì)學(xué)意義[t對照-聯(lián)合(MuRF-1)= 4.909,P = 0.003;t對照-聯(lián)合(FOXO3a)= 2.846,P = 0.029]。
圖1 MuRF1基因siRNA重組質(zhì)粒轉(zhuǎn)染后48 h與72 h后RT-PCR結(jié)果
圖2 FOXO3a基因siRNA重組質(zhì)粒轉(zhuǎn)染后48 h與72 h后RT-PCR結(jié)果
圖3 轉(zhuǎn)染后Western印跡檢測條帶
圖4 MuRF1基因siRNA重組質(zhì)粒轉(zhuǎn)染后48 h與72 h后Western印跡結(jié)果
圖5 FOXO3a基因siRNA重組質(zhì)粒轉(zhuǎn)染后48 h與72 h后Western印跡結(jié)果
轉(zhuǎn)染后72 h,干擾序列MuRF-1對MuRF-1蛋白表達(dá)的抑制率達(dá)70﹪,與對照組相比差異有統(tǒng)計(jì)學(xué)意義(t對照-MuRF-1 = 8.631,P < 0.001),干擾序列FOXO3a對FOXO3a蛋白的表達(dá)的抑制率達(dá)72﹪,與對照組相比差異有統(tǒng)計(jì)學(xué)意義[t對照-FOXO3a = 8.283,P < 0.001),聯(lián)合MuRF-1與FOXO3a兩基因siRNA重組質(zhì)粒干擾序列對MuRF-1和FOXO3a蛋白表達(dá)的抑制率達(dá)73﹪及74﹪,與對照組相比差異有統(tǒng)計(jì)學(xué)意義(t對照-聯(lián)合(MuRF-1)= 9.008,P < 0.001;t對照-聯(lián)合(FOXO3a)=8.513,P < 0.001],與48 h相比,抑制效應(yīng)更為明顯,與對mRNA水平的影響一致。
MuRF-1與FOXO3a兩基因siRNA重組質(zhì)粒聯(lián)合轉(zhuǎn)染與各基因siRNA重組質(zhì)粒單獨(dú)轉(zhuǎn)染其干擾序列對MuRF-1或FOXO3a的蛋白抑制效果相比較差異無統(tǒng)計(jì)學(xué)意義[48 h:tMuRF-1-聯(lián)合(MuRF-1)= 0.230,P = 0.826,tFOXO3a -聯(lián)合(FOXO3a)= 0.271,P = 0.795;72 h:tMuRF-1-聯(lián)合(MuRF-1)= 0.370,P = 0.724,tFOXO3a-聯(lián)合(FOXO3a)=0.436,P = 0.698]。
臂叢神經(jīng)損傷后再生距離長,再生速度慢,再生軸突到達(dá)手內(nèi)肌所需時(shí)間長,而手內(nèi)肌肌肉短小,功能精細(xì),一旦失去神經(jīng)支配,半年內(nèi)即發(fā)生不可逆的組織變性,即使神經(jīng)獲得再支配,也很難恢復(fù)有效的功能[6]。因此,臂叢神經(jīng)損傷所致的手內(nèi)在肌萎縮的防治是周圍神經(jīng)領(lǐng)域亟待解決的一大難題。骨骼肌在失神經(jīng)支配后早期出現(xiàn)快速萎縮的事實(shí)表明:骨骼肌中蛋白代謝的動態(tài)平衡被打破了,蛋白降解速率超過了蛋白合成速率[7],由此可見,采取有效措施調(diào)節(jié)失神經(jīng)骨骼肌的蛋白代謝,促進(jìn)蛋白合成,抑制蛋白水解甚至逆轉(zhuǎn)失神經(jīng)骨骼肌代謝的負(fù)平衡,將是延緩失神經(jīng)骨骼肌萎縮、為失神經(jīng)骨骼肌重新獲得神經(jīng)支配爭取時(shí)間,并且是促進(jìn)骨骼肌功能恢復(fù)的有效途徑[8]。Tintignac等[9]發(fā)現(xiàn)FOXO3a是與肌萎縮密切相關(guān)的基因,它存在于幾乎全部的肌萎縮類型中。FOXO3a第253位的絲氨酸去磷酸化后,可促進(jìn)骨骼肌蛋白的降解,從而促進(jìn)肌萎縮[10-11]。MuRF-1屬于泛素連接酶,激活MuRF-1是導(dǎo)致肌萎縮的主要機(jī)制,研究發(fā)現(xiàn),小鼠缺乏MuRF-1可抵抗肌萎縮,故MuRF-1可作為在臨床中對抗肌萎縮的靶點(diǎn)[12]。
RNA干涉(RNA interference,RNAi)是一種阻抑基因表達(dá)的新方法,是一種簡單、有效的代替基因敲除的遺傳工具,已成為基因功能研究極其重要的工具[13]。
因此本研究采用RNAi技術(shù)在體外下調(diào)泛素連接酶MuRF-1和FOXO3a基因的表達(dá),借此為失神經(jīng)骨骼肌萎縮尋找新的治療方法。本研究結(jié)果顯示:采用RNAi技術(shù)特異性的敲除掉與失神經(jīng)骨骼肌萎縮有密切關(guān)系的兩個(gè)基因FOXO3a與MuRF-1,在48 h后檢測發(fā)現(xiàn)聯(lián)合轉(zhuǎn)染組、單獨(dú)轉(zhuǎn)染組與對照組相比較肌萎縮相關(guān)因子的mRNA及蛋白表達(dá)量均被顯著抑制,在72 h后這種抑制效果更加明顯,這表明RNAi技術(shù)在體外能夠明顯抑制泛素連接酶MuRF-1和FOXO3a基因的表達(dá)。但是本研究還發(fā)現(xiàn)MuRF-1與FOXO3a兩基因siRNA重組質(zhì)粒聯(lián)合轉(zhuǎn)染與各基因siRNA重組質(zhì)粒單獨(dú)轉(zhuǎn)染其干擾序列對MuRF-1或FOXO3a的mRNA和蛋白抑制效果無明顯差別。