• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel Synthesis of Mesoporous Nanocrystalline Zirconia

    2012-11-06 07:01:06CHEHongWeiHANShuHuaHOUWanGuoLIUAiFeng
    物理化學(xué)學(xué)報 2012年7期
    關(guān)鍵詞:氧化鋯建平物理化學(xué)

    CHE Hong-Wei HAN Shu-Hua,* HOU Wan-Guo,2,* LIU Ai-Feng

    (1Key Laboratory of Colloid and Interface Chemistry,Ministry of Education,Shandong University,Jinan 250100,P.R.China;2College of Chemistry and Molecular Engineering,Qingdao University of Science and Technology,Qingdao 266042,Shandong Province,P.R.China)

    Novel Synthesis of Mesoporous Nanocrystalline Zirconia

    CHE Hong-Wei1HAN Shu-Hua1,*HOU Wan-Guo1,2,*LIU Ai-Feng1

    (1Key Laboratory of Colloid and Interface Chemistry,Ministry of Education,Shandong University,Jinan 250100,P.R.China;2College of Chemistry and Molecular Engineering,Qingdao University of Science and Technology,Qingdao 266042,Shandong Province,P.R.China)

    A novel strategy involving the combination of soft-templating and the solid-liquid method(CSSL)is presented for the synthesis of mesoporous nanocrystalline zirconia with a high specific surface area.The mesostructured zirconia hybrid is firstly synthesized by the soft-templating method using 1-hexadecyl-3-methylimidazolium bromide(C16mim+Br-)as the structure-directing agent and zirconium sulphate as an inorganic precursor.It is then ground in the presence of solid copper nitrate followed by heat-treatment in air.The resulting zirconia material,after calcination at 600℃,possesses a wormlike arrangement of mesopores surrounded by tetragonal ZrO2nanocrystallites of ca 2.50 nm diameter.The Brunauer-Emmett-Teller(BET)surface area is 240.0 m2·g-1and the pore size is 4.10 nm.However,no mesoporous structure exists in the obtained zirconia material that was produced using the simple soft-templating method at the same calcination temperature.The BET surface area is only 9.5 m2·g-1for this material.

    Mesoporous;Zirconia;Nanocrystalline;Soft-templating method;Thermal stability

    FollowingthediscoveryoforderedmesoporoussilicabyMobil scientists[1],mesoporous metal oxide materials such as TiO2[2-3],Al2O3[4-6],SnO2[7-8],WO3[9-11],and CeO2[12]have been synthesized successfully using various approaches for their applications in catalysis and energy conversion.The conventional soft-templating method[13-15]is generally used to fabricate mesoporous metal oxides in the presence of surfactants as structure-directing agents.Compared to the silicon alkoxides,the hydrolysis and polymerization of metal alkoxides are more difficult to be controlled.Therefore,the resulting metal oxides usually exhibit low thermal stability and poor crystallinity after the removal of the surfactant templates.On the other hand,the hard-templating pathway is also employed to synthesize mesoporous nanocrystalline metal oxide via the loading of metal salts into the preordered hard mesoporous silica or carbon templates[16-18].Subsequent heat treatment is carried out without the collapse of meso-pores,and nanocrystalline metal oxides with replicated mesopores can be obtained after the removal of hard templates by etching or calcination.However,this synthetic method suffers from multiple and tedious steps and low loading of metal precursors in porous channels.Therefore,the synthesis of mesoporous metal oxide materials possessing highly thermal stability and high crystallinity is still a huge challenge.

    Herein,we make further attempt to fabricate mesoporous nanocrystalline zirconia via such a strategy combining the softtemplating method with solid-liquid method(CSSL).Firstly,the mesostructured zirconia hybrid is synthesized via the soft-templating method using 1-hexadecyl-3-methylimidazolium bromide(C16mim+Br-)asthe templating agent and zirconium sulphate as inorganic source.Secondly,the synthesized mesostructured zirconia hybrid(as host)is ground with solid copper nitrate hydrate(as guest)followed by heat-treatment in air.If the temperature is above its melting point(115℃),solid guest will transform into liquid and infiltrate into the pore channels occupied by templates inside the host.Finally,the mesoporous nanocrystalline zirconia calcined at high calcination temperature is obtained after the removal of CuO by etching with HCl solution.

    1 Experimental

    1.1 Materials

    All the chemicals used in the present work are available from Shanghai Sinopharm Chemical Reagent Co.,Ltd.as analyticgrade reagents and used without further purification.Deionized water(18 MΩ·cm)is used for all the preparations.1-hexadecyl-3-methylimidazolium bromide(C16mim+Br-)is synthesized according to Ref.[19].1H-NMR data of the C16mim+Br-(CDCl3,δ: 10.44(s,1H),7.48(s,1H),7.34(s,1H),4.32(t,2H),4.13(s, 3H),1.92(m,2H),1.30(m,26H),and 0.88(t,3H).

    1.2 Synthesis of the mesostructured zirconia hybrid material via the soft-templating method

    Atypicalprocedurewasasfollows:2.0gofZr(SO4)2·4H2Owas dissolved in 50 g of deionized water at 35℃.Then,40.0 mL of 0.04 mol·L-1C16mim+Br-solution was slowly added to Zr(SO4)2· 4H2O solution(n(Zr(SO4)2·4H2O))/n(C16mim+Br-)=1∶0.3),immediately,a white solid was precipitated.After 1 h stirring,the mixture was aged for 72 h at 80℃.The final white product was recovered by centrifugation,washed with water and alcohol successively,and dried at 100℃ for 24 h.It was denoted as meso-ZrO2.

