• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis,Crystal Structure,Thermal Behavior and Sensitivity of[Mn(AZT)2(H2O)4](HTNR)2·4H2O

    2012-11-06 07:01:06FENGJinLingZHANGJianGuoZHANGTongLaiCUIYan
    物理化學學報 2012年7期
    關(guān)鍵詞:張建國疊氮北京理工大學

    FENG Jin-Ling ZHANG Jian-Guo,* ZHANG Tong-Lai,* CUI Yan

    (1State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,P.R.China;2The 6th Department,Research Institute of Chemical Defense(PLA),Beijing 102205,P.R.China)

    Synthesis,Crystal Structure,Thermal Behavior and Sensitivity of[Mn(AZT)2(H2O)4](HTNR)2·4H2O

    FENG Jin-Ling1ZHANG Jian-Guo1,*ZHANG Tong-Lai1,*CUI Yan2

    (1State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,P.R.China;2The 6th Department,Research Institute of Chemical Defense(PLA),Beijing 102205,P.R.China)

    A novel energetic coordination complex of[Mn(AZT)2(H2O)4](HTNR)2·4H2O(AZT=3-azido-1,2,4-triazole,HTNR=2,4,6-trinitro resorcinol)was prepared by the reaction between the acidic manganese(II)salt of 2,4,6-trinitro resorcinol and AZT in an aqueous solution.The complex was characterized by elemental analysis and FTIR spectroscopy.The molecular structure was determined by X-ray single crystal diffraction.The crystal belongs to the triclinic system with a P1 space group.The central manganese(II)cation has a slightly distorted octahedron feature.Three-dimension networks were formed and the layers are linked by extensive hydrogen bonding.The thermal decompositionmechanismof[Mn(AZT)2(H2O)4](HTNR)2·4H2O was predicted based on differential scanning calorimetry(DSC)and thermogravimetry-derivative thermogravimetry(TG-DTG)analyses.One endothermic peak and three exothermic peaks are present during the thermal decomposition process with the final residue at 600℃being MnO and MnO2.The kinetic parameters of the exothermic process for the complex were studied using Kissinger′s and Ozawa-Doyle′s methods.Furthermore,impact sensitivity,flame sensitivity,and friction sensitivity tests reveal that the title complex is sensitive and selective towards external stimulants.

    Crystal structure;3-Azido-1,2,4-triazole;Manganese(II)complex;Sensitivity;Thermal behavior

    Nitrogen-rich compounds have attracted significant attention due to their potential applications as high-energy-density materials(HEDMs)in propulsion and explosive fields[1-7].They derive most of their energies either from the oxidation of the carbon backbone,or from their high positive heats of formation[8].Good HEDMs possess high density,have a fast velocity of detonation, and are energetically unstable with respect to their reaction products.Five-member nitrogen-rich heterocyclic compounds, such as triazole series[9-15],are one of the representative candidates of HEDMs.The high positive formation enthalpy and high nitrogen content of triazole have made its complexes interesting for being used as energetic materials.The addition of azide group strongly immproves its energetic properties[16].The nitrogen content of 3-azido-1,2,4-triazole(AZT)is 76.36%,and its standard heat of formation(ΔH?f)is 458 kJ·mol-1[17].

    Hydroxyl O atoms and triazolyl ring N atoms have good coordination capacities.Therefore,1,2,4-triazole has potential bridging fashions(μ1,2,μ2,4,and μ1,2,4)and strong coordination capabilities to bridge transition metal ions[18].To the best of our knowledge in published studies on 1,2,4-triazole-based energetic complexes,the ligands have been limited to 1,2,4-triazol-5-one[19-20],3-nitro-1,2,4-triazol-5-one[21-24],and 4-amino-1,2,4-triazol-5-one[25]. Thusfar,theligandsofothertriazolederivatives,suchas3-amino-1H-1,2,4-triazole[26]and 3,4,5-triamino-1,2,4-triazole[27],have been briefly studied.For the compound of AZT,main attention has been focused on its energetic ionic salts[28-32],except for our early research of using AZT as ligands for zinc(II)and cadmium(II) cations,where the structure and thermal properties were investigated[33-34].

    Enlightened by previous studies,we have selected other transition metals to construct novel AZT-based coordination compounds with new structures.Herein,we report a new manganese coordination compound[Mn(AZT)2(H2O)4](HTNR)2·4H2O,with AZT and H2O molecules as ligands,acidic anion of 2,4,6-trinitro resorcinol(HTNR)as outer anion.Thermal decomposition mechanism was studied with differential scanning calorimetry(DSC), thermogravimetry-derivative thermogravimetry(TG-DTG)analyses,and Fourier transform infrared(FTIR)spectroscopy.Furthermore,the investigations of sensitivity properties revealed the potential application of the title compound as an energetic material in ammunitions.

    1 Experimental

    General caution:AZT and its coordination compound are energetic materials and tend to explode under certain conditions. Appropriate safety precautions,such as safety glasses,face shields,leather coat,and ear plugs,should be taken during the synthesis,test,and measurement processes,especially when these compounds are prepared on a large scale and in dry states.

    1.1 Materials and instruments

    All chemicals from commercial sources were of analytical pure and used without further purification.AZT was prepared according to the method literature[35]reported.

    FTIR spectrum was recorded as KBr pellets on a Bruker Equinox 55 infrared spectrometer(Germany)in the range of 4000-400 cm-1with the resolution of 4 cm-1.Elemental analysis was carried out by a Flash EA 1112 full-automatic trace element analyzer(USA).

    DSC studies were performed on Perkin-Elmer Pyris-1 Differential Scanning Calorimeter(USA)with heating rates of 2,5,10, 15,and 20℃·min-1,respectively.TG analysis was conducted on Perkin-Elmer Pyris-1 Thermo-gravimetric Analyzer(USA) with a heating rate of 10℃·min-1in a flow of dry oxygen-free nitrogen at 20 mL·min-1.The sample of 0.5 mg was sealed in aluminum pans for DSC and held in platinum pans for TG-DTG.