分析原因可能與FOXO3a可通過不同的方式激活MuRF-1[14]有關(guān),當(dāng)MuRF-1基因被敲除后FOXO3a也就失去這種激活作用,所以聯(lián)合轉(zhuǎn)染后并沒有出現(xiàn)協(xié)同或者拮抗作用?;铙w實(shí)驗(yàn)中MuRF-1與FOXO3a兩基因siRNA重組質(zhì)粒聯(lián)合轉(zhuǎn)染與各基因siRNA重組質(zhì)粒單獨(dú)轉(zhuǎn)染其干擾序列對MuRF-1或FOXO3a的mRNA和蛋白抑制效果是否與體外研究結(jié)果一致尚不明確,本研究為RNAi介導(dǎo)的失神經(jīng)骨骼肌萎縮基因治療提供了一種新的思路,即聯(lián)合干預(yù)兩類在失神經(jīng)骨骼肌萎縮過程中起重要作用的因子MuRF-1和FOXO3a進(jìn)行基因治療,可能會有更好的療效,這有待于進(jìn)一步研究。
1 Murton AJ, Constantin D, Greenhaff PL. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy[J]. Biochim Biophys Acta, 2008, 1782(12):730-743.
2 Zheng B, Ohkawa S, Li HY, et al. FOXO3a mediates signaling crosstalk that coordinates ubiquitin and atrogin-1/ MAFbx expression during glucocorticoid-induced skeletal muscle atrophy[J]. Fsseb Journal, 2010, 24 (8):2660-2669.
3 Stitt T, Drugjan D. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors[J]. Mol Cell, 2004, 14(3):395-403.
4 Tisdale MJ. Is there a common mechanism linking muscle wasting in various disease types?[J]. Curr Opin Support Palliat Care, 2007, 1(4):287-292.
5 Bodine SC, Latres E, Baumhueter S, et al. Identi fi cation of Ubiquitin Ligases required for skeletal muscle atrophy[J]. Science, 2001, 294(5547):1704-1708.
6 Katoch SS, Garg A, Sharma S. Histological evidences of reparative and regenerative effects of beta-adrenoceptor agonists, clenbuterol and isoproterenol, in denervated rat skeletal muscle[J]. Indian J Exp Biol, 2006, 44(6):448-458.
7 Garg A, Sharma S. Isoproterenol ameliorates work stressinduced rat skeletal muscle degeneration[J]. Indian J Biochem Biophys, 2006, 43(2):82-87.
8 Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways[J]. Int J Biochem Cell Biol, 2005, 37(10):1974-1985.
9 Tintignac LA, Lagirand J, Batonnet S, et al. Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase[J]. J Biol Chem, 2005, 280(4):2847-2856.
10 Sandri M, Sandri C, Gilbert A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy[J]. Cell, 2004, 117(3):399-412.
11 Nakae J, Oki M, Cao Y. The Foxo transcription factors and metabolic regulation[J]. FEBS lett, 2008, 582(1):54-67.
12 Janácek J, Cebasek V, Kubínová L, et al. 3D visualization and measurement of capillaries supplying metabolically diffe rent fi ber types in the rat extensor digitorum longus muscle during denervation and reinnervation[J]. J Histochem Cytochem, 2009, 57(5):437-447.