    1.3 Synthesis of mesoporous nanocrystalline zirconia via the solid-liquid method

    0.5 g of the sample meso-ZrO2was manually ground with 0.5 g copper nitrate(Cu(NO3)2·3H2O)in an agate mortar for 15 min. Afterwards,the mixture was put into one crucible and then placed in a muffle furnace.The calcination was carried out at two stages:first,the temperature was increased from room temperature to 120℃and kept for 3 h;subsequently,the temperature was further increased to 600℃at a ramping rate of 3℃·min-1in air for 5 h.The sample was then cooled down to room temperature and impregnated in 10.0%(w)HCl solution for 48 h. The final mesoporous zirconia materials were recovered by centrifugation and washed with deionized water for five times and alcohol for three times.According to the above calcination temperature,the as-made zirconia material was denoted as CSSLZrO2-600.In addition,the as-synthesized mesostructured zirconia material(meso-ZrO2)via single soft-templating approach was directly calcined at 600℃in air for 5 h for comparison.Accordingly,it was denoted as S-ZrO2-600.

    1.4 Characterization

    The small-angle X-ray diffraction(XRD)value of each sample was collected by using a Rigaku D/Max-rB diffractometer (Rigaku International Corp.,Japan)operated at 40 kV and 100 mA.The wide-angle XRD patterns were recorded by a Bruker AXSD8 Advance X-ray diffractometer(Bruker Corp.,Germany) operated at 40 kV and 40 mA.High-resolution transmission electron microscope(HRTEM)images were recorded using a JEM-2100 electron microscope(JEOL Electronics Co.,Ltd.,Japan)operating at 200 kV.Nitrogen adsorption-desorption isotherm was determined at 77 K by a conventional volumetric technique with a Coulter Omnisorp 100CX sorption analyzer(Coulter Electronics Ltd.,America).Mass changes of the products were measured out on a Thermal Analysis SDT Q600 analyzer(TA Instrument Corp.,America)from 25 to 800℃under an air atmosphere at a heating rate of 10℃·min-1.

    2 Results and discussion

    2.1 Powder XRD

    Fig.1a exhibits the small-angle XRD pattern of the obtained zirconia material via the CSSL method after calcined at 600℃. Only one broad diffraction peak at 2θ≈1.35°with d spacing of 6.54 nm is exhibited for the sample CSSL-ZrO2-600,which is typical of wormlike mesopores.This result is further confirmed by the following HRTEM photograph.The corresponding wideangle XRD pattern(Fig.1c)exhibits the typical diffraction peaks ascribed to the tetragonal ZrO2crystal in the 2θ range from 26° to 70°.The crystallite size calculated by the Scherrer equation is 2.50 nm.Contrastingly,no diffraction peaks in the small-angleregion(Fig.1b)are displayed for the sample S-ZrO2-600 via single soft-templating method after calcination at the same temperature.In combination with the following N2sorption characterization,this result suggests the absence of mesopores for the sample S-ZrO2-600.And also,the wide-angle XRD pattern(Fig.1d) exhibits sharper diffraction peaks corresponding to tetragonal ZrO2crystal.The crystallite size is 7.80 nm,obviously higher than that of the obtained zirconia via the CSSL method.Therefore,it is concluded that fast growth of ZrO2nanocrystallites in the pore walls during calcination is regarded as a key reason for the collapse of mesopores in the resulting zirconia matrixes. Compared with the single soft-templating method,the CSSL method is favorable to retard the growing rate of ZrO2nanocrystallites.

    2.2 N2adsorption-desorption

    Fig.2 illustrates the N2adsorption-desorption isotherms together with the Barret-Joyner-Halenda(BJH)pore size distribution(PSD)plots of the samples CSSL-ZrO2-600 and S-ZrO2-600. Upon calcination to 600℃,type IV isotherm is shown for the sample CSSL-ZrO2-600(Fig.2A,a),similar to those of the mesoporous transition metal oxides synthesized through the hardtemplating method[20-21].This result clearly indicates the mesoporous nature in ZrO2matrix.The BET surface area is 240.0 m2· g-1and the pore volume is 0.26 cm3·g-1.The pore size distribution(PSD)calculated from the desorption branch with the BJH method is centered at 4.10 nm(Fig.2B,c).Whereas,as for the sample S-ZrO2-600(Fig.2A,b),the BET surface area is only 9.5 m2·g-1and the total volume is 0.0060 cm3·g-1,implying the absence of mesopores.Therefore,these results further prove that the CSSL method is more beneficial to possess mesopores than the single soft-templating method after high-temperature calcination.

    2.3 HRTEM analysis

    Fig.3 demonstrates the HRTEM images of the samples CSSLZrO2-600(A,B)and S-ZrO2-600(C,D).Wormlike pores distributed in the ZrO2matrix are observed for the sample CSSL-ZrO2-600.The clear lattice fringes of nanocrystalline ZrO2are displayed(Fig.3B),which have a lattice spacing of 0.293 nm,corresponding to the(101)planes of tetragonal ZrO2.This result is also confirmed by the corresponding electron diffraction image,indicating that such a synthesized sample presents a mesoporous nanocrystalline ZrO2framework.For the sample S-ZrO2-600,the wormlike mesopores completely disappear,replaced by more disordered porous network of aggregated ZrO2nanoparticles with higher crystallinity and larger sizes.These results are also in accordance with those deduced from the XRD and N2adsorption-desorption analyses.