    1.2 Preparation

    MnCO3(2.30 g,20 mmol)was added to a suspending solution of 2,4,6-trinitro resorcinol(9.80 g,40 mmol)in 20 mL distilled water at 50℃with vigorous stirring.Mn(HTNR)2solution was obtained after filtering the mixture.AZT(4.40 g,40 mmol)was dissolved in 40 mL distilled water,and the solution was added dropwise when the temperature reached 60℃.The mixture was stirred for an additional 1 h to complete the reaction.The jacinth precipitate was collected by filtration,washed with ethanol and dried in vacuum,with a yield of 84%(based on AZT).Element analysis,Calcd.(%)for[Mn(AZT)2(H2O)4](HTNR)2·4H2O:C, 21.16;H,2.64;N,27.77;Found(%):C,21.11;H,2.62;N,27.95. IR data(KBr pellet,ν/cm-1):3394(s),2150(s),1631(s),1572(s), 1531(s),1465(s),1333(s),1272(m),1180(m),1085(s),971(w), 927(m),873(w),735(m),692(m),626(w).

    1.3 X-ray crystallography

    Single crystals of[Mn(AZT)2(H2O)4](HTNR)2·4H2O were obtained through slow evaporation of a saturated water solution at 15℃for 25 d(distilled water,white rods,0.22 mm×0.20 mm× 0.18 mm).A Bruker Smart 1000 CCD diffractometer(Germany) with graphite monochromatic Mo Kαradiation(λ=0.07107 nm) was used for data collection at 21℃.Intensity measurements were performed using φ and ω scan modes.A total of 2793 reflections were used to determine the lattice parameters and orientation matrix in the range of 2.38°≤θ≤26.34°.The structure was solved by direct methods using SHELXS-97[36]and refined by full-matrix least squares techniques based on F2with the SHELXL-97 program[37].All non-hydrogen atoms were obtained from the difference Fourier map and refined anisotropically.All hydrogen atoms were generated geometrically or from the difference Fourier map,and treated by a constrained refinement. Crystallographic and refinement data are listed in Table 1.

    2 Results and discussion

    2.1 Structure description

    [Mn(AZT)2(H2O)4](HTNR)2·4H2O crystallizes with a triclinic unit cell in the space group P1.The coordination environment of themanganesecationandthemolecularunitof[Mn(AZT)2(H2O)4] (HTNR)2·4H2O,with atom labeling and the intra-molecular hydrogen bonds,are shown in Fig.1.Packing diagram of [Mn(AZT)2(H2O)4](HTNR)2·4H2O viewed along a-axis is shownin Fig.2.Selected bond data of[Mn(AZT)2(H2O)4](HTNR)2· 4H2O,compared with those in the molecular crystal of AZT[34], are listed in Table 2.The hydrogen bond lengths and bond angles are listed in Table 3.

    Table 1 Crystal data and structure refinement for [Mn(AZT)2(H2O)4](HTNR)2·4H2O

    As we can see from Fig.1,in the molecular unit of[Mn(AZT)2(H2O)4](HTNR)2·4H2O,each central manganese(II)ion is hexacoordinated with two N(4)atoms from two AZT molecules and four O atoms from four H2O molecules to form a centrosymmetric slightly distorted octahedron.There are three parallelogram planes in the structure,N(4)—O(9)—Mn(1)—N(4)#1—O(9)#1 (plane A),O(10)—N(4)—Mn(1)—O(10)#1—N(4)#1(plane B), and O(10)—O(9)—Mn(1)—O(10)#1—O(9)#1(plane C).The angles between plane A and plane B,plane B and plane C,plane C and plane A,all slightly derivate from 90°,are 86.0°,91.4°, and 91.2°,respectively.The bond lengths of manganese(II)centertothesixcoordinationatomscanbeobservedtobe0.2140(13) nm for Mn(1)—O(10)and Mn(1)—O(10)#1,0.2212(14)nm for Mn(1)—O(9)and Mn(1)—O(9)#1,0.2277(16)nm for Mn(1)—N(4)and Mn(1)—N(4)#1.The bond angles for O(10)—Mn(1)—O(10)#1,O(9)—Mn(1)—O(9)#1 and N(4)#1—Mn(1)—N(4)are almost the same(180°),while those around the central Mn2+derivate from 90°by the value of 1.28°,1.06°,and 3.97°,for the reason of the steric hindrance effect by the bulky AZT molecules and H2O molecules.

    In the crystal structure of[Mn(AZT)2(H2O)4](HTNR)2·4H2O, thecoordinationsiteofAZTisalsoN(5)atom,whichhasthemost negative charge(-0.49387e)as calculated at the B3LYP/6-311+ G**level using the Gaussian 98 program package[34].Most of the bond lengths and bond angles for the AZT ligand differ slightly from the corresponding ones of AZT molecule(Table 2),except for the azido-group with relatively obvious changes.The bond lengths of N(6)—C(8),N(7)—C(8)and N(8)—N(9)are shortened by 0.0007,0.0012 and 0.0007 nm,respectively,the elongation of the N(4)—C(8)bond is 0.0008 nm,otherwise.The rea-son for this can be concluded as the existence of the small steric hindrance effect of four H2O molecules.Besides,the coordination of Mn—N(4)destroys the natural p-π conjugation and π-π conjugation among the crystal structure of AZT in which the triazole ring is aromatic and contains six delocalized π-electrons. Corresponding to the length changes,the bond angels of N(8)—N(7)—C(8)and N(6)—N(8)—N(7)are increased by ca 3°,while that of N(9)—N(8)—N(7)is decreased by ca 3°.This kind of arrangement can facilitate the coordinated small-sized H2O molecules and the bulky AZT molecules with central manganese(II)cation to complete the octahedral sphere figure.The bond lengths and bond angles of HTNR are usual for coordination compounds with HTNR as outer anions.

