• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physical generation of random numbers using an asymmetrical Boolean network*

    2021-11-23 07:25:56HaiFangLiu劉海芳YunCaiWang王云才LuXiaoSang桑魯驍andJianGuoZhang張建國
    Chinese Physics B 2021年11期
    關鍵詞:張建國劉海

    Hai-Fang Liu(劉海芳) Yun-Cai Wang(王云才) Lu-Xiao Sang(桑魯驍) and Jian-Guo Zhang(張建國)

    1Key Laboratory of Advanced Transducers and Intelligent Control System,Ministry of Education,Taiyuan University of Technology,Taiyuan 030024,China

    2College of Physics and Optoelectronics,Taiyuan University of Technology,Taiyuan 030024,China

    3Guangdong Provincial Key Laboratory of Photonics Information Technology,Guangzhou 510006,China

    4School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China

    Keywords: autonomous Boolean networks,random numbers,chaos,unpredictability

    1. Introduction

    Random numbers are important in many fields, such as identity recognition,[1-3]Monte Carlo simulations[4,5]and information encryption.[1,6,7]In those applications, the quality of random numbers is extremely significant. Especially in information encryption, randomness and unpredictability of random numbers are the key factors to ensure information security.[1,6,7]

    Random number generators may be divided into pseudorandom number generators and physical random number generators. The pseudorandom numbers are generated by algorithms, which can produce random numbers with high speed and good distribution characteristics.[8,9]However,the unpredictability of pseudorandom numbers is determined by the seeds of the algorithm,i.e.,the sequence of random numbers is deterministic and can be generated repeatedly as long as the seeds are fixed.[1]The physical random numbers are generated by extracting and quantifying the random characteristics of physical processes. The optical physical random number generators (PRNGs) feature the highspeed physical generation of random numbers due to the high speed of optical devices.[10]On the other hand, electrical random numbers are more widely used because they are inexpensive and easily integrated. Entropy sources of electrical PRNGs include noise, metastability, oscillator and chaos. The PRNGs based on noise directly amplify and extract the noise from a device, and the entropy source is genuinely random, but the amplitude of the noise is so small that a strong amplifier is needed, thereby introducing a 0-1 bias and increasing the power consumption.[11-13]The PRNGs based on metastability obtain random numbers from a metastable system, which produces two stable states with equal probability. However,it is hard to obtain perfectly balanced probabilities, and thus a 0-1 bias is introduced.[14,15]The PRNGs based on oscillations extract random numbers by sampling phase jitter from an oscillator.[16,17]The PRNGs based on chaos obtains random numbers from physical chaotic systems, in which noise is amplified rapidly by chaos.[18,19]Chaotic PRNGs have become standard in the field because of their sensitivity to noise,broadband features,and large amplitude.[1]

    Boolean chaos produced by ABN has been widely addressed in recent years. In 2009, Zhang Ruiet al.[20]realized an ABN by using a logical circuit and observed chaos in experiment. The chaotic bandwidth may be on the order of GHz (?10 dB), which largely outperforms the existing electrical sources.[20]In ABN-based chaotic systems,all nodes of the network may produce chaos,i.e.,there are at least 2 positive Lyapunov exponents, thus leading to complex dynamics. The ABN chaotic system is composed of digital logic devices, which have a simple structure and are easy to integrate in comparison with other hyperchaotic systems, whose hardware implementation requires analog devices such as resistances, capacitances or inductances.[21-23]Boolean chaos,due to its advantages of low power consumption, wide bandwidth and easy integration, has been successfully applied to random numbers generation.In 2013,Rosinet al.proposed an ABN-based PRNG composed of fifteen 3-input logical XOR gates and one 3-input logical XNOR gate.[24]In 2017, Donget al. improved the architecture,showing that only four nodes,instead of six, may be used to produce chaotic oscillations.However, to fabricate a random number generator, 16 logical gates are necessary.[25]In 2018, MAet al. proposed a new PRNG based on an ABN with 7 3-input logical gates, thus reducing the power consumption.[26]However,their device is prone to 0-1 bias and should employ an XOR chain for postprocessing. The 2-input logical gates may reduce power consumption because they use fewer CMOS MOSFETs or transistors than 3-input logical gates. In 2015,Parket al. developed a PRNG based on an ABN composed of one 2-input logical XNOR gate and 32 inverters.[27]The generated random numbers can pass the NIST tests after a post-processing. In 2019,Zhanget al. proposed a PRNG based on an ABN composed of 15 2-input logical gates, it can generate random numbers passing the NIST tests without post-processing.[28]However,the oscillations of the ABN are dependent on the delay time along links,because of the symmetric structure.

