• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron Momentum Spectroscopy for Saturated Alkanes CnH2n+2(n=4-6)

    2012-11-06 07:01:07YANGZeJinGUOYunDongZHUZhengHeYANGXiangDong
    物理化學(xué)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:烷烴動(dòng)量譜線

    YANG Ze-Jin GUO Yun-Dong ZHU Zheng-He YANG Xiang-Dong

    (1School of Physics and Electronic Information Engineering,Neijiang Normal University,Neijiang 641112,Sichuan Province,P.R.China; 2Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,P.R.China)

    Electron Momentum Spectroscopy for Saturated Alkanes CnH2n+2(n=4-6)

    YANG Ze-Jin2GUO Yun-Dong1,*ZHU Zheng-He2YANG Xiang-Dong2

    (1School of Physics and Electronic Information Engineering,Neijiang Normal University,Neijiang 641112,Sichuan Province,P.R.China;2Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,P.R.China)

    Orbital electron momentum spectroscopies for saturated alkanes CnH2n+2(n=4-6)were systematically studiedusing the B3LYP/TZVP//B3LYP/aug-cc-pVTZ model.The effect of saturated alkanes CnH2n+2(n=4-6)isomers on orbital momentum distributions was analyzed.Electronic density distributions of coordinate space were systematically investigated by dual space analysis.The results indicate that the innermost valence orbitals are s-dominated whereas the next innermost valence orbitals exhibit p-dominant orbital profiles.The other valence orbitals are sp-mixed because of strong chemical bonding.The relative intensity of innermost valence orbitals is far larger than that of other orbitals.Furthermore,the relative intensity of n-alkane is larger than that of iso-alkane,which indicates that there is an obvious correlationbetweentherelativeintensityandthenumberofmigratedmethyls.

    Electron momentum spectroscopy;Dual space analysis; Saturated alkane

    The advantage of electron momentum spectroscopy(EMS)is that it can measure the orbital binding energy and momentum distributions for electrons located on individual orbitals of the molecule target,which provides more comprehensive information on electronic structures of molecules than conventional position space information only.With the development of experimental technique,valence orbitals rather than frontier orbitals for sizable molecules can be resolved[1].As a result,the great potential of EMS for exploring the electron structures of atoms and molecules can be extended[2].

    Small saturated hydrocarbon molecules using EMS can be used as prototypes to study larger alkanes and provide necessary information as a probe for the growth of the linear chain structures or turning into branched species.According to the author′s knowledge,only some small saturated hydrocarbons CnH2n+2(n=1-5)have been investigated extensively both theoretically andexperimentally by EMS[3-22],whereas there is very little research on systematical studies to reveal valence orbital responses to the chain growth.For exemple,addition of a methyl shift is still rare.In the present study,individual orbital responses to the isomerization of the saturated alkanes are carried out.It focuses on orbital responses to energy shift caused by the addition of methyl functional group in the molecule using dual space analysis(DSA)[20].

    1 Computational methods and details

    The B3LYP/TZVP method[20,23-24]has been used to calculate wave functions in coordinate space based on the stable geometry structures for the alkanes obtained using the B3LYP/aug-ccpVTZ model.The Gaussian 03 computational chemistry package is employed for related quantum mechanical calculations[25]. The orbitals obtained in position space are then Fourier transformed into momentum space using the HEMS code[26],under a number of approximations,such as Born-Oppenheimer approximation,independent particle approximation,and the plane wave impulse approximation(PWIA)[26].The overlap between the targetion is the one electron Dyson orbital[27],

    σ∝∫dΩ|φj(p)|2(1) where Ω is solid angle and p is the momentum of the target electron at the instant of ionization.The Dyson orbital φj(p)in momentum space is approximated by the Kohn-Sham(KS)orbitals in ground electronic states[28].

    2 Results and discussion

    According to the responses of the valence orbital to the methyl moiety,one could sort out the molecular orbitals as:(a) methyl affected orbitals,which engage with significant changes in intensity and shape,and(b)methyl disturbed orbitals,which experience minor changes in the orbitals.From a comprehensive analysis of the valence orbitals one could know that methyl site changes only cause the changes in certain valence orbitals not all the valence orbitals,indicating a molecular structural dependence.As a result,the nearly unchanged orbitals can be viewed as signature orbitals.The detailed highest occupied molecular orbitals(HOMOs)and total collision reaction cross section of the CnH2n+2(n=4-6)were published elsewhere[23],this article reveals the re sponses of the inner valence molecular orbitals to the branched carbon chains.

    2.1 Isomer independence of the relative intensity of the inner most valence orbitals

    Fig.1(a,b)reports the simulated inner most valence molecular orbitals(MOs)of the alkanes in momentum and coordinate spaces.Strong s-dominated orbital profiles in momentum space are also seen in the orbital electron density distributions in coordinate space.The very similar s-electron dominant shape of the orbital momentum profile suggests that the momentum space information is not sensitive to reflect small orbital electron density changes in the alkanes.The normal linear alkanes exhibit slightly stronger intensities than their isomers but in the order of n-bu-tane>iso-butane,n-pentane>iso-pentane>neo-pentane,hexane>iso-hexane>3-methylhexane≈2,3-dimethylbutane>2,2-dimethylbutane.