    2.4 Formation mechanism for mesoporous nanocrystalline zirconia

    The CSSL method is an efficient method to synthesize mesoporous nanocrystalline zirconia with high surface area and thermal stability.It involves the following three procedures:(1)the formation of mesostructured zirconia hybrid;(2)the introduction of copper nitrate salt(as guest)into the pore channels occluded by templates inside the mesostructured zirconia hybrid(as host) via the solid-liquid method;(3)the removal of copper oxide by etching with HCl solution.

    Firstly,in order to know whether the mesostructured zirconiais formed via the soft-templating method,the XRD analysis is carried out.As we can see from Fig.4,three diffraction peaks at 2θ of 2.02°,3.52°,and 4.11°with d-spacing values of 4.37,2.51, and 2.15 nm,respectively,indicate the existence of hexagonal mesostructure in the as-synthesized zirconia hybrid.The corresponding wide-angle XRD pattern indicates that the pore wall is composed of amorphous zirconia before calcination.

    Secondly,it is well known that the content(guest)of 1.0%(w) was sufficient to result in the appearance of sharp peaks in the XRD patterns for crystalline metal compounds[22].So,in order to demonstrate that Cu(NO3)2·3H2O salt can infiltrate into the occupied pore channels through solid-liquid method,wide-angle XRD characterization is carried out.As we can see from Fig.5b, no diffraction peaks corresponding to Cu(NO3)2·3H2O crystal phase are detected if 50.0%(w/w)of Cu(NO3)2·3H2O salts are ground with the sample meso-ZrO2followed by a thermal treatment at 120℃for 3 h.In contrast,significant diffraction peaks corresponding to Cu(NO3)2·3H2O crystal phase exist in the wideangle XRD pattern(Fig.5a,marked with“*”)if the same weight fractionofCu(NO3)2·3H2Osaltsaregroundwiththesamplemeso-ZrO2at room temperature.These results indicate that Cu(NO3)2· 3H2O salts transforming into liquid can indeed infiltrate into the pore channels occluded by templates and be well dispersed in the mesostructured zirconia hybrid.

    In order to investigate the effect of the infiltration of copper nitrate salts on the mesostructured zirconia during calcination, thermogravimetric differential scanning calorimetry analysis (TG-DSC)is carried out.As for the sample meso-ZrO2,the first exothermic peak centered at 370℃is revealed in the DSC curve (Fig.6A,a),accompanied by a significant mass loss of about 31.8%(w)from 300℃to 450℃(Fig.6B,c).The mass loss is attributed to the decomposition of the templating agent C16mim+Br-. However,the exothermic peak is decreased to 305℃as for the meso-ZrO2/Cu(NO3)2·3H2O mixture(1∶1,w/w)(Fig.6A,b).These results indicate that the introduction of copper nitrate contributes to the decomposition of templates at lower temperature due to the fact that the thermolysis of copper nitrate will provide the oxidative atmosphere inside the pore channels.Therefore,the possible redox reaction on the pore walls will be avoided,which is regarded as one possible reason for the collapse of mesoporous structure.Moreover,it is noted that the thermal effect for the meso-ZrO2/Cu(NO3)2·3H2O mixture is significantly lower than that for the sample meso-ZrO2in the temperature range of 500-700℃ accompanied by the crystallization of pore walls.We postulate that it is attributed to the“pillaring”effect generated by the existence of CuO in pore channels,which retards the growth of nanocrystalline zirconia particles in pore walls.

    Finally,the BET surface area for the calcined meso-ZrO2/ Cu(NO3)2·3H2O(1∶1,mass fraction)is 8.5 m2·g-1.However,af-ter etching CuO with 10.0%(w)HCl,the BET surface area of the obtained zirconia is 240.0 m2·g-1,indicating the existence of mesopores.This result has been confirmed with HRTEM photograph.

    3 Conclusions

    In summary,mesoporous nanocrystalline zirconia material has been successfully synthesized via the CSSL method.The infiltration of inorganic salt into the pore channels inside mesostructured zirconia hybrid via solid-liquid method is believed to play a key role in avoiding the collapse of pore channels during the crystallization of pore walls.The CSSL method is expected to present a new strategy to fabricate the mesoporous nanocrystalline metal oxides.