    Table 2 Selected bond lengths and bond angles for[Mn(AZT)2(H2O)4](HTNR)2·4H2O and AZT

    Table 3 Hydrogen bond lengths and bond angles for[Mn(AZT)2(H2O)4](HTNR)2·4H2O

    There are many kinds of hydrogen bonds in the crystal structure of[Mn(AZT)2(H2O)4](HTNR)2·4H2O.Lattice and coordination H2O molecules play vital roles in the formation of the structure.Three types of intra-molecular hydrogen bonds can be observed from Fig.1.The first type is formed between the hydroxylgroup and nitro-group of the HTNR anion,O(6)—H(6)…O(5) and O(6)—H(6)…N(2).The second type occurs between the lattice H2O molecules and the adjacent nitro-group of the HTNR anion,O(11)—H(11A)…O(3).The third type takes place among the coordinated and lattice H2O molecules of O(9),O(11),and O (12).we can see from Fig.2 that all the molecular units are linked together into 3D structures by the intermolecular hydrogen bonds,which are formed among different molecular units and can be divided into two types.One type takes place between the lattice H2O molecules and coordinated H2O molecules or AZT molecule,O(12)—H(12A)…O(9)#3,O(10)—H(10A)…O (11)#2,N(5)—H(5)…O(12)#4.The similar mode occurs between the hydroxyl-group or deprotonated hydroxylgroup of the outer HTNR anion and the coordinated H2O molecules or AZT molecule,O(10)—H(10B)…O(1)#4,O(9)—H(9A)…O(4)#2, and O(6)—H(6)…N(6)#1,O(12)—H(12B)…O(1)#4.These extensive hydrogen bonds also make an important contribution totheformationandstabilityofthecrystalstructureof[Mn(AZT)2(H2O)4](HTNR)2·4H2O.

    2.2 Thermal decompositions

    Under the linear heating rate of 10℃·min-1,DSC and TGDTG experiments were carried out in order to investigate the thermal behaviors of[Mn(AZT)2(H2O)4](HTNR)2·4H2O.The DSC and TG-DTG curves of[Mn(AZT)2(H2O)4](HTNR)2·4H2O are illustrated in Fig.3 and Fig.4.

    Fig.3 DSC curve of[Mn(AZT)2(H2O)4](HTNR)2·4H2O at a heating rate of 10℃·min-1

    Fig.4 TG-DTG curves of[Mn(AZT)2(H2O)4](HTNR)2·4H2O at a heating rate of 10℃·min-1

    There are one endothermic process and three exothermic peaks in the range of 45.3-600℃.A mass loss of 15.8%can be seen in the TG-DTG curves during the first stage of 45.3-176.2℃,which is in coincident with the theoretical value of losing four lattice H2O molecules and four coordination H2O molecules. The structure of the compound is unstable and begins decomposing with three steps after lossing all the H2O molecules.The first-step is a sharp exothermic decomposition occurred during the temperature range of 176.2-229.8℃,with the peak temperature at 210.9℃and the exothermic enthalpy change of 185.9 kJ·mol-1.There is a mass loss of 20.2%in the TG-DTG curve. The compound undergoes further decomposition in the range of 229.8-339.2℃,with a peak temperature at 303.9℃and a mass loss of 29.7%.The exothermic enthalpy of this process is 187.1 kJ·mol-1,the value of which is similar to the first exothermic process.The last exothermic process occurs with the onset temperature at 388.2℃and the peak temperature at 444.1℃,the mass loss corresponding to this stage in TG-DTG curves is 35.0%.The exothermic enthalpy change(1038.3 kJ·mol-1)of this process is very strong.The mass fraction of the final residue is 9.3%,which is between the theoretical values of MnO and MnO2,7.8%and 9.6%.The absorption band at 600 and 650 cm-1in the FTIR spectrum of the residue at 600℃also proves that the final residue is the mixture of MnO[38]and MnO2[39].

    Based on the experimental and calculated results,the thermal decomposition processes of the complex can be proposed as follows:

    2.3 Non-isothermal kinetics analysis

    We can see,from the DSC and TG-DTG curves,the first exothermic process has dominant effects on the decomposition of the complex.Hence,we studied the kinetics parameters of the first exothermic process of[Mn(AZT)2(H2O)4](HTNR)2·4H2O by using the Kissinger′s[40]and Ozawa-Doyle′s[41]methods.The Kissinger equation(1)and Ozawa-Doyle equations(2)are as follows:

    where Tpis the peak temperature,℃;R is the gas constant,8.314 J·mol-1·℃-1;β is the linear heating rate,℃·min-1;C is a constant.

    Based on the multiple non-isothermal DSC curves obtained atfive different heating rates of 2,5,10,15,20℃·min-1,the peak temperatures Tpcan be observed as 196.5,203.3,211.1,214.8, 215.7℃.The values of apparent activation energy Ekand Eo, which are calculated by the Kissinger′s method and Ozawa-Doyle′s method,are 206.3 and 203.7 kJ·mol-1,respectively.The corresponding linear coefficients rkand roare 0.9934 and 0.9939. The pre-exponential factor Akdetermined with the Kissinger′s method is 20.55 s-1.The calculated results using both methods are similar and within the normal range of kinetic parameters of such thermal decomposition reaction[42].

    The Arrhenius equation can be expressed with Ea(the average of Ekand Eo)and lnAkas follows:lnk=20.55-206.3×103/(RT). This equation can be used to estimate the rate constants of the initialthermaldecompositionprocessof[Mn(AZT)2(H2O)4](HTNR)2· 4H2O.

    2.4 Sensitivitypropertiesofcomplex[Mn(AZT)2(H2O)4] (HTNR)2·4H2O

    Inordertostudythestabilityandthehazardof[Mn(AZT)2(H2O)4] (HTNR)2·4H2O,we tested its sensitivity properties.The sample of 20 mg was compacted in a copper cap with a pressure of 39.2 MPa to test the impact sensitivity and flame sensitivity.The impact sensitivity was determined with a Bruceton method[43]on the standard fall hammer apparatus,and the compacted sample was hit with 0.8 kg drop hammer on the apparatus.The results of impact sensitivity showed that[Mn(AZT)2(H2O)4](HTNR)2·4H2O did not fire at the highest apparatus limitation of 53 cm.

    The flame sensitivity was determined on a designed flame sensitivity apparatus,and the compacted sample was ignited by a standard black powder pellet right above the sample.The friction sensitivity was determined by using a standard pendulum apparatus.According to the standard method[44],flame sensitivity was evaluated with the height for 50%probability of explosion (h50%)of the sample.h50%of[Mn(AZT)2(H2O)4](HTNR)2·4H2O is calculated as 15.42 cm,which reveals that the compound has a moderate flame sensitivity.

    The sample was compressed firmly between two steel poles with mirror surfaces at the pressure of 1.96 MPa,then it was hit horizontally with a 1 kg hammer dropping from 90°angle.The statistical firing rate about friction sensitivity of[Mn(AZT)2(H2O)4](HTNR)2·4H2O is 80%,which shows that it is relatively sensitive to friction at the testing conditions.The sensitivity testing results are related with the molecular structure and thermal stability of the compound.