    In this paper,an aABN with asymmetric topology is proposed. Its main advantage is the reduction in power consumption due to the reduction in the number of nodes. The PRNG based on the proposed aABN produces random numbers passing the NIST tests without post-processing. The rest of this paper is structured as follows. Results from numerical simulations are presented in Section 2, showing that the oscillation of the aABN is independent of the incommensurate delays along links. In Section 3, we describe the experimental implementation of the aABN on an FPGA(Chip: Altera Cyclone IV FPGA, EP4CE10F17C8N), and discuss experimental results,showing that the chaotic features are comparable to those obtained from symmetric ABNs,e.g.those suggested in Refs.[24,28],with a reduced number of logical gates. In Section 4, a novel aABN-based RNG is proposed. We generate 1 Gbit of data(1000 sequences of 1 Mbit)and prove they can pass the NIST test suite successfully. The unpredictability of random numbers is also analyzed by repeatedly restarting the RNG. Finally, in Section 5, we draw some conclusions from the present study and also present the perspectives in this research topic.

    2. Asymmetrical autonomous Boolean network model

    The structure diagram of the aABN is shown in Fig.1(a).For comparison, figures 1(b)and 1(c)show the structure diagrams of the symmetric ABNs proposed in Refs. [24,28]. In the following, ABNs of Figs. 1(b) and 1(c) will be referred to as sABN1 and sABN2, respectively. In Fig. 1, each node represents a logical gate, node 0 executes logic XNOR while the other nodes execute logic XOR,τi jrepresents the delay time along the link from nodejto nodei. The number of nodes in aABN, sABN1, and sABN2 are 12, 15, and 16, respectively. Each node in aABN and sABN1 have two inputs from other nodes, while each node in sABN2 has three inputs from two other nodes and one self-feedback. Each node in sABN1 and sABN2 are coupled with their adjacent nodes,leading to a symmetric structure. The topology of aABN is asymmetric instead,because nodes 7,8 and node 0,1 are not mutually coupled.

    The mathematical model of aABN is shown as follows:

    whereτlp,iis the response characteristic parameter of the logical gatei, which regulates the response speed of the logical gate,xidenotes the output of nodei,τijrepresents the delay time along the link from nodejtoi,fiis the logical function of nodei, andXiis 0 or 1, depending on whetherxiis below or above a given thresholdxth. The threshold is set to bexth=0.5 in the simulations,and it is determined by the logical gate itself in experiment.

    Looking at the results of simulated experiments, we see that the oscillations of ABNs are sensitive to the delay time along links. The oscillation amplitudes of some nodes of sABN1 and sABN2 are very small, and some nodes do not even oscillate when the parametersτijare assumed to be the same value. In order to make a comparison, the oscillations of aABN, sABN1, and sABN2 are observed under the identicalτi j. The simulation results are shown in Fig. 2. In this simulation,we assumeτlp,i=0.35 ns andτij=0.05 ns. Time series of aABN,sABN1,and sABN2 are shown in Figs.2(a),2(b), and 2(c), respectively. It may be seen that the output waveforms of symmetric nodes of sABN1 and sABN2 are identical: in Fig. 2(b) we havex1(t)=x14(t),x2(t)=x13(t),x3(t) =x12(t),x4(t) =x11(t),x5(t) =x10(t),x6(t) =x9(t),andx7(t) =x8(t), and in Fig. 2(c) we havex1(t) =x15(t),x2(t)=x14(t),x3(t)=x13(t),x4(t)=x12(t),x5(t)=x11(t),x6(t)=x10(t), andx7(t)=x9(t). As shown in Fig. 2(a), almost every node oscillates between 0 and 1 with a large amplitude,only node 1 has a small amplitude of oscillations.Figure 2(b)shows that the outputs of ten nodes are stable,whereas those from the other five nodes oscillate slightly. In Fig.2(c),we may see three nodes with stable output,whereas the other 13 nodes oscillate. The amplitudes are smaller than those of aABN as shown in Fig.2(a).The outputs are also observed for different values ofτi j. When the parametersτijare equal,the oscillation amplitudes of sABN1 and sABN2 increase withτijincreasing. However,the performances of sABN1 and sABN2 are worse than those of aABN. If the parametersτijchanges withiandj(incommensurately),all nodes of aABN,sABN1 and sABN2 can produce large amplitude oscillations. We observe that our aABN always oscillates independently of the choice ofτijchanges. In particular, the oscillations of aABN are independent of the incommensurate time delays and logical gates.

    Fig.1. Structure diagrams of(a)aABN,(b)sABN1,and(c)sABN2.

    Fig.2. Simulation results: (a)time series of aABN,(b)time series of sABN1,(c)time series of sABN2.