    1 Kresge,C.T.;Leonowicz,M.E.;Roth,W.J.;Vartuli,J.C.;Beck, J.S.Nature,1992,359:710

    2 Yu,J.M.;Yu,J.G.;Ho,W.K.;Jiang,Z.T.;Zhang,L.Z.Chem. Mater.,2002,14:3808

    3 Liu,R.L.;Ren,Y.J.;Shi,Y.F.;Zhang,F.;Zhang,L.J.;Tu,B.; Zhao,D.Y.Chem.Mater.,2008,20:1140

    4 Yuan,Q.;Yin,A.X.;Luo,C.;Sun,L.D.;Zhang,Y.W.;Duan,W. T.;Liu,H.C.;Yan,C.H.J.Am.Chem.Soc.,2008,130:3465

    5 Wang,T.;Zhou,J,H.;Wang,D.J.;Sun,D.;Di,Z.Y.;He,J.P. Acta Phys.-Chim.Sin.,2009,25:2155 [王 濤,周建華,王道軍,孫 盾,狄志勇,何建平.物理化學(xué)學(xué)報,2009,25:2155]

    6 Fang,X.S.;Zhang,L.D.J.Mater.Sci.Technol.,2006,22:1

    7 Che,H.W.;Han,S.H.;Hou,W.G.;Liu,A.F.;Yu,X.J.;Sun,Y. Y.;Wang,S.S.Microporous Mesoporous Mat.,2010,130:1

    8 Liu,X.L.;He,J.P.;Dang,W.J.;Ji,Y.J.;Zhao,G.W.;Zhang,C. X.Acta Phys.-Chim.Sin.,2008,24:475 [劉曉磊,何建平,黨王娟,計亞軍,趙桂網(wǎng),張傳香,物理化學(xué)學(xué)報,2008,24:475]

    9 Yu,Y.;Liu,S.J.;Li,J.;Chen,Q.Y.Acta Phys.-Chim.Sin.,2009, 25:1890 [余 勇,劉士軍,李 潔,陳啟元,物理化學(xué)學(xué)報, 2009,25:1890]

    10 Yuan,J.Q.;Zhang,Y.Z.;Le,J.;Song,L.X.;Hu.X.F.Mater. Lett.,2007,61:1114

    11 Fang,X.S.;Bando,Y.;Gautam,U.K.;Ye,C.H.;Golberg,D. J.Mater.Chem.,2008,18:509

    12 Ji,P.F.;Zhang,J.L.;Chen,F.;Anpo,M.J.Phys.Chem.C,2008, 112:17809

    13 Wan,Y.;Yang,H.F.;Zhao,D.Y.Acc.Chem.Res.,2006,39:423

    14 Olson,Y.T.;Zhang,J.Z.J.Mater.Sci.Technol.,2008,24:433

    15 Biswas,K.;Varghese,N.;Rao.C.N.R.J.Mater.Sci.Technol., 2008,24:615

    16 Shen,W.H.;Shi,J.L.;Chen,H.R.;Gu,J.L.;Zhu,Y.F.;Dong,X. P.Chem.Lett.,2005,34:390

    17 Wang,Y.Q.;Yang,C.M.;Schmidt,W.;Spliethoff,B.;Bill,E.; Schuth,F.Adv.Mater.,2005,17:53

    18 Lai,X.;Li,X.;Geng,W.;Tu,J.;Li,J.;Qiu,S.Angew.Chem.Int. Edit.,2007,46:738

    19 Seddon,K.R.;Stark,A.;Torres,M.Pure Appl.Chem.,2000,72: 2275

    20 Kang,M.;Kim,D.;Yi,S.H.;Han,J.U.;Yie,J.E.;Kim,J.M. Catal.Today,2004,93-95:695

    21 Jiao,F.;Hill,A.H.;Harrison,A.;Berko,A.;Chadwick,A.V.; Bruce,P.G.J.Am.Chem.Soc.,2008,130:5262

    22 Xie,Y.C.;Tang,Y.Q.Adv.Catal.,1990,37:1

    合成介孔納米晶體氧化鋯的新方法

    車紅衛(wèi)1韓書華1,*侯萬國1,2,*劉愛鳳1

    (1山東大學(xué)膠體與界面教育部重點(diǎn)實(shí)驗室,濟(jì)南 250100;2青島科技大學(xué)化學(xué)與分子工程學(xué)院,山東青島 266042)

    通過一種新穎的方法,即軟模板-固液技術(shù)(CSSL)合成具有高比表面積的介孔納米晶體氧化鋯.首先,通過軟模板法以1-十六烷基-3-甲基咪唑溴(C16mim+Br-)為結(jié)構(gòu)導(dǎo)向劑,硫酸鋯為無機(jī)前驅(qū)物合成了介觀相氧化鋯雜化物,然后該雜化物與固體硝酸銅無機(jī)鹽研磨并進(jìn)行熱處理.在600℃焙燒后所得到的氧化鋯材料具有蠕蟲狀介孔結(jié)構(gòu),且孔壁由尺寸約為2.50 nm的四方相氧化鋯納米粒子組成.該材料的比表面積為240.0 m2·g-1,孔徑為4.10 nm.與之對應(yīng),使用單一的軟模板法在相同的溫度焙燒后,所得到的氧化鋯材料介孔結(jié)構(gòu)坍塌,比表面積僅為9.5 m2·g-1.

    介孔;氧化鋯;納米晶體;軟模板法;熱穩(wěn)定性

    O648

    Received:March 26,2010;Revised:May 5,2010;Published on Web:May 25,2010.

    *Corresponding authors.Email:shuhhan@sdu.edu.cn,wghou@sdu.edu.cn;Tel:+86-531-88564750,+86-531-88365450.The project was supported by the National Natural Science Foundation of China(50572057).