    3 Conclusions

    A novel energetic coordination compound[Mn(AZT)2(H2O)4] (HTNR)2·4H2O was synthesized and structurally characterized. Thermal analyses show that there are one endothermic process and three exothermic decomposition stages in the temperature range of 45.3-600℃,with the final residue at 600℃being the mixture of MnO and MnO2.The sensitivity test results indicate that[Mn(AZT)2(H2O)4](HTNR)2·4H2O has relatively strong sensitivity to friction,moderate sensitivity to flame and weak sensitivity to vertically hit,which means the compound possesses sensitivity and selectivity,which is of significance interest for ammunition application.

    Supporting information: CCDC No.746340 contains the supplementary crystallographic data for this article.These data can be obtained free of charge at http://www.ccdc.cam.ac.uk[or from the Cambridge Crystallographic Data Centre(CCDC),12 Union Road,Cambridge CB2 1EZ,UK;Fax:+44(0)1223-336033;Email:deposit@ccdc.cam.ac.uk].

    1 Mondal,T.;Saritha,B.;Ghanta,S.;Roy,T.K.;Mahapatra,S.; Durga,M.P.J.Mol.Struct.-Theochem.,2009,897:42

    2 Kokan,T.S.;Olds,J.R.;Seitzman,J.M.;Ludovice,P.J.Acta Astro.,2009,65:967

    3 Badgujar,D.M.;Talawar,M.B.;Asthana,S.N.;Mahulikar,P.P. J.Hazard.Mater.,2008,151:289

    4 Cottrell,R.;McAdory,D.;Jones,J.;Gilchrist,A.;Shields,D.; Strout,D.L.J.Phys.Chem.A,2006,110:13889

    5 Sikder,A.K.;Sikder,N.J.Hazard.Mater.,2004,112:1

    6 Pagoria,P.F.;Lee,G.S.;Mitchell,A.R.;Schmidt,R.D. Thermochim.Acta,2002,384:187

    7 Striebich,R.C.;Lawrence,J.J.Anal.Appl.Pyrolysis.,2003,70: 339

    8 Turker,L.;Atalar,T.;Guemues,S.;Camur,Y.J.Hazard.Mater., 2009,167:440

    9 Angelo,N.G.;Arora,P.S.J.Am.Chem.Soc.,2005,127:17134

    10 Lamanna,M.E.;Horra,E.;Jacobo,S.;Accorso,N.B.React. Funct.Polym.,2009,69:759

    11 Senchyk,G.A.;Lysenko,A.B.;Rusanov,E.B.;Chernega,A.N.; Krautscheid,H.;Domasevitch,K.V.Inorg.Chim.Acta,2009, 362:4439

    12 Isloor,A.M.;Kalluray,B.;Shetty,P.Eur.J.Med.Chem.,2009, 44:3784

    13 Mullen,K.M.;Mercurio,J.;Serpell,C.J.;Beer,P.D.Angew. Chem.Int.Edit.,2009,48:4781

    14 Sherif,S.M.;Erasmus,R.M.;Comins,J.D.J.Colloid Interface Sci.,2007,311:144

    15 Kuroiwa,K.;Shibata,T.;Takada,A.;Nemoto,N.;Kimizuka,N. J.Am.Chem.Soc.,2004,126:2016

    16 Li,Q.S.;Duan,H.X.J.Phys.Chem.A,2005,109:9089

    17 Xiao,Y.D.;Wei,L.H.;Wang,J.T.;Zhang,J.B.;Lin,S.F.;Zhou, Z.H.Chemom.Intell.Lab.Syst.,1999,45:277

    18 Zhai,Q.G.;Wu,X.Y.;Chen,S.M.;Lu,C.Z.;Yang,W.B.Cryst. Growth Des.,2006,6:2126

    19 Zhang,J.G.;Zhang,T.L.;Lu,Z.;Yu,K.B.Acta Chim.Sin., 1999,57:1233 [張建國,張同來,陸 政,郁開北.化學學報, 1999,57:1233]

    20 Zhang,J.G.;Zhang,T.L.;Yang,L.;Mao,L.Q.;Yu,K.B.Chin.J. Inorg.Chem.,2002,18:284 [張建國,張同來,楊 利,毛利秋,郁開北.無機化學學報,2002,18:284]

    21 Zhang,T.L.;Lü,C.H.;Zhang,J.G.;Zhang,Z.G.;Yu,K.B. Chin.J.Inorg.Chem.,2002,18:138 [張同來,呂春華,張建國,張志剛,郁開北.無機化學學報,2002,18:138]

    22 Singh,G.;Kapoor,I.P.S.;Felix,S.P.;Agrawal,J.P.Propellants Explos.Pyrotech.,2002,27:16

    23 Yun,S.S.;Kim,J.K.;Kim,C.H.J.Alloy.Compd.,2006,408: 945

    24 Song,J.R.;Ma,H.X.;Huang,J.;Hu,R.Z.Thermochim.Acta, 2004,416:43

    25 Zhang,J.G.;Zhang,T.L.Acta Chim.Sin.,2000,58:1563 [張建國,張同來.化學學報,2000,58:1563]

    26 Liu,B.;Chen,Y.H.;Zhang,X.C.Inorg.Chem.Commun.,2008, 11:965

    27 Bichay,M.;Fronabarger,J.W.;Gilardi,R.;Butcher,R.J.; Sanborn,W.B.;Sitzmanna,M.E.;Williams,M.D.Tetrahedron Lett.,2006,47:6663