    3. Experimental results

    In our experiments, aABN, sABN1, and sABN2 are implemented on the same FPGA.There are no additional delays,i.e.,eachτijis the delay of the connection line in the FPGA.Figure 3(b) shows a schematic diagram of the experimental device,which includes a computer,an FPGA chip and an oscilloscope. The FPGA implementation includes 4 steps:

    (i)the Verilog program code is written(see Fig.3(a)),realizing the function in formula(1);

    (ii)the Verilog program is compiled to generate the JTAG Indirect Configuration File;

    (iii)the JTAG Indirect Configuration File is downloaded to FPGA chip. Figure 3(c)shows the RTL circuit diagram of FPGA,where net~idenotes nodei,i.e.,XOR gate fori=1-11, and XNOR gate fori=0, net[i] is buffer fori=0-11,wordout0 denotes the outputxi,takingxi=x0for example in the picture;

    (iv) the output data are observed and collected through the oscilloscope connected to the FPGA.

    Fig.3. (a)Verilog program code of Eq.(1),(b)schematic diagram of experimental device,and(c)RTL circuit diagram of FPGA.

    Experimental results show that all nodes of aABN,sABN1, and sABN2 can produce chaos. Taking the outputs of node 0 for example, experimental results are shown in Fig. 4. Figures 4(a1), 4(b1), and 4(c1) show that time series from aABN, sABN1, and sABN2 are chaotic. Figures 4(a2), 4(b2), and 4(c2) display the distributions of the output voltage amplitudes: one may see a double-peak structure with maxima at high(1 V)level and low(0 V)level. Indeed,the digital logical gates’0-1(1-0)transition process is very short and the output sequences are close to binary. The largest Lyapunov exponent is a popular method to measure chaos.[20,29]The largest Lyapunov exponentλis the slope of the red line shown in each of Figs. 4(a3), 4(b3), and 4(c3),i.e., λ= (ln(d(s))?ln(d(0)))/s.[20]Values ofλare larger than 0,indicating that outputs of aABN,sABN1,and sABN2 are all chaotic. The corresponding autocorrelation functions are shown in Figs. 4(a4), 4(b4), and 4(c4), the full widths at half height are about 0.5 ns. There is no significant difference among the spectra shown in Figs.4(a5),4(b5),and 4(c5),the?10-dB bandwidths are about 600 MHz. These results show that the chaotic features of aABN are comparable to those of sABN1 and sABN2, however, they are obtained with a reduced number of gates,and thus requiring less power.

    Permutation entropy is an effective method to measure the complexity of time series.[30]Figure 5 shows the plots of permutation entropyH versusembedded delayτdof the outputs from aABN, sABN1, and sABN2, where the embedded dimensions are all set to be 5.The permutation entropy of aABN and sABN1 are very close and higher than that of sABN2.

    Fig. 4. Time series, distribution, the largest Lyapunov exponents, autocorrelation functions, and spectra of the output voltage amplitudes of[(a1)-(a5)]aABN,[(b1)-(b5)]sABN1,[(c1)-(c5)]sABN2.

    Fig.5.Permutation entropy H versus embedded delay td for aABN,sABN1,and sABN2.

    4. A random number generator based on proposed aABN

    The experimental results show that aABN may be used as the entropy source of RNG,i.e.,the double-peak curve at high (1 V) and low (0 V) levels may be exploited to extract random numbers. Figure 6 shows the structure of our RNG with using the aABN as an entropy source. The sampling and quantization process just use a flip-flop, because the output approximates a binary sequence. In order to eliminate any potential 0-1 bias and to generate high-quality random numbers,the outputs of nodes 1,2,5,9 are extracted for XOR.

    Fig.6. Schematic diagram of random number generator based on aABN.

    The RNG is implemented on an FPGA, the clock frequency is set to be 100 MHz, and experimental results are shown in Fig. 7. Figure 7(a) shows a random numbers sequence: the minimum pulse width is 10 ns, the amplitude is 0-2 V. The grayscale dot matrix graphic of the sequence is shown in Fig. 7(b), and provides a qualitative assessment of the sequence randomness. It shows no obvious pattern, indicating that the random numbers are aperiodic. The NIST statistical test suite is the international common random number test standard with a“passed”threshold requiring aP-value larger than 10?4and a proportion larger than 0.98. We generate 1 Gbits of data for the NIST tests, and all 15 tests are passed. Results are shown in Table 1. From these experimental results,we conclude that our aABN-based RNG is able to generate at least 100-Mbit/s random numbers passing NIST tests.

    Fig. 7. (a) Random number sequences and (b) grayscale dot matrix graphics of 90000 random numbers rearranged into a 300 ~300 square matrix,black represents 1 and white represents 0.

    Table 1. Results of NIST statistical test suite.