    國家自然科學(xué)基金(50572057)資助項目

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    氧化鋯建平物理化學(xué)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    Chemical Concepts from Density Functional Theory
    氧化鋯陶瓷及其制備方法
    佛山陶瓷(2017年7期)2017-09-06 06:17:00
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    氧化鋯的表面處理與粘接
    氧化鋯全瓷修復(fù)體崩瓷原因分析
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    兩種氧化鋯內(nèi)冠在種植體基臺上的邊緣和內(nèi)部適合性
    影像站等
    文史天地(2009年11期)2009-12-09 05:55:10
    午夜精品国产一区二区电影| 男男h啪啪无遮挡| 国产亚洲欧美精品永久| 亚洲色图综合在线观看| 亚洲欧美一区二区三区国产| 国产亚洲av片在线观看秒播厂| 在线观看免费视频网站a站| 欧美人与善性xxx| 制服丝袜香蕉在线| 69精品国产乱码久久久| 99久久中文字幕三级久久日本| 自拍欧美九色日韩亚洲蝌蚪91| 欧美精品人与动牲交sv欧美| 国产精品久久久久久av不卡| www.熟女人妻精品国产| 69精品国产乱码久久久| 久久免费观看电影| 中文字幕另类日韩欧美亚洲嫩草| 九草在线视频观看| 亚洲,欧美,日韩| 宅男免费午夜| 久久毛片免费看一区二区三区| 国产精品香港三级国产av潘金莲 | 如日韩欧美国产精品一区二区三区| 美女主播在线视频| 亚洲av.av天堂| 成人国语在线视频| 日日摸夜夜添夜夜爱| 我要看黄色一级片免费的| 人体艺术视频欧美日本| 国产成人午夜福利电影在线观看| 免费在线观看完整版高清| 伦精品一区二区三区| 欧美激情极品国产一区二区三区| 赤兔流量卡办理| 日韩在线高清观看一区二区三区| 亚洲,欧美,日韩| 国产有黄有色有爽视频| 母亲3免费完整高清在线观看 | 亚洲欧美成人综合另类久久久| 久久久久视频综合| 国产精品欧美亚洲77777| 日韩成人av中文字幕在线观看| 一本久久精品| 久久久精品区二区三区| 极品少妇高潮喷水抽搐| 18禁国产床啪视频网站| 午夜av观看不卡| 美女xxoo啪啪120秒动态图| 少妇熟女欧美另类| 亚洲成av片中文字幕在线观看 | 国产老妇伦熟女老妇高清| 国产xxxxx性猛交| 最近最新中文字幕大全免费视频 | 少妇人妻 视频| 久久韩国三级中文字幕| 黑人巨大精品欧美一区二区蜜桃| 在线天堂最新版资源| 色吧在线观看| 日韩 亚洲 欧美在线| 人妻 亚洲 视频| 久久久久久久久久久久大奶| 丰满迷人的少妇在线观看| 国产日韩欧美视频二区| 久久av网站| 街头女战士在线观看网站| 青春草亚洲视频在线观看| 亚洲五月色婷婷综合| 欧美成人午夜精品| 80岁老熟妇乱子伦牲交| 国产黄频视频在线观看| 少妇猛男粗大的猛烈进出视频| 免费黄网站久久成人精品| 性高湖久久久久久久久免费观看| 色吧在线观看| 少妇 在线观看| 久久精品熟女亚洲av麻豆精品| 免费少妇av软件| 国产精品欧美亚洲77777| 精品午夜福利在线看| 人人妻人人添人人爽欧美一区卜| 亚洲欧美中文字幕日韩二区| 精品人妻一区二区三区麻豆| 国产又色又爽无遮挡免| 宅男免费午夜| 日本免费在线观看一区| 91国产中文字幕| 成年女人毛片免费观看观看9 | 久久午夜福利片| 欧美成人午夜精品| 少妇精品久久久久久久| 99re6热这里在线精品视频| 国产福利在线免费观看视频| 国产一区有黄有色的免费视频| 久久女婷五月综合色啪小说| 亚洲一级一片aⅴ在线观看| 中文字幕精品免费在线观看视频| 考比视频在线观看| 婷婷色综合大香蕉| 久久精品国产综合久久久| 国产一区有黄有色的免费视频| 国产成人精品久久二区二区91 | 久久久久久久精品精品| 97在线人人人人妻| 成人毛片a级毛片在线播放| 大片电影免费在线观看免费| 少妇熟女欧美另类| 久久精品人人爽人人爽视色| 午夜激情久久久久久久| 亚洲精品在线美女| 午夜福利在线免费观看网站| 午夜久久久在线观看| 亚洲国产精品成人久久小说| 人人妻人人爽人人添夜夜欢视频| 日本vs欧美在线观看视频| 日韩免费高清中文字幕av| 亚洲国产看品久久| 超色免费av| 亚洲精品av麻豆狂野| 国产深夜福利视频在线观看| 亚洲国产精品一区二区三区在线| 黑人猛操日本美女一级片| 丰满饥渴人妻一区二区三| 亚洲精品美女久久av网站| 