    28 Zhang,J.P.;Lin,Y.Y.;Zhang,W.X.;Chen,X.M.J.Am.Chem. Soc.,2005,127:14162

    29 Xue,H.;Gao,Y.;Twamley,B.;Shreeve,J.M.Inorg.Chem., 2005,44:5068

    30 Huang,Y.G.;Gao,H.X.;Twamley,B.;Shreeve,J.M.Eur.J. Inorg.Chem.,2008,16:2560

    31 Moderhack,D.;Daoud,A.J.Heterocycl.Chem.,2003,40:625

    32 Drake,G.;Hawkins,T.;Brand,A.;Hall,L.;Mckay,M. Propellants Explos.Pyrotech.,2003,28:174

    33 Cui,Y.;Zhang,T.L.;Zhang,J.G.;Yang,L.Chin.J.Chem.,2008, 26:2021

    34 Cui,Y.;Zhang,T.L.;Zhang,J.G.;Yang,L.;Zhang,J.;Hu,X.C. Struct.Chem.,2008,19:269

    35 Kofman,T.P.;Krasnov,K.N.Russ.J.Org.Chem.,2004,40: 1651

    36 Sheldrick,G.M.SHELXL-97,program for the solution of crystal structure.Gottingen,Germany:University of Gottingen,1997

    37 Sheldrick,G.M.SHELXS-97,program for the refining of crystal structure.Gottingen,Germany:University of Gottingen,1997

    38 Nyquist,R.A.;Kagel,R.O.Infrared spectra of inorganic compounds.New York:Academic Press,1971:218

    39 Fernandes,J.B.;Desai,B.;Dalal,V.N.K.Electrochim.Acta, 1983,28:309

    40 Kissinger,H.E.Anal.Chem.,1957,29:1702

    41 Ozawa,T.Bull.Chem.Soc.Jpn.,1965,38:1881

    42 Hu,R.Z.;Yang,Z.Q.;Liang,Y.J.Thermochim.Acta,1988, 123:135

    43 Dixon,W.J.;Mood,A.M.J.Am.Stat.Assoc.,1948,43:109

    44 Liu,Z.T.;Lao,Y.L.Initiating explosive experimental.Beijing: Beijing Institute of Technology,1995:238-250 [劉自湯,勞允亮.起爆藥實驗.北京:北京理工大學出版社,1995:238-250]

    [Mn(AZT)2(H2O)4](HTNR)2·4H2O的合成、晶體結(jié)構(gòu)、熱行為及感度性質(zhì)

    馮金玲1張建國1,*張同來1,*崔 燕2

    (1北京理工大學爆炸科學與技術(shù)國家重點實驗室,北京 100081;2防化研究院第六研究所,北京 102205)

    通過酸性2,4,6-三硝基間苯二酚(HTNR)的錳鹽與3-疊氮-1,2,4-三唑(AZT)在水溶液中反應,制備得到一種新穎的錳配合物[Mn(AZT)2(H2O)4](HTNR)2·4H2O.通過元素分析和紅外光譜對配合物進行了表征,用X射線單晶衍射分析確定其晶體結(jié)構(gòu).該配合物為三斜晶系,空間群為P1,中心錳(II)離子為六配位的畸變的八面體結(jié)構(gòu),分子內(nèi)和分子間強烈的氫鍵作用構(gòu)成了有序的三維(3D)網(wǎng)狀結(jié)構(gòu).采用差示掃描量熱(DSC)和熱重-微分熱重 (TG-DTG)分析技術(shù)研究了配合物的熱分解特性,并預測了它的熱分解反應機理.利用Kissinger方法和Ozawa-Doyle方法研究了其第一放熱分解峰的分解動力學過程.其分解過程包括一個吸熱峰和三個放熱峰,在600℃的分解產(chǎn)物為MnO和MnO2的混合物.同時.對這個配合物進行了感度(撞擊感度、火焰感度、摩擦感度)性能分析,結(jié)果表明,它對外界刺激具有很強的響應性和選擇性.

    晶體結(jié)構(gòu);3-疊氮-1,2,4-三唑;錳(II)配合物;感度;熱行為

    O641;O642;O741

    Received:April 1,2010;Revised:May 23,2010;Published on Web:July 15,2010.

    *Corresponding authors.ZHANG Jian-Guo,Email:zhangjianguobit@yahoo.com.cn.ZHANG Tong-Lai,Email:ztlbit@bit.edu.cn;

    Tel/Fax:+86-10-68913818.

    The project was supported by the National Natural Science Foundation of China(20471008)and Program for New Century Excellent Talents in Universities of the Ministry of Education of China(NCET-09-0051).