    Fig.1 Electron momentum spectroscopies(EMS)and electron density distributions(EDD)of the innermost molecular orbitals of butane,pentane(a),and hexane(b)

    Compared to n-alkanes,the iso-alkanes have smaller intensities and the neo-alkanes have the smallest intensities,suggesting that linear species corresponds to the more intensive electron distributions in momentum space.Therefore,the general variation tendencies of the relative intensity in the innermost valence orbitals are correlated with the carbons saturated by the number of the other carbon atoms.Moreover,the relative intensity of the innermost valence orbital quickly reaches zero at about 1 a.u., which is slightly smaller than the other valence orbitals,indicating that the electrons in the innermost valence orbitals spread over the molecular backbone into long range.From analyses of the orbital electron density distributions in coordinate space,it is clearly seen that all of the electrons contribute to this orbital.

    2.2 Isomer dependence of the relative intensity of other valence orbitals

    Other valence orbitals,such as the second innermost valence orbitals,however,reveal bell-shaped orbital profiles.The orbital cross sections exhibit a bell-shaped distributions,as shown in Fig.2(a,b).The similarities in the shape of the orbital momentum distributions indicate that the related orbitals contain a nodal plane in the orbitals,that is,the orbital electron density distributions contain positive and negative contributions,separated by a zero charge plane.

    The second innermost valence orbital of pentane exhibits a similar trend that has been seen in the innermost s-dominated profiles.That is the maximum momentum intensity order of n-pentane>iso-pentane>neo-pentane with values of 0.50,0.40, and 0.30,respectively,is observed.Similarly,this order of relative intensity variation for hexane is clearly observed.For example,n-hexane has the largest intensity with a value of 0.60,the relative intensity reduces to about 0.50 for iso-hexane and 3-methylpentane,whereas the maximum relative intensity decreases to about 0.40 for 2,2-dimethylbutane and 2,3-dimethylbutane.

    Comparison of the three n-alkanes,it is found that the intensity increases with the increase of the number of the carbons,and the order of the maximum peak value of butane,pentane,and hexane is given by n-butane<n-pentane<n-hexane as more electrons are bound with hexane.The fact that the bell-shaped orbital momentum profiles of these second innermost valence orbitals of the alkanes distribute into larger momentum region of up to 1.5 a.u.,whereas the innermost valence orbitals spread to smaller momentum region of<1.0 a.u.,indicated the latter(innermost valence orbitals)spread into larger space in position space. The nodal plane in the former(the second innermost valence orbitals)contributes to the shrinkage of the electron density in this orbital.

    2.3 Isomer dependence of the relative intensity of valence orbitals of alkane

    Fig.2 EMS and EDD of the next innermost valence orbitals of butane,pentane(a)and hexane(b)

    Fig.3 EMS and EDD of the selected valence orbitals of n-buane and iso-butane

    Selected electron orbital momentum distributions for n-butane and iso-butane are shown in Fig.3 to understand the carbon chain branching in butane.The selected representative orbitals reveal that the methyl moiety indeed causes significant changes to electron distributions.For example,MO7 of n-butane is formed by mixed sp-electrons,whereas a bell-shaped profile is observed in iso-butane.However,opposite contributions are found in orbital MO9.The orbital profiles vary from a half bell shaped orbital profiles in iso-butane to a bell shaped orbital profiles in butane.Moreover,in orbital MO15,the half bell-shaped orbital profiles in n-butane are distorted to reflect the methyl addition,as given in Fig.3.This figure indicates strong distortion of the orbital momentum distributions as the addition of the methyl moiety,depending on the number of electron density nodal planes and the degree of the electron density overlap.Fig. 4 and Fig.5 present orbital distributions of pentane and hexane, respectively.In Fig.4,momentum distributions of MO10 of pentane gradually vary from bell-shaped to half bell shaped orbital distributions,which are the opposite trend found in Fig.4 for MO14 and MO19,respectively.In Fig.5,it is found that the more complicated momentum distributions among five hexane isomers have been occurred.The orbital momentum distributions show three clusters of orbital profile behaviors,consisting of bell-shaped,half bell-shaped,and sp-hybridized shaped orbitals.Further analysis finds that certain pzelectrons have contributed to the distributions of MO15 in 3-methylpentane and 2,3-dimethylbutane,together with MO24 in n-hexane.The sphybrided two peaks in MO15 of n-hexane and in MO24 of 2,2-dimethylbutane revealed the strong interactions between different electrons.