亚洲av成人精品一二三区| 人妻人人澡人人爽人人| 久久狼人影院| 免费人妻精品一区二区三区视频| av卡一久久| 波多野结衣av一区二区av| 国产女主播在线喷水免费视频网站| 欧美少妇被猛烈插入视频| 国产亚洲一区二区精品| 最近中文字幕2019免费版| 中文精品一卡2卡3卡4更新| 亚洲欧美一区二区三区国产| 久久久久精品人妻al黑| 国产成人精品婷婷| 久久久久久人人人人人| 欧美日本中文国产一区发布| 久久99精品国语久久久| 国产精品人妻久久久影院| 久久久国产一区二区| 在线观看国产h片| 亚洲欧美清纯卡通| 久久久久久人人人人人| 亚洲精品一二三| 精品福利永久在线观看| 十分钟在线观看高清视频www| 久久97久久精品| 人妻系列 视频| 国产免费又黄又爽又色| 欧美激情高清一区二区三区 | 少妇人妻久久综合中文| 久久精品久久精品一区二区三区| 日韩一区二区三区影片| 欧美最新免费一区二区三区| 久久久久人妻精品一区果冻| 一个人免费看片子| 69精品国产乱码久久久| 九色亚洲精品在线播放| 亚洲人成77777在线视频| 欧美精品国产亚洲| 国产精品蜜桃在线观看| 边亲边吃奶的免费视频| 毛片一级片免费看久久久久| 亚洲视频免费观看视频| 亚洲av.av天堂| 最近的中文字幕免费完整| 精品人妻熟女毛片av久久网站| 精品久久久久久电影网| 亚洲精品成人av观看孕妇| 久久鲁丝午夜福利片| 日日撸夜夜添| 另类精品久久| 国产成人精品久久二区二区91 | av电影中文网址| 午夜免费男女啪啪视频观看| 国产97色在线日韩免费| 另类精品久久| 男女下面插进去视频免费观看| 国产精品女同一区二区软件| 国产日韩欧美在线精品| 日本色播在线视频| 最近的中文字幕免费完整| 亚洲中文av在线| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区激情视频| 日本免费在线观看一区| 久久精品久久精品一区二区三区| 精品一品国产午夜福利视频| 精品一区二区三区四区五区乱码 | 热99国产精品久久久久久7| 两个人免费观看高清视频| 欧美日韩视频精品一区| 女性被躁到高潮视频| 亚洲男人天堂网一区| 国产成人免费观看mmmm| 欧美亚洲日本最大视频资源| 亚洲第一区二区三区不卡| 国产一区二区 视频在线| 日日啪夜夜爽| 欧美日韩精品成人综合77777| 国产精品熟女久久久久浪| 99国产精品免费福利视频| 国产97色在线日韩免费| 国产欧美日韩一区二区三区在线| 麻豆av在线久日| 丝袜美足系列| 亚洲成av片中文字幕在线观看 | 九九爱精品视频在线观看| 纵有疾风起免费观看全集完整版| 精品国产国语对白av| 1024香蕉在线观看| 中文字幕色久视频| 亚洲av综合色区一区| 精品少妇黑人巨大在线播放| 色哟哟·www| 中文字幕亚洲精品专区| 亚洲精品,欧美精品| av卡一久久| 亚洲国产看品久久| 中文字幕另类日韩欧美亚洲嫩草| 26uuu在线亚洲综合色| 成人二区视频| av线在线观看网站| 久久久久久久久久久免费av| 大片电影免费在线观看免费| 亚洲成人一二三区av| 大香蕉久久网| 国产 一区精品| 中国国产av一级| 人妻系列 视频| 亚洲,欧美精品.| 亚洲精品久久久久久婷婷小说| av一本久久久久| 久久精品久久久久久久性| 亚洲精品美女久久久久99蜜臀 | 久久久久久人妻| 久久久久久久久久久免费av| 在线天堂中文资源库| 最黄视频免费看| 欧美日韩精品网址| 日本免费在线观看一区| 9191精品国产免费久久| 美女高潮到喷水免费观看| √禁漫天堂资源中文www| www.自偷自拍.com| 欧美日韩一级在线毛片| 国产亚洲一区二区精品| 91午夜精品亚洲一区二区三区| 亚洲国产欧美网| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 少妇熟女欧美另类| 久久久久久久久久久久大奶| 色婷婷久久久亚洲欧美| 国产精品一区二区在线观看99| 制服人妻中文乱码| 欧美在线黄色| 日韩三级伦理在线观看| 亚洲少妇的诱惑av| 久久久精品国产亚洲av高清涩受| 美女视频免费永久观看网站| 亚洲精品,欧美精品| a级毛片黄视频| 国产高清不卡午夜福利| 亚洲 欧美一区二区三区| 欧美变态另类bdsm刘玥| 国产亚洲欧美精品永久| 高清在线视频一区二区三区| 视频区图区小说| 麻豆精品久久久久久蜜桃| 制服丝袜香蕉在线| 高清欧美精品videossex| 欧美激情极品国产一区二区三区| 日韩成人av中文字幕在线观看| 秋霞伦理黄片| 啦啦啦在线观看免费高清www| 18禁观看日本| 波多野结衣一区麻豆| 国产黄色视频一区二区在线观看| 国产成人精品久久二区二区91 | 少妇人妻精品综合一区二区| 欧美精品一区二区大全| 久久国内精品自在自线图片| 最近中文字幕2019免费版| 