    Unpredictability is another important property of random numbers.To analyze the unpredictability of the aABN entropy source, the RNG is repeatedly restarted in the same experimental conditions and the chaotic sequences are observed.[31]Figure 8 shows the experimental results,and figure 8(a)shows that the restarting sequences for each restarting time series of 80 ns are generated. The initial values of all nodes are set to be at a low level (0 V) which is maintained for 10 ns, which is shown in the gray shadowed region. After this stage, the RNG begins to evolve. Figure 8(b) shows 100 restarting sequences: we cannot see any repeating structure after the 10-ns initial time and the 10-ns dispersed time, indicating that the values of each restarting sequence are different and random after the short autonomous evolution time. Shannon entropy is used to evaluate the randomness.[32]Figure 8(c)shows the Shannon entropy of 1000 restarting random number sequences,and Shannon entropy is 0 because the sequences are the same before 10 ns. Then,Shannon entropy increases with time increasing and approaches to 1 at about 20 ns, it fluctuates slightly after 20 ns.We conclude that the random numbers generated by RNG based on the aABN are unpredictable.

    Fig.8. Restarting experimental results,showing(a)restarting chaotic sequences,(b)map of restarting sequences 100 times,and(c)Shannon entropy of restarting sequences 1000 times.

    5. Conclusions and perspectives

    In this paper, an aABN composed of 12 nodes is proposed and its performance is analyzed in detail. Simulation results indicate that the oscillations of the aABN do not depend on the incommensurate time delays along links. Experimental results show that our aABN may offer performance comparable to that of sABN1 and sABN2 in terms of the the largest Lyapunov exponents,spectra,autocorrelation function,and permutation entropy,however with using a reduced number of nodes. Thus, it is instrumental in reducing the power consumptions of ABN systems. A novel aABN-based RNG is also proposed and experimentally implemented on an FPGA.Experimental results show that our RNG may generate random numbers passing NIST statistical tests suite at 100 Mbit/s.Compared with the RNG proposed in Refs.[24,28],the power consumption of our RNG is reduced due to the reduced number of required logical gates. Experimental results also show that the output sequences generated after 10 ns of autonomous evolution follow totally different trajectories,i.e., the generated random numbers are unpredictable.

    Acknowledgment

    The authors would like to express their gratitude to EditSprings(https://www.editsprings.com/)for providing the expert linguistic services.