    Fig.4 EMS and EDD of the selected valence orbitals of n-pentane and iso-pentane presented

    Fig.5 EMS and EDD of the selected valence orbitals of n-hexane,iso-hexane

    3 Conclusions

    Valence orbitals for three saturated alkanes(butane,pentane, and hexane)and their isomers have been studied on their valence orbitals using dual space analysis.The innermost valence orbitals of the alkanes show certain similarities,differing only in their relative intensities.The second innermost valence orbitals of the alkanes reveal bell shaped orbital distributions,indicating the existence of a nodal plane in their orbital electron density distrubitions.The selected valence orbitals further reveal the structural dependence of the orbitals.The n-alkanes show stronger intensities than their isomers and the intensities increase with the number of the carbon atoms.

    Acknowledgments: One of the authors,YANG Ze-Jin(ZY),thanks Swinburne University of Technology (SUT,Australia)for hospitality. ZY completed doctoral thesis research at SUT supervised by Professor WANG Feng.

    1 Ning,C.G.;Liu,K.;Luo,Z.H.;Zhang,S.F.;Deng,J.K.Chem. Phys.Lett.,2009,476:157

    2 Takahashi,M.Bull.Chem.Soc.Jpn.,2009,82:751

    3 Dey,S.;Dixon,A.J.;McCarthy,I.E.;Weigold,E.J.Electron Spectrosc.Relat.Phenom.,1976,9:397

    4 Weigold,E.;Dey,S.;Dixon,A.J.;McCarthy,I.E.Chem.Phys. Lett.,1976,41:21

    5 Clark,S.A.C.;Reddish,T.J.;Brion,C.E.;Davidson,E.R.;Frey, R.F.Chem.Phys.,1990,143:1

    6 Chen,X.J.;Tian,S.X.;Jia,C.C.;Yu,X.Q.;Yang,B.Y.;Xu,K. Z.Acta Phys.-Chim.Sin.,1998,14:490 [陳向軍,田善喜,賈昌春,虞孝麒,楊炳忻,徐克尊.物理化學(xué)學(xué)報(bào),1998,14:490]

    7 Fan,X.W.;Zhou,S.J.;Zhang,Q.X.;Deng,J.K.;Zheng,Y.Y.; Gao,N.F.;Chen,X.J.Acta Phys.-Chim.Sin.,1998,14:573 [樊曉偉,周少杰,張慶祥,鄧景康,鄭延友,高乃飛,陳學(xué)俊.物理化學(xué)學(xué)報(bào),1998,14:573]

    8 Pang,W.;Shang,R.;Gao,N.;Zhang,W.;Gao,J.;Deng,J.;Chen, X.;Zheng,Y.Phys.Lett.A,1998,248:230

    9 Pang,W.N.;Zhang,W.X.;Gao,N.F.;Shang,R.C.;Deng,J.K.; Chen,X.J.Chin.Phys.Lett.,1998,15:648 [龐文寧,張文新,高乃飛,尚仁成,鄧景康,陳學(xué)俊.中國(guó)物理快報(bào),1998,15:648]

    10 Tian,S.X.;Chen,X.J.;Jia,C.C.;Xu,C.K.;Yang,B.X.;Xu,K. Z.;Shuang,F.;Yang,J.L.J.Phys.B-At.Mol.Opt.Phys.,1998, 31:2055

    11 Deng,J.K.;Li,G.Q.;Huang,J.D.;Deng,H.;Wang,X.D.;Wang, F.;He,Y.;Zhang,Y.A.;Ning,C.G.;Gao,N.F.;Wang,Y.;Chen, X.J.;Zheng,Y.;Brion,C.E.Chem.Phys.Lett.,1999,313:134

    12 Jia,C.C.;Chen,X.J.;Tian,S.X.;Oy,G.;Peng,L.L.;Yang,B. X.;Xu,K.Z.;Yuan,L.F.;Yang,J.L.J.Phys.B-At.Mol.Opt. Phys.,1999,32:1515

    13 Pang,W.N.;Shang,R.C.;Gao,N.F.;Zhang,W.X.;Chen,X.J.; Zheng,Y.;Brion,C.E.Chem.Phys.Lett.,1999,299:207

    14 Zheng,Y.;Pang,W.N.;Shang,R.C.;Chen,X.J.;Brion,C.E.; Ghanty,T.K.;Davidson,E.R.J.Chem.Phys.,1999,111:9526

    15 Deng,J.K.;Li,G.Q.;He,Y.;Huang,J.D.;Deng,H.;Wang,X. D.;Wang,F.;Zhang,Y.A.;Ning,C.G.;Gao,N.F.;Wang,Y.; Chen,X.J.;Zheng,Y.Y.Chin.Phys.Lett.,2000,17:795 [鄧景康,李桂琴,何 垚,黃建東,鄧 慧,王曉東,王 芳,張亦安,寧傳剛,高乃飛,王 巖,陳學(xué)俊,鄭延友.中國(guó)物理快報(bào),2000,17: 795]