13 Haman GJ. RNA interference[J].Nature, 2002, 418(6894): 244-251.
14 Deouxm M, Vanbeneden R, Paskon, et al. Role of the insulin-like growth factor I decline in the induction of atrogin-1/mafbx during fasting and diabetes[J]. Endocrinology, 2004, 145(11):4806-4812.
Study of RNAi-mediated gene downr egulation of ubiquitin ligase MuRF-1 and forkhead activin signal transducer FOXO3a in vitro
DA Zhi-feng*, JIA Ying-wei, DING Jie, ZHU Zhixiang, FENG Yong, WEI Jian, LIANG Bing-sheng,*Department of Orthopaedics (Micro and Hand Surgery), The 2nd Hospital of Shanxi Medical University, Taiyuan 030001, China
LIANG Bing-sheng, Email:liangbs707@yahoo.com
Objective To investigate the effect of RNAi technology in inhibiting gene expression of MuRF-1 or FOXO3a in vitro, establishing a foundation for RNAi mediated gene therapy for denervated skeletal muscle atrophy.MethodsRat muscle cell line L6 was transfected with MuRF-1 or FOXO3a siRNA plasmid using Lipofectamine 2000. After transfection was optimized, 2 μg of MuRF-1 or FOXO3a siRNA recombinant plasmid was transfted. At 48 h and 72 h after transfection, the real-time quantitative PCR was used to detect the inhibition effect of MuRF-1 and FOXO3a. Protein level was evaluated using Western blotting.Results(1) At 24 h after transfection, strong bright green fluorescence was observed under fluorescence microscopy, indicating high transfection efficiency. (2) Real time quantitative PCR analysis showed mRNA expression was significantly inhibited for both MuRF-1 and FOXO3a after 48 h, with an inhibition rate of 67﹪ and 54﹪ respectively. When MuRF-1 and FOXO3a siRNA recombinant plasmids were co-transfectied, MuRF-1 and FOXO3a expression was inhibite by 61﹪ and 58﹪ respectively compared with the control (P < 0.05 for both). At 72 h after transfection, the inhibitory rates for MuRF-1 and FOXO3a siRNA recombinant plasmids at mRNA level were 79﹪ and 81﹪ respectively. When MuRF-1 and FOXO3a siRNA recombinant plasmids were co-transfected, MuRF-1 and FOXO3a mRNA was inhibited by 77﹪ and 72﹪ respectively, significantly higher than the control group (P < 0.05) and higher than that at 48 h. (3) Western blotting showed MuRF-1 and FOXO3a were inhibited by 61﹪ and 46﹪ respectively.When MuRF-1 and FOXO3a siRNA recombinant plasmids were co-transfected, MuRF-1 and FOXO3a protein expression was inhibited by 64﹪ and 42﹪ respectively, both higher than the control (P < 0.05). At 72 h, MuRF-1 and FOXO3a protein expression was inhibited by 70﹪ and 72﹪respectively, significantly greater than the control. Whenunited MuRF-1 and FOXO3a siRNA recombinant plasmids were co-transfected, MuRF-1 and FOXO3a inhibition rates were 73﹪and 74﹪ respectively, significantly greater than the control (P < 0.05). Again, the inhibition was greater at 72 h than at 48 h.ConclusionsRNA interference can obviously inhibit the expression of ubiquitin ligase MuRF-1 and fork protein transcription factors FOXO3a in vitro. Co-transfection of MuRF-1 and FOXO3a siRNA recombinant plasmids can inhibit MuRF-1 and FOXO3a mRNA and protein expression. The inhibition effects were similat to those when the plasmid was tranfected alone.
Muscle atrophy; MuRF-1; FOXO3a; L6; Denervation; RNA Interference; Gene expression
2012-04-19)
(本文編輯:李少婷)
10.3877/cma.j.issn.2095-1221.2013.02.007
國家自然科學(xué)青年基金(81000805)
030001 太原,山西醫(yī)科大學(xué)第二醫(yī)院骨科(達(dá)志峰、賈英偉、丁潔、朱志祥、韋建、梁炳生);上海市第六人民醫(yī)院骨科(馮勇)
梁炳生,Email:liangbs707@yahoo.com
達(dá)志峰,賈英偉,丁潔,等. RNA干涉介導(dǎo)大鼠成肌細(xì)胞系L6中MuRF-1與FOXO3a基因表達(dá)變化的研究[J/CD].中華細(xì)胞與干細(xì)胞雜志:電子版, 2013, 3(2):87-93.