    猜你喜歡
    張建國劉海
    湖州師范學院設計作品選登
    以小見大 以情動人
    復數(shù)熱點題型淺析
    A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array?
    Establish a Three-dimensional Fluorescent Fingerprint Database of Traditional Chinese Medicines
    Hubbard model on an anisotropic checkerboard lattice at finite temperatures:Magnetic and metal–insulator transitions
    學生天地(2019年36期)2019-08-25 08:59:52
    只靠劉海就能實現(xiàn)的超簡單變身方法!
    人民交警之歌
    繪畫和陶藝的交織——談張建國的瓷版畫創(chuàng)作
    小說林(2014年5期)2014-02-28 19:51:50
    欧美日韩精品网址| 日韩欧美免费精品| 国产成人aa在线观看| 欧美中文综合在线视频| 欧美不卡视频在线免费观看| 久久精品国产自在天天线| 乱人视频在线观看| 免费在线观看亚洲国产| 欧美日本视频| 亚洲国产精品sss在线观看| 午夜免费观看网址| 成年人黄色毛片网站| 高清在线国产一区| 亚洲电影在线观看av| 黄色女人牲交| a在线观看视频网站| 亚洲精品乱码久久久v下载方式 | 久久久国产精品麻豆| 午夜精品在线福利| 亚洲在线观看片| 国产视频一区二区在线看| 又粗又爽又猛毛片免费看| 无遮挡黄片免费观看| 97人妻精品一区二区三区麻豆| 欧美av亚洲av综合av国产av| 色噜噜av男人的天堂激情| 搡女人真爽免费视频火全软件 | 搡老岳熟女国产| 九九久久精品国产亚洲av麻豆| 亚洲av成人av| 午夜福利免费观看在线| 亚洲av第一区精品v没综合| 中国美女看黄片| 国产69精品久久久久777片| 日韩欧美在线乱码| 成人三级黄色视频| 免费搜索国产男女视频| 99热这里只有精品一区| 欧美区成人在线视频| 国产伦精品一区二区三区视频9 | 欧美激情久久久久久爽电影| 99久久精品热视频| 毛片女人毛片| a级一级毛片免费在线观看| 1000部很黄的大片| 99精品欧美一区二区三区四区| 99riav亚洲国产免费| 成人18禁在线播放| 黄色成人免费大全| 村上凉子中文字幕在线| 国产精品免费一区二区三区在线| 啪啪无遮挡十八禁网站| 亚洲成av人片免费观看| 看免费av毛片| 亚洲 国产 在线| 丰满乱子伦码专区| 国产亚洲欧美98| 一区二区三区国产精品乱码| 久久欧美精品欧美久久欧美| 偷拍熟女少妇极品色| e午夜精品久久久久久久| 日韩欧美国产在线观看| 午夜两性在线视频| АⅤ资源中文在线天堂| 精品熟女少妇八av免费久了| 搡老熟女国产l中国老女人| 99国产极品粉嫩在线观看| 听说在线观看完整版免费高清| tocl精华| 日韩欧美在线乱码| 在线观看一区二区三区| 一本久久中文字幕| 国产av麻豆久久久久久久| 一区二区三区高清视频在线| 欧美性猛交╳xxx乱大交人| 两人在一起打扑克的视频| 国产伦一二天堂av在线观看| www日本黄色视频网| 欧美zozozo另类| 日韩欧美在线二视频| 婷婷精品国产亚洲av| 久久久成人免费电影| 免费看十八禁软件| 国产av麻豆久久久久久久| 亚洲精品亚洲一区二区| 日日干狠狠操夜夜爽| 午夜福利成人在线免费观看| 久久精品91蜜桃| 亚洲国产欧洲综合997久久,| 熟女人妻精品中文字幕| 国产午夜精品论理片| 亚洲国产精品999在线| 亚洲av第一区精品v没综合| 校园春色视频在线观看| 久久精品91蜜桃| 哪里可以看免费的av片| 色视频www国产| 无限看片的www在线观看| 亚洲精品日韩av片在线观看 | 欧美乱码精品一区二区三区| 91av网一区二区| 亚洲aⅴ乱码一区二区在线播放| 国内久久婷婷六月综合欲色啪| 国产精品亚洲一级av第二区| 99在线人妻在线中文字幕| 无人区码免费观看不卡| www日本在线高清视频| 亚洲美女视频黄频| 亚洲国产色片| 亚洲欧美日韩东京热| av欧美777| 欧美xxxx黑人xx丫x性爽| 男女那种视频在线观看| 神马国产精品三级电影在线观看| 亚洲黑人精品在线| 国产综合懂色| 神马国产精品三级电影在线观看| 国产精品 国内视频| av黄色大香蕉| 成人国产一区最新在线观看| а√天堂www在线а√下载| 亚洲人成网站在线播| 国产老妇女一区| 天堂√8在线中文| 99热6这里只有精品| 国产伦在线观看视频一区| 国产不卡一卡二| 国模一区二区三区四区视频| 亚洲中文日韩欧美视频| 欧美av亚洲av综合av国产av| 国产成人福利小说| 成人高潮视频无遮挡免费网站| 99久久精品一区二区三区| 又黄又粗又硬又大视频| 精品国产超薄肉色丝袜足j| 欧美av亚洲av综合av国产av| www.www免费av| 国产精品电影一区二区三区| 中文字幕人成人乱码亚洲影| 欧美成狂野欧美在线观看| 亚洲中文日韩欧美视频| www.