    16 Pang,W.N.;Gao,J.F.;Ruan,C.J.;Shang,R.C.;Trofimov,A.B.; Deleuze,M.S.J.Chem.Phys.,2000,112:8043

    17 Brion,C.E.;Cooper,G.;Zheng,Y.;Litvinyuk,I.V.;McCarthy,I. E.Chem.Phys.,2001,270:13

    18 Deleuze,M.S.;Pang,W.N.;Salam,A.;Shang,R.C.J.Am.Chem. Soc.,2001,123:4049

    19 Deng,J.K.;Li,G.Q.;He,Y.;Huang,J.D.;Deng,H.;Wang,X. D.;Wang,F.;Zhang,Y.A.;Ning,C.G.;Gao,N.F.;Wang,Y.; Chen,X.J.;Zheng,Y.J.Chem.Phys.,2001,114:882

    20 Wang,F.J.Phys.Chem.A,2003,107:10199

    21 Knippenberg,S.;Huang,Y.R.;Hajgato,B.;Francois,J.P.;Deng, J.K.;Deleuze,M.S.J.Chem.Phys.,2007,127:174306

    22 Wang,F.;Pang,W.Mol.Simul.,2007,33:1173

    23 Saha,S.;Wang,F.;Falzon,C.T.J.Chem.Phys.,2005,123: 124315

    24 Tian,S.X.;Chen,X.J.;Xu,C.K.;Xu,K.Z.;Yuan,L.F.;Yang,J. L.J.Electron Spectrosc.Relat.Phenom.,1999,105:99

    25 Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03. Revision C.02.Wallingford,CT:Gaussian Inc.,2004

    26 Duffy,P.;Casida,M.E.;Brion,C.E.;Chong,D.P.Chem.Phys., 1992,165:183

    27 Coulson,C.A.Rev.Mod.Phys.,1960,32:170

    28 Duffy,P.;Chong,D.P.;Casida,M.E.;Salahub,D.R.Phys.Rev. A,1994,50:4707

    飽和烷烴分子CnH2n+2(n=4-6)的電子動(dòng)量光譜

    楊則金2郭云東1,*朱正和2楊向東2

    (1內(nèi)江師范學(xué)院物理與電子信息工程學(xué)院,四川內(nèi)江 641112;2四川大學(xué)原子與分子物理研究所,成都 610065)

    使用B3LYP/TZVP//B3LYP/aug-cc-pVTZ方法系統(tǒng)研究了飽和烷烴分子CnH2n+2(n=4-6)的軌道電子動(dòng)量光譜,比較了同分異構(gòu)體CnH2n+2(n=4-6)對(duì)軌道動(dòng)量分布的影響.結(jié)合二維空間分析方法對(duì)電子在坐標(biāo)空間中的密度分布進(jìn)行了系統(tǒng)的研究.計(jì)算結(jié)果表明,最內(nèi)價(jià)殼層電荷分布主要由s電子貢獻(xiàn),第二近鄰芯價(jià)殼層則主要由p電子貢獻(xiàn),而其余的價(jià)殼層則為sp雜化.最內(nèi)價(jià)軌道表現(xiàn)出最大的譜線強(qiáng)度并且遠(yuǎn)大于其它軌道的譜線強(qiáng)度,而且正烷烴的譜線強(qiáng)度要大于異烷烴等同分異構(gòu)體的譜線強(qiáng)度,表現(xiàn)出了明顯的與甲基移動(dòng)的個(gè)數(shù)有關(guān)的性質(zhì).

    電子動(dòng)量光譜; 二維空間分析; 飽和烷烴

    O644

    Received:April 10,2010;Revised:July 16,2010;Published on Web:July 19,2010.

    *Corresponding author.Email:g308yd@126.com;Tel:+86-832-2341982;Fax:+86-832-2341679.

    The project was supported by the National Natural Science Foundation of China(10676025,10574096),China Scholarship Council(CSC),and Science-Technology Foundation for Young Scientist of Sichuan Province,China(09ZQ026-049).

    國(guó)家自然科學(xué)基金(10676025,10574096),國(guó)家留學(xué)基金委員會(huì)(CSC)和四川省青年科技基金(09ZQ026-049)資助項(xiàng)目