久久精品久久精品一区二区三区| 巨乳人妻的诱惑在线观看| 国产精品偷伦视频观看了| 黄片小视频在线播放| 久久99一区二区三区| 中国三级夫妇交换| 高清欧美精品videossex| 国产免费又黄又爽又色| 亚洲国产精品一区二区三区在线| 亚洲成国产人片在线观看| 欧美精品亚洲一区二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人91sexporn| 老司机影院成人| kizo精华| 少妇人妻 视频| 成年人午夜在线观看视频| 午夜福利一区二区在线看| 制服诱惑二区| 午夜老司机福利剧场| 两个人免费观看高清视频| 一区在线观看完整版| 咕卡用的链子| 80岁老熟妇乱子伦牲交| 免费播放大片免费观看视频在线观看| 我要看黄色一级片免费的| 捣出白浆h1v1| 久久久久久久久免费视频了| 国产成人一区二区在线| 国产成人av激情在线播放| 国产成人午夜福利电影在线观看| 亚洲欧洲精品一区二区精品久久久 | 精品卡一卡二卡四卡免费| 精品少妇黑人巨大在线播放| 最近中文字幕高清免费大全6| 黄片小视频在线播放| 黑人猛操日本美女一级片| 男人添女人高潮全过程视频| 久久久国产一区二区| 国产一区有黄有色的免费视频| 美女国产视频在线观看| 国产日韩欧美亚洲二区| 一本色道久久久久久精品综合| 日韩制服丝袜自拍偷拍| 极品人妻少妇av视频| 久久久久久久大尺度免费视频| 一区二区三区精品91| 亚洲欧美精品综合一区二区三区 | 咕卡用的链子| 香蕉丝袜av| 97精品久久久久久久久久精品| 你懂的网址亚洲精品在线观看| 99久久综合免费| 国产在线免费精品| 毛片一级片免费看久久久久| 国产高清不卡午夜福利| 午夜福利影视在线免费观看| 亚洲欧美精品自产自拍| 日本欧美国产在线视频| 精品福利永久在线观看| 久久精品夜色国产| 欧美亚洲 丝袜 人妻 在线| 亚洲精品第二区| 男女啪啪激烈高潮av片| 日韩一区二区三区影片| 日本av免费视频播放| 亚洲精品在线美女| 婷婷色综合大香蕉| 丝瓜视频免费看黄片| 日韩伦理黄色片| 欧美成人精品欧美一级黄| 波多野结衣一区麻豆| 亚洲精品中文字幕在线视频| 欧美人与性动交α欧美精品济南到 | 国产成人午夜福利电影在线观看| 大码成人一级视频| 免费黄网站久久成人精品| 国产黄色免费在线视频| 一区二区av电影网| 精品久久蜜臀av无| 免费黄色在线免费观看| 女性生殖器流出的白浆| 欧美另类一区| 丝瓜视频免费看黄片| av网站免费在线观看视频| 黄色怎么调成土黄色| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩成人在线一区二区| 亚洲精品国产av成人精品| 日韩在线高清观看一区二区三区| 美女国产视频在线观看| 性色av一级| 国产成人精品久久二区二区91 | 精品国产乱码久久久久久小说| 国产精品久久久久久精品电影小说| 精品酒店卫生间| 久久ye,这里只有精品| 一个人免费看片子| 五月伊人婷婷丁香| 少妇 在线观看| 你懂的网址亚洲精品在线观看| 久久久久久久精品精品| 美女中出高潮动态图| 亚洲美女视频黄频| 韩国高清视频一区二区三区| 99国产综合亚洲精品| 久久99热这里只频精品6学生| 精品人妻熟女毛片av久久网站| 亚洲色图综合在线观看| 黑丝袜美女国产一区| 婷婷色综合www| 天堂中文最新版在线下载| 中文乱码字字幕精品一区二区三区| 男的添女的下面高潮视频| 97精品久久久久久久久久精品| 日产精品乱码卡一卡2卡三| 久久精品久久久久久久性| 免费观看a级毛片全部| 精品99又大又爽又粗少妇毛片| 亚洲美女视频黄频| 免费少妇av软件| 高清av免费在线| 国产午夜精品一二区理论片| 精品少妇久久久久久888优播| 伦精品一区二区三区| av国产精品久久久久影院| 国产一区二区激情短视频 | 在线观看免费视频网站a站| 美女脱内裤让男人舔精品视频| 国产免费福利视频在线观看| 亚洲国产精品一区三区| 在线观看人妻少妇| 最新的欧美精品一区二区| 国产精品.久久久| www.熟女人妻精品国产| 亚洲精品一区蜜桃| 久久久久久久久久久久大奶| 国产av国产精品国产| 午夜免费男女啪啪视频观看| 少妇的丰满在线观看| 99久久人妻综合| 美女主播在线视频| 天堂俺去俺来也www色官网| 久久精品国产亚洲av高清一级| av国产精品久久久久影院| 亚洲第一区二区三区不卡| 国产免费一区二区三区四区乱码| 国产福利在线免费观看视频| 国产乱来视频区| 91aial.com中文字幕在线观看| 晚上一个人看的免费电影| 一区二区av电影网| 精品一区二区三卡| 制服人妻中文乱码| 在线天堂中文资源库| videossex国产| 日本-黄色视频高清免费观看| 美女国产高潮福利片在线看| 青草久久国产| 亚洲伊人色综图| 