色视频.com| 99在线视频只有这里精品首页| 午夜日韩欧美国产| 少妇丰满av| 最后的刺客免费高清国语| 国产成人av激情在线播放| 亚洲av成人不卡在线观看播放网| 色精品久久人妻99蜜桃| 99久久99久久久精品蜜桃| 3wmmmm亚洲av在线观看| 亚洲精华国产精华精| 特大巨黑吊av在线直播| 国产精品久久视频播放| 久久久国产精品麻豆| 国产精品久久视频播放| 首页视频小说图片口味搜索| 亚洲在线观看片| 免费无遮挡裸体视频| 亚洲精品一区av在线观看| 美女高潮喷水抽搐中文字幕| 天天躁日日操中文字幕| 99久久精品国产亚洲精品| 欧美一级a爱片免费观看看| 婷婷精品国产亚洲av| 成人三级黄色视频| 久久久国产精品麻豆| 精品欧美国产一区二区三| 国产在视频线在精品| 久久精品亚洲精品国产色婷小说| 欧美黄色片欧美黄色片| www国产在线视频色| 麻豆成人av在线观看| 色综合站精品国产| 久久国产精品人妻蜜桃| 啦啦啦免费观看视频1| 国产精华一区二区三区| 日本熟妇午夜| АⅤ资源中文在线天堂| 国内久久婷婷六月综合欲色啪| 老熟妇仑乱视频hdxx| 18禁美女被吸乳视频| 国产又黄又爽又无遮挡在线| 五月伊人婷婷丁香| 18禁黄网站禁片午夜丰满| 国产精品国产高清国产av| 99精品欧美一区二区三区四区| 桃色一区二区三区在线观看| 一级黄色大片毛片| 国产亚洲欧美在线一区二区| 老司机福利观看| 国产精品久久久久久久电影 | 欧美大码av| 97碰自拍视频| 午夜老司机福利剧场| 在线国产一区二区在线| 在线免费观看的www视频| 精品无人区乱码1区二区| 国产黄片美女视频| 听说在线观看完整版免费高清| 少妇的逼好多水| 首页视频小说图片口味搜索| 精品电影一区二区在线| 黄片大片在线免费观看| 激情在线观看视频在线高清| 最近视频中文字幕2019在线8| 国产av一区在线观看免费| 国产精品久久久久久亚洲av鲁大| 给我免费播放毛片高清在线观看| 欧美激情久久久久久爽电影| 黄色视频,在线免费观看| 国产av一区在线观看免费| 国产精品影院久久| av女优亚洲男人天堂| www日本在线高清视频| 老汉色av国产亚洲站长工具| 国产av一区在线观看免费| 人人妻,人人澡人人爽秒播| 日本 欧美在线| 亚洲中文日韩欧美视频| 亚洲精品美女久久久久99蜜臀| 久久久国产成人精品二区| 夜夜看夜夜爽夜夜摸| 中文字幕熟女人妻在线| 校园春色视频在线观看| 神马国产精品三级电影在线观看| 一本久久中文字幕| 国产黄片美女视频| 18禁美女被吸乳视频| 欧美最黄视频在线播放免费| 搡女人真爽免费视频火全软件 | 国产高潮美女av| 亚洲欧美一区二区三区黑人| 亚洲中文日韩欧美视频| АⅤ资源中文在线天堂| 国产色爽女视频免费观看| 97人妻精品一区二区三区麻豆| 久9热在线精品视频| 亚洲色图av天堂| 综合色av麻豆| 99精品在免费线老司机午夜| 久久久久久久久久黄片| svipshipincom国产片| 日韩欧美国产一区二区入口| 久久久国产成人免费| 老司机在亚洲福利影院| 欧美性感艳星| 午夜视频国产福利| 国产国拍精品亚洲av在线观看 | 午夜影院日韩av| 久久性视频一级片| 免费av不卡在线播放| 亚洲av日韩精品久久久久久密| 国产在视频线在精品| 亚洲国产精品999在线| 成人av在线播放网站| 变态另类成人亚洲欧美熟女| 两个人视频免费观看高清| 麻豆一二三区av精品| 午夜免费观看网址| 色尼玛亚洲综合影院| 午夜福利18| 一本一本综合久久| 日本黄色视频三级网站网址| 18美女黄网站色大片免费观看| 国产精品亚洲美女久久久| 亚洲国产欧洲综合997久久,| 九色国产91popny在线| 亚洲精品日韩av片在线观看 | 亚洲一区二区三区色噜噜| 亚洲国产精品成人综合色| 午夜日韩欧美国产| 国产亚洲欧美在线一区二区| 99热精品在线国产| 久久精品国产清高在天天线| 色尼玛亚洲综合影院| 亚洲国产精品sss在线观看| 亚洲人与动物交配视频| 1000部很黄的大片| 精品欧美国产一区二区三| 在线a可以看的网站| 在线观看美女被高潮喷水网站 | 国产精品一区二区三区四区免费观看 | av片东京热男人的天堂| 久久欧美精品欧美久久欧美| 黄色片一级片一级黄色片| 国产精品亚洲一级av第二区| 免费看十八禁软件| 在线a可以看的网站| 亚洲七黄色美女视频| 真人做人爱边吃奶动态| 