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    烷烴動(dòng)量譜線
    動(dòng)量守恒定律在三個(gè)物體系中的應(yīng)用
    氣相色譜六通閥在正構(gòu)烷烴及碳數(shù)分布測(cè)定中的應(yīng)用
    云南化工(2021年11期)2022-01-12 06:06:30
    基于HITRAN光譜數(shù)據(jù)庫(kù)的合并譜線測(cè)溫仿真研究
    應(yīng)用動(dòng)量守恒定律解題之秘訣
    動(dòng)量相關(guān)知識(shí)的理解和應(yīng)用
    高苯原料油烷烴異構(gòu)化的MAX-ISOM技術(shù)
    鐵合金光譜譜線分離實(shí)驗(yàn)研究
    鍶原子光鐘鐘躍遷譜線探測(cè)中的程序控制
    烷烴油滴在超臨界二氧化碳中溶解的分子動(dòng)力學(xué)模擬
    藥芯焊絲GMAW電弧光譜的研究
    精品国产一区二区久久| 一级黄片播放器| 天天躁狠狠躁夜夜躁狠狠躁| 久久人妻福利社区极品人妻图片 | 99久久99久久久精品蜜桃| 一级黄片播放器| h视频一区二区三区| 人人妻人人澡人人爽人人夜夜| 婷婷色麻豆天堂久久| 各种免费的搞黄视频| 99久久综合免费| 丝袜在线中文字幕| 久久久久精品人妻al黑| 欧美成狂野欧美在线观看| www.熟女人妻精品国产| a 毛片基地| 波多野结衣av一区二区av| 精品久久久久久久毛片微露脸 | 免费不卡黄色视频| 99九九在线精品视频| 黄色 视频免费看| 亚洲国产精品999| 日韩av在线免费看完整版不卡| 大码成人一级视频| 99国产精品一区二区三区| 欧美+亚洲+日韩+国产| 十八禁网站网址无遮挡| 日韩伦理黄色片| 我的亚洲天堂| 另类精品久久| 看免费成人av毛片| 欧美日韩福利视频一区二区| 亚洲中文日韩欧美视频| av在线app专区| 午夜福利在线免费观看网站| 国产精品亚洲av一区麻豆| 亚洲国产欧美网| 狠狠精品人妻久久久久久综合| 欧美黑人欧美精品刺激| 中文字幕人妻熟女乱码| 一区二区三区四区激情视频| 热re99久久精品国产66热6| 免费看不卡的av| 久久久久久久久久久久大奶| 久久影院123| 秋霞在线观看毛片| 91精品三级在线观看| 国产精品偷伦视频观看了| 搡老乐熟女国产| 精品少妇一区二区三区视频日本电影| 亚洲,欧美,日韩| 十八禁人妻一区二区| 精品一区在线观看国产| 在线观看www视频免费| 少妇被粗大的猛进出69影院| 两性夫妻黄色片| 黑人欧美特级aaaaaa片| 欧美亚洲日本最大视频资源| 亚洲av日韩精品久久久久久密 | 亚洲精品成人av观看孕妇| 欧美精品高潮呻吟av久久| 叶爱在线成人免费视频播放| √禁漫天堂资源中文www| 王馨瑶露胸无遮挡在线观看| 国产一区有黄有色的免费视频| 欧美激情高清一区二区三区| 一本色道久久久久久精品综合| 亚洲av片天天在线观看| 国产成人系列免费观看| 亚洲国产精品一区二区三区在线| 2018国产大陆天天弄谢| 亚洲中文字幕日韩| 国产在线免费精品| 女警被强在线播放| 亚洲国产最新在线播放| 亚洲国产成人一精品久久久| 久久人妻福利社区极品人妻图片 | 久久久精品免费免费高清| 亚洲国产欧美一区二区综合| 人人妻人人添人人爽欧美一区卜| 欧美亚洲日本最大视频资源| 欧美日韩亚洲综合一区二区三区_| 国产成人免费观看mmmm| 人妻人人澡人人爽人人| 日韩电影二区| 麻豆av在线久日| 国产片内射在线| 久久国产精品影院| 国产在线视频一区二区| 久久这里只有精品19| 王馨瑶露胸无遮挡在线观看| 91成人精品电影| 久久人妻福利社区极品人妻图片 | 国产不卡av网站在线观看| 婷婷色麻豆天堂久久| 国产精品一区二区免费欧美 | 99re6热这里在线精品视频| 男人操女人黄网站| 欧美日韩国产mv在线观看视频| 韩国精品一区二区三区| 日本a在线网址| 一级片'在线观看视频| 午夜激情av网站| 日韩欧美一区视频在线观看| 成年人黄色毛片网站| 校园人妻丝袜中文字幕| 久久精品国产a三级三级三级| 亚洲av日韩精品久久久久久密 | 无限看片的www在线观看| 亚洲成人免费av在线播放| 51午夜福利影视在线观看| 桃花免费在线播放| 