久久久久视频综合| 亚洲欧美成人精品一区二区| 少妇猛男粗大的猛烈进出视频| 黑丝袜美女国产一区| 国产片特级美女逼逼视频| 日产精品乱码卡一卡2卡三| 欧美日韩亚洲高清精品| 各种免费的搞黄视频| 久久这里有精品视频免费| 黄片播放在线免费| 夫妻性生交免费视频一级片| 国产片特级美女逼逼视频| 超色免费av| 国产爽快片一区二区三区| 中国三级夫妇交换| 考比视频在线观看| 国产成人免费无遮挡视频| 国产精品av久久久久免费| 中文乱码字字幕精品一区二区三区| 丝袜人妻中文字幕| 男人舔女人的私密视频| xxx大片免费视频| 亚洲精品一二三| 91精品国产国语对白视频| 成年美女黄网站色视频大全免费| 97精品久久久久久久久久精品| 日本色播在线视频| 亚洲国产毛片av蜜桃av| 精品一区在线观看国产| 女性生殖器流出的白浆| 男人爽女人下面视频在线观看| 丝袜人妻中文字幕| 亚洲图色成人| 高清av免费在线| 亚洲成av片中文字幕在线观看 | 少妇精品久久久久久久| 91久久精品国产一区二区三区| 久久久久精品人妻al黑| 超碰成人久久| 成人手机av| 免费黄网站久久成人精品| 国产成人91sexporn| 久久精品国产亚洲av天美| 最新中文字幕久久久久| 曰老女人黄片| 成人午夜精彩视频在线观看| 十分钟在线观看高清视频www| 亚洲第一av免费看| √禁漫天堂资源中文www| 免费看不卡的av| 欧美中文综合在线视频| 国产精品不卡视频一区二区| 人人妻人人添人人爽欧美一区卜| 成人免费观看视频高清| 亚洲综合精品二区| 纵有疾风起免费观看全集完整版| 在线 av 中文字幕| 中文天堂在线官网| 97人妻天天添夜夜摸| 一级片免费观看大全| 亚洲五月色婷婷综合| 人人妻人人澡人人爽人人夜夜| 一区二区三区四区激情视频| 国产白丝娇喘喷水9色精品| av卡一久久| 欧美激情高清一区二区三区 | www日本在线高清视频| 天天躁夜夜躁狠狠久久av| 热re99久久精品国产66热6| 亚洲精品,欧美精品| 香蕉精品网在线| 久久久久久伊人网av| 青春草视频在线免费观看| 欧美bdsm另类| 亚洲三区欧美一区| 欧美日韩一级在线毛片| 久久精品国产亚洲av天美| 各种免费的搞黄视频| 久久精品熟女亚洲av麻豆精品| 亚洲内射少妇av| 久久精品aⅴ一区二区三区四区 | 麻豆精品久久久久久蜜桃| 亚洲熟女精品中文字幕| 九九爱精品视频在线观看| 国产麻豆69| 黄色 视频免费看| 久久久久精品久久久久真实原创| 国产深夜福利视频在线观看| 成人国语在线视频| 少妇精品久久久久久久| 色吧在线观看| 精品一区二区三卡| 久久久精品94久久精品| 亚洲视频免费观看视频| 欧美日韩视频高清一区二区三区二| 精品少妇黑人巨大在线播放| 最近中文字幕高清免费大全6| 90打野战视频偷拍视频| 久久青草综合色| 国产男女超爽视频在线观看| 超碰成人久久| 午夜福利网站1000一区二区三区| 国产精品免费视频内射| 午夜av观看不卡| 国产深夜福利视频在线观看| 少妇的丰满在线观看| 一区福利在线观看| 精品一区在线观看国产| 91精品三级在线观看| 久久韩国三级中文字幕| 国产熟女欧美一区二区| 欧美日韩国产mv在线观看视频| 99精国产麻豆久久婷婷| 99久久精品国产国产毛片| 国产成人精品久久二区二区91 | 一边亲一边摸免费视频| 久久人人97超碰香蕉20202| 亚洲成国产人片在线观看| 美女午夜性视频免费| 亚洲国产av新网站| 国产又爽黄色视频| av天堂久久9| 国产一区二区激情短视频 | 久久久久久久国产电影| 国产成人精品无人区| 三级国产精品片| 观看av在线不卡| 新久久久久国产一级毛片| 午夜久久久在线观看| 亚洲,欧美精品.| 黄片播放在线免费| 伦理电影大哥的女人| 精品久久久精品久久久| 纵有疾风起免费观看全集完整版| 一二三四在线观看免费中文在| 亚洲av国产av综合av卡| 一区二区三区激情视频| 99热国产这里只有精品6| 午夜福利视频在线观看免费| 又粗又硬又长又爽又黄的视频| 亚洲精品久久成人aⅴ小说| 久久热在线av| 美女高潮到喷水免费观看| 亚洲精品国产av成人精品| 日韩一本色道免费dvd| 国产亚洲一区二区精品| 免费播放大片免费观看视频在线观看| 丝袜喷水一区| 午夜久久久在线观看| 深夜精品福利| 午夜老司机福利剧场| 高清黄色对白视频在线免费看| 久久人人爽人人片av| 制服诱惑二区| 久久久久久久国产电影| 极品人妻少妇av视频| 美女中出高潮动态图| 美女xxoo啪啪120秒动态图| 黄色一级大片看看| 2021少妇久久久久久久久久久| 电影成人av| 欧美成人精品欧美一级黄| av片东京热男人的天堂| 国产又爽黄色视频| 亚洲一区二区三区欧美精品| 女的被弄到高潮叫床怎么办| 性少妇av在线| 美女午夜性视频免费| 制服人妻中文乱码|