    國家自然科學基金(20471008)和教育部新世紀優(yōu)秀人才支持計劃(NCET-09-0051)資助項目

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    張建國疊氮北京理工大學
    湖州師范學院設計作品選登
    北京理工大學機械與車輛學院簡介
    兵工學報(2023年1期)2023-03-03 02:55:40
    復數(shù)熱點題型淺析
    Physical generation of random numbers using an asymmetrical Boolean network*
    北京理工大學通信與網(wǎng)絡實驗室
    降低乏燃料后處理工藝中HN3 含量的方法研究
    兩種不同結(jié)構(gòu)納米疊氮化銅的含能特性研究
    火工品(2018年1期)2018-05-03 02:27:56
    齊多夫定生產(chǎn)中疊氮化工藝優(yōu)化
    Design of Two-wheeled Mobile Control Robot with Holographic Projection
    人民交警之歌
    日韩大片免费观看网站| 中文在线观看免费www的网站| 99久久精品一区二区三区| 国产精品久久久久久久电影| 99热国产这里只有精品6| 一级a做视频免费观看| 亚洲va在线va天堂va国产| 国产91av在线免费观看| 国产欧美亚洲国产| 久久精品国产自在天天线| 欧美少妇被猛烈插入视频| 99久国产av精品国产电影| 国产精品蜜桃在线观看| 精品少妇黑人巨大在线播放| 午夜福利在线在线| 丰满迷人的少妇在线观看| 国产精品一区www在线观看| 一级爰片在线观看| 大话2 男鬼变身卡| 六月丁香七月| 在线亚洲精品国产二区图片欧美 | 丰满迷人的少妇在线观看| 国产黄色视频一区二区在线观看| 一个人免费看片子| 亚洲第一区二区三区不卡| 欧美bdsm另类| 美女内射精品一级片tv| 中文在线观看免费www的网站| 国产精品一区二区在线观看99| av国产免费在线观看| 国产精品女同一区二区软件| 亚洲精品成人av观看孕妇| 久久精品国产a三级三级三级| 九草在线视频观看| 街头女战士在线观看网站| 国产精品三级大全| 久久99热6这里只有精品| 久久久欧美国产精品| 欧美精品人与动牲交sv欧美| 国产成人精品婷婷| 久久久久国产精品人妻一区二区| 国产av一区二区精品久久 | 亚洲,一卡二卡三卡| 成人二区视频| 伦理电影大哥的女人| 婷婷色综合大香蕉| 大片免费播放器 马上看| 欧美日韩亚洲高清精品| 久久久久久久久久人人人人人人| 少妇人妻 视频| 毛片一级片免费看久久久久| 成年av动漫网址| 九草在线视频观看| 成人国产麻豆网| 久久6这里有精品| 亚洲精品456在线播放app| 伦精品一区二区三区| av播播在线观看一区| 舔av片在线| 久久精品国产亚洲网站| 91狼人影院| 国产精品成人在线| 啦啦啦视频在线资源免费观看| 极品教师在线视频| 欧美日韩综合久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利视频精品| 亚洲国产毛片av蜜桃av| 午夜福利网站1000一区二区三区| 精品久久国产蜜桃| 婷婷色av中文字幕| 亚洲色图av天堂| 国产伦精品一区二区三区视频9| 久久韩国三级中文字幕| av在线老鸭窝| 日韩一本色道免费dvd| 国产亚洲最大av| 亚洲精品成人av观看孕妇| 日韩成人伦理影院| 精品国产三级普通话版| 国精品久久久久久国模美| 中文字幕亚洲精品专区| 国产有黄有色有爽视频| 一级片'在线观看视频| a 毛片基地| av视频免费观看在线观看| 91午夜精品亚洲一区二区三区| 丰满乱子伦码专区| 男人狂女人下面高潮的视频| 国产精品一区二区三区四区免费观看| 丰满人妻一区二区三区视频av| 国产精品久久久久成人av| 一级爰片在线观看| 亚洲一区二区三区欧美精品| 18禁在线播放成人免费| 在线亚洲精品国产二区图片欧美 | 久久精品国产亚洲av涩爱| 久久国产乱子免费精品| 高清不卡的av网站| 少妇精品久久久久久久| 日日啪夜夜撸| 免费观看无遮挡的男女| 日本欧美视频一区| 国产亚洲5aaaaa淫片| 人人妻人人添人人爽欧美一区卜 | 日产精品乱码卡一卡2卡三| 少妇裸体淫交视频免费看高清| 久久精品久久久久久久性| 国产成人一区二区在线| 又大又黄又爽视频免费| 久久久久网色| 国产精品不卡视频一区二区| 五月伊人婷婷丁香| 99久久精品国产国产毛片| 中文字幕久久专区| 精品人妻视频免费看| 亚洲欧美日韩卡通动漫| 老女人水多毛片| 男女免费视频国产| 欧美一区二区亚洲| 精品亚洲成国产av| 亚洲精品日韩在线中文字幕| 天美传媒精品一区二区| 久久久a久久爽久久v久久| av在线蜜桃| 一级毛片电影观看| 中文字幕亚洲精品专区| 亚洲精品aⅴ在线观看| 男女边吃奶边做爰视频| 纯流量卡能插随身wifi吗| 免费av不卡在线播放| 一本—道久久a久久精品蜜桃钙片| 热99国产精品久久久久久7| 国产淫语在线视频| 少妇被粗大猛烈的视频| 久久久久网色| 日韩,欧美,国产一区二区三区| 日韩不卡一区二区三区视频在线| 国内精品宾馆在线| 97超碰精品成人国产| 精华霜和精华液先用哪个| 欧美成人一区二区免费高清观看| 久久这里有精品视频免费| 亚洲欧美精品专区久久| av不卡在线播放| 精品一区二区三卡| 日韩中字成人| 大香蕉97超碰在线| 久久这里有精品视频免费| 黄片无遮挡物在线观看| 亚洲高清免费不卡视频| h视频一区二区三区| 亚洲美女黄色视频免费看| 亚洲成人手机| a级一级毛片免费在线观看| 少妇熟女欧美另类| 人妻制服诱惑在线中文字幕| 一本—道久久a久久精品蜜桃钙片| 最近2019中文字幕mv第一页| 免费看光身美女| 少妇人妻久久综合中文| 少妇熟女欧美另类| 欧美三级亚洲精品| 黄色怎么调成土黄色| 久久久久久久久久久丰满| 纵有疾风起免费观看全集完整版| 青青草视频在线视频观看| 亚洲av不卡在线观看| 国产精品一区二区在线观看99| 一级片'在线观看视频| 天堂俺去俺来也www色官网| 伦理电影大哥的女人| 中文精品一卡2卡3卡4更新| 建设人人有责人人尽责人人享有的 | 天堂中文最新版在线下载| a级毛片免费高清观看在线播放| 