久久国产精品影院| 亚洲成色77777| 免费不卡黄色视频| 亚洲精品成人av观看孕妇| 欧美黑人欧美精品刺激| 免费不卡黄色视频| 秋霞在线观看毛片| 日韩熟女老妇一区二区性免费视频| 日本vs欧美在线观看视频| 又黄又粗又硬又大视频| 精品国产一区二区三区四区第35| 欧美精品一区二区免费开放| 精品高清国产在线一区| 久久精品aⅴ一区二区三区四区| 这个男人来自地球电影免费观看| 国产一区二区 视频在线| 亚洲国产欧美日韩在线播放| videosex国产| 日韩av免费高清视频| 国产日韩欧美视频二区| 在线天堂中文资源库| 又大又黄又爽视频免费| 欧美精品啪啪一区二区三区 | 大香蕉久久网| 婷婷丁香在线五月| 国产精品国产三级国产专区5o| 十八禁网站网址无遮挡| 777米奇影视久久| 亚洲专区国产一区二区| 五月开心婷婷网| 精品久久久久久电影网| 少妇 在线观看| 精品少妇黑人巨大在线播放| 成年女人毛片免费观看观看9 | 中文字幕人妻丝袜制服| av一本久久久久| 亚洲精品国产区一区二| 久久人妻福利社区极品人妻图片 | 国产欧美亚洲国产| 各种免费的搞黄视频| 久久国产精品影院| 女性生殖器流出的白浆| 欧美中文综合在线视频| 午夜精品国产一区二区电影| 日本a在线网址| 搡老乐熟女国产| 好男人电影高清在线观看| 一级毛片黄色毛片免费观看视频| 亚洲av电影在线观看一区二区三区| 午夜视频精品福利| 亚洲黑人精品在线| 国产成人av激情在线播放| 丝瓜视频免费看黄片| 你懂的网址亚洲精品在线观看| 国产成人啪精品午夜网站| 婷婷成人精品国产| 欧美xxⅹ黑人| 丁香六月欧美| 久久狼人影院| 女警被强在线播放| 精品少妇一区二区三区视频日本电影| 欧美日韩综合久久久久久| www.精华液| 婷婷成人精品国产| 亚洲黑人精品在线| av国产精品久久久久影院| 亚洲av成人不卡在线观看播放网 | 午夜激情久久久久久久| 在线观看www视频免费| 大陆偷拍与自拍| 夫妻午夜视频| 999精品在线视频| 色网站视频免费| 一级毛片电影观看| 女人高潮潮喷娇喘18禁视频| 欧美精品一区二区免费开放| 免费在线观看视频国产中文字幕亚洲 | 777久久人妻少妇嫩草av网站| 亚洲av美国av| 自拍欧美九色日韩亚洲蝌蚪91| 丰满饥渴人妻一区二区三| 90打野战视频偷拍视频| av天堂久久9| 99久久人妻综合| a级毛片在线看网站| 啦啦啦视频在线资源免费观看| 免费少妇av软件| 男女边摸边吃奶| 啦啦啦视频在线资源免费观看| 国产又爽黄色视频| 99热国产这里只有精品6| 欧美国产精品va在线观看不卡| 国产伦理片在线播放av一区| 777米奇影视久久| 婷婷成人精品国产| 日韩人妻精品一区2区三区| 亚洲 欧美一区二区三区| 国产精品麻豆人妻色哟哟久久| 在线观看免费日韩欧美大片| 日韩免费高清中文字幕av| 蜜桃在线观看..| 久久这里只有精品19| 少妇 在线观看| 久久国产精品大桥未久av| 成人影院久久| 男女无遮挡免费网站观看| 日本av免费视频播放| 欧美性长视频在线观看| 岛国毛片在线播放| 在线观看国产h片| 男女午夜视频在线观看| 精品熟女少妇八av免费久了| 一级黄色大片毛片| 国产成人精品久久久久久| 人人妻人人添人人爽欧美一区卜| 少妇被粗大的猛进出69影院| 各种免费的搞黄视频| 欧美日韩黄片免| 亚洲av日韩在线播放| 日本av手机在线免费观看| 国产日韩欧美在线精品| 午夜老司机福利片| 飞空精品影院首页| 超色免费av| av电影中文网址| 中文字幕人妻丝袜一区二区| 色综合欧美亚洲国产小说| 少妇粗大呻吟视频| 母亲3免费完整高清在线观看| 精品少妇内射三级| 欧美日本中文国产一区发布| 制服人妻中文乱码| h视频一区二区三区| 精品久久久久久电影网| 中文字幕亚洲精品专区| 91国产中文字幕| 超碰成人久久| 岛国毛片在线播放| 人人妻人人添人人爽欧美一区卜| kizo精华| 欧美国产精品一级二级三级| 亚洲欧美色中文字幕在线| 亚洲美女黄色视频免费看| 色婷婷久久久亚洲欧美| 久久人妻福利社区极品人妻图片 | 欧美日韩亚洲综合一区二区三区_| 欧美日韩视频高清一区二区三区二| 在线观看一区二区三区激情| 中文字幕人妻熟女乱码| 亚洲精品国产区一区二| 欧美亚洲 丝袜 人妻 在线| 最近手机中文字幕大全| 国产成人精品在线电影| 久久精品久久精品一区二区三区| 18禁国产床啪视频网站| 熟女少妇亚洲综合色aaa.