成年女人永久免费观看视频| 免费人成在线观看视频色| 一进一出好大好爽视频| 在线播放国产精品三级| 亚洲片人在线观看| 亚洲av不卡在线观看| 此物有八面人人有两片| 国产美女午夜福利| 亚洲 国产 在线| 久久久色成人| 三级国产精品欧美在线观看| 欧美乱妇无乱码| 免费av不卡在线播放| 嫩草影院精品99| 国产精品 欧美亚洲| 国产99白浆流出| 色综合站精品国产| 99久久综合精品五月天人人| 老司机在亚洲福利影院| 久久中文看片网| 日本黄色片子视频| 国产一区二区三区视频了| 国产三级黄色录像| 成年女人毛片免费观看观看9| 欧美日韩瑟瑟在线播放| 国产私拍福利视频在线观看| 欧美日韩福利视频一区二区| 亚洲一区二区三区不卡视频| 久久这里只有精品中国| 嫁个100分男人电影在线观看| 国产激情欧美一区二区| 99久久久亚洲精品蜜臀av| 在线天堂最新版资源| 国产一区二区在线av高清观看| 日本在线视频免费播放| 久久欧美精品欧美久久欧美| 一边摸一边抽搐一进一小说| 免费人成在线观看视频色| 黄色女人牲交| 在线看三级毛片| 在线天堂最新版资源| or卡值多少钱| 亚洲第一欧美日韩一区二区三区| av天堂中文字幕网| 国产一区二区亚洲精品在线观看| 美女高潮的动态| 又紧又爽又黄一区二区| 久久久久久国产a免费观看| 精品99又大又爽又粗少妇毛片 | 禁无遮挡网站| 日韩国内少妇激情av| 亚洲精品美女久久久久99蜜臀| 法律面前人人平等表现在哪些方面| 伊人久久大香线蕉亚洲五| 欧美黑人巨大hd| 午夜视频国产福利| 精品国产美女av久久久久小说| 十八禁人妻一区二区| 欧美日韩国产亚洲二区| 久久久成人免费电影| 嫩草影院入口| 天堂网av新在线| 亚洲成人精品中文字幕电影| 欧美乱妇无乱码| 国产亚洲欧美98| 精品不卡国产一区二区三区| 九九热线精品视视频播放| 天堂影院成人在线观看| 日本五十路高清| 国产精品嫩草影院av在线观看 | 国产伦一二天堂av在线观看| 色综合亚洲欧美另类图片| 国产97色在线日韩免费| 成人av一区二区三区在线看| 免费大片18禁| 99久久99久久久精品蜜桃| 国产成人福利小说| 欧美极品一区二区三区四区| 女人高潮潮喷娇喘18禁视频| 熟女人妻精品中文字幕| 亚洲国产日韩欧美精品在线观看 | 国产高清videossex| 成人三级黄色视频| 国产精品美女特级片免费视频播放器| 黄色日韩在线| 乱人视频在线观看| 啦啦啦观看免费观看视频高清| 国产主播在线观看一区二区| 一级作爱视频免费观看| 特级一级黄色大片| 亚洲激情在线av| 99热6这里只有精品| 欧美精品啪啪一区二区三区| 久久久久久久久久黄片| 亚洲欧美激情综合另类| 国产精品国产高清国产av| 国产高清视频在线观看网站| 97超级碰碰碰精品色视频在线观看| 国产黄片美女视频| 国产一区二区激情短视频| 亚洲第一欧美日韩一区二区三区| av福利片在线观看| 19禁男女啪啪无遮挡网站| 国产亚洲欧美98| 又紧又爽又黄一区二区| 国产三级黄色录像| 国产v大片淫在线免费观看| 国产老妇女一区| 乱人视频在线观看| 亚洲精品乱码久久久v下载方式 | 欧美成人一区二区免费高清观看| 亚洲人成网站高清观看| 国产真实伦视频高清在线观看 | 欧美最新免费一区二区三区 | 全区人妻精品视频| 琪琪午夜伦伦电影理论片6080| 亚洲av不卡在线观看| 成年女人看的毛片在线观看| 九九热线精品视视频播放| 一卡2卡三卡四卡精品乱码亚洲| 精品一区二区三区视频在线观看免费| 中文字幕熟女人妻在线| 级片在线观看| ponron亚洲| 国产伦人伦偷精品视频| 99久久成人亚洲精品观看| 国内少妇人妻偷人精品xxx网站| 色播亚洲综合网| 日日夜夜操网爽| 丁香欧美五月| 青草久久国产| 久久精品国产综合久久久| 日韩欧美一区二区三区在线观看| 男人和女人高潮做爰伦理| 久久精品国产综合久久久| 日本精品一区二区三区蜜桃| 亚洲久久久久久中文字幕| 在线观看av片永久免费下载| 搡老妇女老女人老熟妇| 国产色爽女视频免费观看| av中文乱码字幕在线| 精品久久久久久久末码| 丁香六月欧美| eeuss影院久久| 一级作爱视频免费观看| 成人高潮视频无遮挡免费网站| 亚洲精品美女久久久久99蜜臀| 国产69精品久久久久777片| 国产精品久久久久久久电影 | 国产伦精品一区二区三区四那| 一级a爱片免费观看的视频| 亚洲五月婷婷丁香| 国产成+人综合+亚洲专区| 免费av毛片视频| 99在线人妻在线中文字幕| 19禁男女啪啪无遮挡网站| 国产精品久久久久久久久免 | 午夜久久久久精精品| 欧美又色又爽又黄视频| 天天躁日日操中文字幕| 一级毛片高清免费大全| 免费看a级黄色片| 国产亚洲av嫩草精品影院| netflix在线观看网站| 一进一出好大好爽视频| 