亚洲精品456在线播放app| 老司机影院毛片| 国产亚洲欧美精品永久| 蜜桃亚洲精品一区二区三区| 一级毛片黄色毛片免费观看视频| 深爱激情五月婷婷| 大又大粗又爽又黄少妇毛片口| 午夜福利在线在线| 丰满少妇做爰视频| 国产精品99久久久久久久久| 免费不卡的大黄色大毛片视频在线观看| 国产美女午夜福利| 女性生殖器流出的白浆| 国产精品三级大全| 中文字幕免费在线视频6| 成年美女黄网站色视频大全免费 | xxx大片免费视频| 色视频www国产| 成人亚洲精品一区在线观看 | av在线app专区| av网站免费在线观看视频| 亚洲精品久久午夜乱码| 国产在线男女| 色吧在线观看| 欧美3d第一页| 成人毛片60女人毛片免费| 超碰av人人做人人爽久久| 99久久人妻综合| 男女啪啪激烈高潮av片| 日韩免费高清中文字幕av| 赤兔流量卡办理| 看非洲黑人一级黄片| 一本一本综合久久| 国产一区二区三区综合在线观看 | 内射极品少妇av片p| 色吧在线观看| 久久久久久人妻| 日韩av不卡免费在线播放| 欧美zozozo另类| 精品一品国产午夜福利视频| 久久精品久久久久久噜噜老黄| 精品一区二区三区视频在线| 看十八女毛片水多多多| 男女国产视频网站| 亚洲人成网站高清观看| 亚洲天堂av无毛| 国内精品宾馆在线| 亚洲国产日韩一区二区| 伦理电影免费视频| 日本欧美视频一区| 又大又黄又爽视频免费| 亚洲av综合色区一区| 日本-黄色视频高清免费观看| 欧美日韩视频高清一区二区三区二| 免费黄频网站在线观看国产| av播播在线观看一区| 国产精品熟女久久久久浪| 亚洲欧美日韩东京热| 免费久久久久久久精品成人欧美视频 | 国产精品99久久久久久久久| 亚洲内射少妇av| 狠狠精品人妻久久久久久综合| 边亲边吃奶的免费视频| 国产在视频线精品| 国产在线视频一区二区| 国产精品三级大全| 黄色欧美视频在线观看| av免费在线看不卡| 蜜桃久久精品国产亚洲av| 日韩人妻高清精品专区| 久久国内精品自在自线图片| 亚洲色图av天堂| 舔av片在线| 日本欧美视频一区| 丰满人妻一区二区三区视频av| 成人二区视频| 在线观看av片永久免费下载| 精品久久久精品久久久| 色综合色国产| 亚洲国产精品一区三区| 联通29元200g的流量卡| 色吧在线观看| av黄色大香蕉| 亚洲天堂av无毛| 亚洲人与动物交配视频| 亚洲电影在线观看av| av国产精品久久久久影院| 赤兔流量卡办理| 18禁裸乳无遮挡动漫免费视频| 欧美3d第一页| 免费人妻精品一区二区三区视频| 热99国产精品久久久久久7| 成人免费观看视频高清| 黄色怎么调成土黄色| a级一级毛片免费在线观看| 国产成人免费观看mmmm| 高清毛片免费看| 亚洲精品,欧美精品| 99久久精品国产国产毛片| 国产在线免费精品| 校园人妻丝袜中文字幕| 伦精品一区二区三区| 亚洲国产欧美人成| 大又大粗又爽又黄少妇毛片口| 菩萨蛮人人尽说江南好唐韦庄| 国产无遮挡羞羞视频在线观看| 人妻夜夜爽99麻豆av| av国产久精品久网站免费入址| 国产精品99久久久久久久久| 激情 狠狠 欧美| 日韩电影二区| 大码成人一级视频| av在线老鸭窝| 亚洲国产av新网站| 中文字幕免费在线视频6| 在线观看免费日韩欧美大片 | 97热精品久久久久久| 99国产精品免费福利视频| 国产精品欧美亚洲77777| 国产色爽女视频免费观看| 日韩不卡一区二区三区视频在线| 免费看日本二区| 午夜日本视频在线| 2021少妇久久久久久久久久久| 三级经典国产精品| 久久6这里有精品| 欧美老熟妇乱子伦牲交| 丰满乱子伦码专区| 人人妻人人看人人澡| 少妇的逼好多水| 亚洲人成网站高清观看| 日韩三级伦理在线观看| 又爽又黄a免费视频| 最新中文字幕久久久久| 国产欧美日韩一区二区三区在线 | 欧美区成人在线视频| a 毛片基地| 免费观看av网站的网址| 高清欧美精品videossex| h日本视频在线播放| 日本爱情动作片www.在线观看| 欧美高清成人免费视频www| 又粗又硬又长又爽又黄的视频| 韩国av在线不卡| 少妇高潮的动态图| 国产av国产精品国产| 美女中出高潮动态图| 午夜福利在线在线| 免费黄色在线免费观看| 亚洲精品乱码久久久久久按摩| 我要看黄色一级片免费的| 亚洲经典国产精华液单| 嫩草影院入口| 久久女婷五月综合色啪小说| 18禁在线无遮挡免费观看视频| 日本黄色日本黄色录像| 高清不卡的av网站| 成人免费观看视频高清| 99久久综合免费| 一个人看视频在线观看www免费| av一本久久久久| 免费人成在线观看视频色| 大码成人一级视频| 欧美一级a爱片免费观看看| 亚洲一级一片aⅴ在线观看| 欧美3d第一页| 亚洲美女黄色视频免费看| 麻豆精品久久久久久蜜桃| 午夜福利高清视频| 在线免费观看不下载黄p国产| 大话2 男鬼变身卡| 国产人妻一区二区三区在| 国产免费一级a男人的天堂| 热99国产精品久久久久久7| av.在线天堂| 午夜福利影视在线免费观看| 你懂的网址亚洲精品在线观看| av卡一久久| 国产在线免费精品| 好男人视频免费观看在线| 成人亚洲精品一区在线观看 | 国产成人一区二区在线| 精品少妇久久久久久888优播| 伦精品一区二区三区| 久久综合国产亚洲精品| 欧美人与善性xxx| 亚洲av电影在线观看一区二区三区| 久热这里只有精品99| 久久人人爽人人爽人人片va| 国产伦精品一区二区三区四那| 2018国产大陆天天弄谢| 成年女人在线观看亚洲视频| 国产精品三级大全| 日韩在线高清观看一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 一级av片app| 国产午夜精品久久久久久一区二区三区| 国产亚洲一区二区精品| 婷婷色综合大香蕉| 久久精品国产亚洲av天美| 亚洲欧洲国产日韩| av线在线观看网站| 一本色道久久久久久精品综合| 极品少妇高潮喷水抽搐| 亚洲一级一片aⅴ在线观看| 国产色爽女视频免费观看| 免费不卡的大黄色大毛片视频在线观看| 国产色爽女视频免费观看| 日韩中文字幕视频在线看片 | 成人漫画全彩无遮挡| 色5月婷婷丁香| 偷拍熟女少妇极品色| 精品少妇黑人巨大在线播放| 一二三四中文在线观看免费高清| 夫妻性生交免费视频一级片| 亚洲精品国产av成人精品| 午夜福利在线观看免费完整高清在| 男人和女人高潮做爰伦理| 天堂中文最新版在线下载| 