| 老熟女久久久| 中文字幕人妻熟女乱码| 欧美亚洲日本最大视频资源| 久久精品亚洲av国产电影网| 97精品久久久久久久久久精品| 精品国产乱码久久久久久男人| 黄色怎么调成土黄色| 男人添女人高潮全过程视频| 成人国语在线视频| 日韩制服丝袜自拍偷拍| 香蕉国产在线看| 欧美日韩精品网址| 永久免费av网站大全| 亚洲国产欧美网| 亚洲第一青青草原| 一级毛片电影观看| 亚洲国产看品久久| 又粗又硬又长又爽又黄的视频| 亚洲av在线观看美女高潮| 制服诱惑二区| 一级黄片播放器| 国产成人精品无人区| 午夜日韩欧美国产| 国产亚洲欧美在线一区二区| 黄色怎么调成土黄色| 考比视频在线观看| 男女边吃奶边做爰视频| 午夜福利乱码中文字幕| 国产亚洲欧美精品永久| 欧美在线黄色| 首页视频小说图片口味搜索 | 色综合欧美亚洲国产小说| 国产在线一区二区三区精| 欧美精品一区二区免费开放| 精品国产超薄肉色丝袜足j| 男女下面插进去视频免费观看| 91九色精品人成在线观看| 亚洲精品美女久久av网站| 国产高清国产精品国产三级| 久久天堂一区二区三区四区| 国产视频首页在线观看| 另类亚洲欧美激情| 国产亚洲午夜精品一区二区久久| 国产真人三级小视频在线观看| 桃花免费在线播放| 91成人精品电影| 亚洲欧洲国产日韩| 亚洲av成人不卡在线观看播放网 | 亚洲精品av麻豆狂野| 亚洲av美国av| 91老司机精品| 亚洲,欧美精品.| 男女边吃奶边做爰视频| 精品人妻在线不人妻| 成年女人毛片免费观看观看9 | 69精品国产乱码久久久| 欧美 日韩 精品 国产| 国产色视频综合| 亚洲精品第二区| 国产女主播在线喷水免费视频网站| av电影中文网址| 精品久久久久久久毛片微露脸 | 老司机影院成人| 中文字幕另类日韩欧美亚洲嫩草| 一本久久精品| 欧美日韩亚洲综合一区二区三区_| 亚洲中文日韩欧美视频| 亚洲av电影在线进入| 国产成人免费无遮挡视频| 中文字幕人妻丝袜一区二区| 校园人妻丝袜中文字幕| 在线天堂中文资源库| 校园人妻丝袜中文字幕| 九草在线视频观看| 啦啦啦在线免费观看视频4| 欧美黑人欧美精品刺激| xxxhd国产人妻xxx| 国产精品九九99| 国精品久久久久久国模美| 亚洲成av片中文字幕在线观看| 青春草亚洲视频在线观看| 少妇被粗大的猛进出69影院| 成人影院久久| 国产成人一区二区在线| 国产成人av激情在线播放| 亚洲国产精品999| 国产精品一区二区在线不卡| 尾随美女入室| 91老司机精品| 国产欧美亚洲国产| 99久久综合免费| 国产成人精品在线电影| 美国免费a级毛片| 夫妻性生交免费视频一级片| 一本综合久久免费| 黄频高清免费视频| 欧美精品啪啪一区二区三区 | 国产精品成人在线| 国产一级毛片在线| 视频区图区小说| 18禁观看日本| 日韩一卡2卡3卡4卡2021年| 亚洲伊人色综图| 人人妻人人澡人人看| 午夜精品国产一区二区电影| 精品久久久久久电影网| 少妇精品久久久久久久| 成人三级做爰电影| 一边摸一边抽搐一进一出视频| 欧美激情高清一区二区三区| 国产老妇伦熟女老妇高清| 天堂中文最新版在线下载| 婷婷色综合www| 香蕉丝袜av| 午夜福利影视在线免费观看| 亚洲av日韩在线播放| 美女国产高潮福利片在线看| 视频在线观看一区二区三区| 亚洲欧美激情在线| 亚洲天堂av无毛| 日韩中文字幕欧美一区二区 | 国产亚洲精品第一综合不卡| 久久久久视频综合| 久久亚洲精品不卡| 国产日韩一区二区三区精品不卡| www.999成人在线观看| 国产高清国产精品国产三级| 欧美人与善性xxx| 午夜免费鲁丝| 大香蕉久久网| 美国免费a级毛片| 欧美xxⅹ黑人| 久久久久国产精品人妻一区二区| 大香蕉久久成人网| 久久久久久人人人人人| 极品人妻少妇av视频| 丁香六月天网| 国产精品免费大片| 91麻豆精品激情在线观看国产 | 热re99久久精品国产66热6| 亚洲色图 男人天堂 中文字幕| 欧美日韩亚洲高清精品| 日韩一卡2卡3卡4卡2021年| 好男人电影高清在线观看| 大型av网站在线播放| 99久久99久久久精品蜜桃| 中文字幕人妻丝袜一区二区| 日本a在线网址| 性少妇av在线| 久久人人97超碰香蕉20202| 日韩av在线免费看完整版不卡| 国产精品熟女久久久久浪| 