非洲黑人性xxxx精品又粗又长| 国产精品99久久99久久久不卡| or卡值多少钱| 中文在线观看免费www的网站| 久久久久亚洲av毛片大全| 亚洲五月天丁香| 久久久久久久久中文| 久久久成人免费电影| 亚洲欧美激情综合另类| 午夜两性在线视频| 国内毛片毛片毛片毛片毛片| 国产在线精品亚洲第一网站| 亚洲成人中文字幕在线播放| 美女cb高潮喷水在线观看| 熟妇人妻久久中文字幕3abv| 老汉色av国产亚洲站长工具| 亚洲国产精品久久男人天堂| 久久欧美精品欧美久久欧美| 一级作爱视频免费观看| 悠悠久久av| 国产精品久久视频播放| 国内精品一区二区在线观看| 19禁男女啪啪无遮挡网站| 精品久久久久久成人av| 97碰自拍视频| 亚洲五月婷婷丁香| 99久久九九国产精品国产免费| 90打野战视频偷拍视频| 久久久久久久久中文| 国内揄拍国产精品人妻在线| 热99re8久久精品国产| 精品国产超薄肉色丝袜足j| 最近最新中文字幕大全免费视频| 18+在线观看网站| 亚洲av成人av| 国产高清videossex| 国产真人三级小视频在线观看| 国产欧美日韩一区二区精品| 亚洲成人免费电影在线观看| 性色avwww在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 午夜福利免费观看在线| 国内久久婷婷六月综合欲色啪| 国产精品影院久久| 久久久国产成人免费| 国产一级毛片七仙女欲春2| 免费搜索国产男女视频| 一本综合久久免费| 丰满人妻一区二区三区视频av | 国产av麻豆久久久久久久| 国产欧美日韩一区二区三| 成人亚洲精品av一区二区| 婷婷精品国产亚洲av在线| 在线观看免费午夜福利视频| 国产黄片美女视频| 超碰av人人做人人爽久久 | 亚洲电影在线观看av| 国产精品久久久久久人妻精品电影| 国产亚洲精品av在线| 国产精品三级大全| 精品一区二区三区av网在线观看| 国产精品av视频在线免费观看| 国内精品久久久久久久电影| 日本成人三级电影网站| 一个人免费在线观看电影| 一级毛片高清免费大全| 五月玫瑰六月丁香| 99久久成人亚洲精品观看| av国产免费在线观看| 老司机午夜十八禁免费视频| 免费无遮挡裸体视频| 欧美成人性av电影在线观看| 搞女人的毛片| 18禁美女被吸乳视频| 韩国av一区二区三区四区| 亚洲精品国产精品久久久不卡| 日本一本二区三区精品| 欧美bdsm另类| 性欧美人与动物交配| 国产野战对白在线观看| 亚洲人成伊人成综合网2020| 91字幕亚洲| 成人性生交大片免费视频hd| 日韩欧美 国产精品| 男人和女人高潮做爰伦理| 国产精品久久久久久久电影 | 精品久久久久久久久久免费视频| 亚洲国产精品sss在线观看| 在线看三级毛片| 成人国产一区最新在线观看| 欧美日韩福利视频一区二区| 日韩欧美 国产精品| 午夜精品在线福利| 精品不卡国产一区二区三区| 天天躁日日操中文字幕| 波野结衣二区三区在线 | 亚洲国产中文字幕在线视频| 在线观看av片永久免费下载| 成人av在线播放网站| 999久久久精品免费观看国产| 一本久久中文字幕| 动漫黄色视频在线观看| 最近最新免费中文字幕在线| 一个人看的www免费观看视频| av视频在线观看入口| www日本在线高清视频| 免费观看人在逋| 国产成+人综合+亚洲专区| 噜噜噜噜噜久久久久久91| 真人做人爱边吃奶动态| 国产一区二区激情短视频| 免费一级毛片在线播放高清视频| 欧美性猛交黑人性爽| 18+在线观看网站| 在线观看美女被高潮喷水网站 | 日本黄色片子视频| 精品久久久久久,| 欧美丝袜亚洲另类 | 在线观看免费午夜福利视频| 男人舔奶头视频| 99久久精品国产亚洲精品| 日本与韩国留学比较| 性欧美人与动物交配| 91av网一区二区| 欧美一级毛片孕妇| 日韩成人在线观看一区二区三区| e午夜精品久久久久久久| 精华霜和精华液先用哪个| 首页视频小说图片口味搜索| 无遮挡黄片免费观看| 亚洲精品456在线播放app | 国产国拍精品亚洲av在线观看 | 日本成人三级电影网站| 亚洲无线在线观看| 高清在线国产一区| 国产精品久久久久久精品电影| 成年免费大片在线观看| 亚洲成人免费电影在线观看| 免费看十八禁软件| 麻豆久久精品国产亚洲av| 亚洲欧美日韩高清专用| 1000部很黄的大片| 在线观看免费午夜福利视频| 波多野结衣高清无吗| 99热6这里只有精品| 男女午夜视频在线观看| 国内精品久久久久久久电影| 欧美日本亚洲视频在线播放| 亚洲成a人片在线一区二区| 亚洲乱码一区二区免费版| 首页视频小说图片口味搜索| 国产真实伦视频高清在线观看 | 欧美+亚洲+日韩+国产| 午夜激情福利司机影院| 午夜福利在线在线| 51国产日韩欧美| 日韩欧美国产一区二区入口| 国产日本99.免费观看| 国产精品香港三级国产av潘金莲|