日韩亚洲欧美综合| 在线观看av片永久免费下载| 日本黄色片子视频| 男女下面进入的视频免费午夜| 国产91av在线免费观看| 成人国产av品久久久| 日韩一区二区三区影片| 免费观看a级毛片全部| 晚上一个人看的免费电影| 国内揄拍国产精品人妻在线| 国产 一区 欧美 日韩| 精品午夜福利在线看| h视频一区二区三区| 丰满乱子伦码专区| 亚洲在久久综合| 如何舔出高潮| 一区二区av电影网| 亚洲av成人精品一区久久| av又黄又爽大尺度在线免费看| 日本欧美视频一区| 国产精品爽爽va在线观看网站| 久久av网站| 啦啦啦中文免费视频观看日本| 亚洲色图av天堂| 性色avwww在线观看| 肉色欧美久久久久久久蜜桃| 国产精品久久久久久精品电影小说 | 一区二区三区免费毛片| 三级国产精品欧美在线观看| 国产美女午夜福利| 少妇人妻一区二区三区视频| 直男gayav资源| 最近最新中文字幕免费大全7| 久久久久久久亚洲中文字幕| av一本久久久久| 国产精品99久久久久久久久| 好男人视频免费观看在线| 天堂中文最新版在线下载| 人妻少妇偷人精品九色| 国产真实伦视频高清在线观看| 久热久热在线精品观看| 国产伦精品一区二区三区视频9| 免费黄频网站在线观看国产| 欧美少妇被猛烈插入视频| 欧美+日韩+精品| 在线观看免费高清a一片| 国产av码专区亚洲av| 国产淫片久久久久久久久| 亚洲精品视频女| 免费看日本二区| 国产伦精品一区二区三区视频9| 国产精品麻豆人妻色哟哟久久| 免费久久久久久久精品成人欧美视频 | 久久久午夜欧美精品| 久久精品久久久久久久性| 又大又黄又爽视频免费| 日本欧美视频一区| 99九九线精品视频在线观看视频| 人人妻人人看人人澡| 人妻夜夜爽99麻豆av| 久久精品国产亚洲网站| 久久精品久久久久久噜噜老黄| 老熟女久久久| 国产男女内射视频| 精品人妻偷拍中文字幕| 妹子高潮喷水视频| 亚洲美女视频黄频| 日韩视频在线欧美| 在线观看美女被高潮喷水网站| 99re6热这里在线精品视频| 国产av国产精品国产| 成人亚洲欧美一区二区av| 最近手机中文字幕大全| 国产乱人视频| 亚洲精品国产av蜜桃| 国产成人91sexporn| 99热这里只有是精品50| 国国产精品蜜臀av免费| 免费大片黄手机在线观看| 国产精品久久久久久久久免| 亚洲伊人久久精品综合| 又黄又爽又刺激的免费视频.| a级毛片免费高清观看在线播放| 日韩国内少妇激情av| 精品久久久精品久久久| 男人舔奶头视频| 国产精品蜜桃在线观看| 九九久久精品国产亚洲av麻豆| 国产免费又黄又爽又色| 少妇裸体淫交视频免费看高清| 国产男女超爽视频在线观看| 国内精品宾馆在线| 国产男女超爽视频在线观看| 一区二区三区四区激情视频| 亚洲成色77777| 成年人午夜在线观看视频| freevideosex欧美| 99久久人妻综合| 亚洲一级一片aⅴ在线观看| 国产久久久一区二区三区| 久久精品久久久久久噜噜老黄| 精品人妻一区二区三区麻豆| 男女国产视频网站| 亚洲精品一二三| 久久久久人妻精品一区果冻| 在线精品无人区一区二区三 | 亚洲精品视频女| 狠狠精品人妻久久久久久综合| 大码成人一级视频| 亚洲精华国产精华液的使用体验| 国产成人a∨麻豆精品| 国产女主播在线喷水免费视频网站| 亚洲av综合色区一区| 一级毛片 在线播放| 国产又色又爽无遮挡免| 嫩草影院新地址| 成年美女黄网站色视频大全免费 | 乱系列少妇在线播放| 日本午夜av视频| 中文在线观看免费www的网站| 亚洲精品国产色婷婷电影| 国产精品一区二区三区四区免费观看| 中文乱码字字幕精品一区二区三区| 2022亚洲国产成人精品| 欧美极品一区二区三区四区| 九色成人免费人妻av| 伦精品一区二区三区| 最近手机中文字幕大全| 街头女战士在线观看网站| 老女人水多毛片| 亚洲国产精品一区三区| 国产精品久久久久久久电影| 国产精品一区www在线观看| 看非洲黑人一级黄片| 男女无遮挡免费网站观看| 一级毛片电影观看| 国产精品一区二区在线观看99| 水蜜桃什么品种好| 日韩不卡一区二区三区视频在线| 久热这里只有精品99| 国产成人a∨麻豆精品| 精品人妻偷拍中文字幕| 国产久久久一区二区三区| 久久久精品94久久精品| 国产精品.久久久| 国产成人aa在线观看| 亚洲av成人精品一二三区| 99久久精品一区二区三区| 久久6这里有精品| 男的添女的下面高潮视频| 久久久久久人妻| 免费av中文字幕在线| 久久女婷五月综合色啪小说| 秋霞在线观看毛片| 菩萨蛮人人尽说江南好唐韦庄| 国产成人午夜福利电影在线观看| 久久午夜福利片| 这个男人来自地球电影免费观看 | 亚洲国产成人一精品久久久| 精品久久久久久久久av| 色综合色国产| 久久精品夜色国产| 亚洲国产精品专区欧美| 蜜桃在线观看..| 在线观看免费高清a一片| 日韩av不卡免费在线播放| 亚洲精品一区蜜桃| 18禁在线播放成人免费| 欧美xxⅹ黑人| 中文字幕亚洲精品专区| 黑人猛操日本美女一级片| av天堂中文字幕网| 三级国产精品片| 日韩不卡一区二区三区视频在线| 18+在线观看网站| 成人无遮挡网站| 自拍偷自拍亚洲精品老妇| tube8黄色片| 色视频在线一区二区三区| 国产女主播在线喷水免费视频网站| 狠狠精品人妻久久久久久综合| 黑人猛操日本美女一级片| 国产av精品麻豆| 婷婷色av中文字幕| 日本猛色少妇xxxxx猛交久久| 国产精品一区二区在线观看99| 99热全是精品| 十分钟在线观看高清视频www | 国产av码专区亚洲av| 亚洲av综合色区一区| 高清av免费在线| 欧美最新免费一区二区三区| 韩国av在线不卡| 亚洲自偷自拍三级| 国产精品.久久久| 久久久久性生活片| 精品午夜福利在线看| 看十八女毛片水多多多| 国产乱来视频区| 自拍欧美九色日韩亚洲蝌蚪91 | 精品国产三级普通话版| 欧美高清成人免费视频www| 亚洲欧美清纯卡通| 国产一区二区在线观看日韩| 久久久欧美国产精品| 毛片女人毛片| 成人国产麻豆网| 亚洲无线观看免费| 国产精品久久久久久精品电影小说 | 人妻系列 视频| 国产男人的电影天堂91| 一个人看的www免费观看视频| 国产乱来视频区| 又粗又硬又长又爽又黄的视频| 亚洲成色77777| 婷婷色av中文字幕| 免费av中文字幕在线| 日本免费在线观看一区| 18禁动态无遮挡网站| 国产高清国产精品国产三级 |