黄色一级大片看看| 男女国产视频网站| 黄色 视频免费看| 男人舔女人的私密视频| 亚洲七黄色美女视频| 大片免费播放器 马上看| 亚洲av美国av| 又粗又硬又长又爽又黄的视频| 久久久久久免费高清国产稀缺| 你懂的网址亚洲精品在线观看| 久久精品久久精品一区二区三区| 91成人精品电影| 亚洲激情五月婷婷啪啪| 丁香六月欧美| 精品一品国产午夜福利视频| 成人黄色视频免费在线看| 日本欧美国产在线视频| 欧美激情极品国产一区二区三区| 日韩制服骚丝袜av| 亚洲精品中文字幕在线视频| 久久久久久久久久久久大奶| 咕卡用的链子| 捣出白浆h1v1| 国产精品一区二区在线不卡| 欧美精品高潮呻吟av久久| 国产欧美日韩综合在线一区二区| 少妇 在线观看| 满18在线观看网站| 亚洲欧美精品综合一区二区三区| 制服诱惑二区| videos熟女内射| 久久久国产一区二区| 国产又色又爽无遮挡免| 免费av中文字幕在线| 亚洲精品久久成人aⅴ小说| 亚洲av电影在线观看一区二区三区| 亚洲国产日韩一区二区| 99九九在线精品视频| 99国产精品一区二区蜜桃av | 亚洲国产精品一区二区三区在线| 亚洲熟女毛片儿| 99香蕉大伊视频| 国产亚洲av片在线观看秒播厂| 久久久国产一区二区| a级片在线免费高清观看视频| 日日爽夜夜爽网站| 男女免费视频国产| 激情视频va一区二区三区| 精品国产一区二区久久| 成年动漫av网址| 青青草视频在线视频观看| 久久女婷五月综合色啪小说| 下体分泌物呈黄色| 欧美人与性动交α欧美精品济南到| 亚洲少妇的诱惑av| 精品一区在线观看国产| 性高湖久久久久久久久免费观看| 久久久久网色| 久久九九热精品免费| 亚洲精品一区蜜桃| 日本猛色少妇xxxxx猛交久久| 男女床上黄色一级片免费看| 一区二区三区乱码不卡18| 欧美在线一区亚洲| 飞空精品影院首页| 777米奇影视久久| 黄片小视频在线播放| 丝袜美足系列| 日韩人妻精品一区2区三区| 黄色 视频免费看| kizo精华| 国产成人a∨麻豆精品| 在线看a的网站| 日韩一区二区三区影片| 精品一区二区三区四区五区乱码 | 99热网站在线观看| 久久久欧美国产精品| 亚洲精品av麻豆狂野| 亚洲欧美一区二区三区黑人| 天堂俺去俺来也www色官网| 精品久久久久久电影网| 另类亚洲欧美激情| 大片免费播放器 马上看| 亚洲av欧美aⅴ国产| 少妇粗大呻吟视频| 午夜激情久久久久久久| 亚洲精品美女久久av网站| 免费在线观看视频国产中文字幕亚洲 | 丝袜人妻中文字幕| 乱人伦中国视频| 免费av中文字幕在线| av有码第一页| 黄色视频在线播放观看不卡| 日本一区二区免费在线视频| 美女中出高潮动态图| 天堂8中文在线网| 中文字幕另类日韩欧美亚洲嫩草| 天堂俺去俺来也www色官网| 99热网站在线观看| 欧美老熟妇乱子伦牲交| 丝袜美足系列| 丝袜人妻中文字幕| 国产日韩欧美亚洲二区| 久久热在线av| 久久中文字幕一级| 啦啦啦啦在线视频资源| 少妇的丰满在线观看| 亚洲第一青青草原| 最近手机中文字幕大全| 亚洲美女黄色视频免费看| 波多野结衣av一区二区av| 久久人人爽av亚洲精品天堂| 性色av乱码一区二区三区2| 妹子高潮喷水视频| 精品欧美一区二区三区在线| 亚洲精品美女久久av网站| 久久久久网色| 久久精品久久久久久噜噜老黄| 日韩 欧美 亚洲 中文字幕| av国产精品久久久久影院| 男女下面插进去视频免费观看| 晚上一个人看的免费电影| 熟女少妇亚洲综合色aaa.| 国产一区二区激情短视频 | 在线观看免费视频网站a站| 久久 成人 亚洲| 伊人亚洲综合成人网| 男人舔女人的私密视频| av一本久久久久| 天天添夜夜摸| 性色av一级| 最新在线观看一区二区三区 | 国产一区亚洲一区在线观看| 精品人妻熟女毛片av久久网站| 国产精品熟女久久久久浪| 欧美人与性动交α欧美精品济南到| 男女无遮挡免费网站观看| 国产成人免费无遮挡视频| 一级,二级,三级黄色视频| 亚洲精品一区蜜桃| 欧美久久黑人一区二区| 大话2 男鬼变身卡| 少妇粗大呻吟视频| 免费av中文字幕在线| 久久国产精品大桥未久av| 亚洲中文字幕日韩| 精品欧美一区二区三区在线| 国产一区二区三区综合在线观看| 亚洲精品日本国产第一区| 国产欧美日韩综合在线一区二区| 另类亚洲欧美激情| 无限看片的www在线观看| 男人操女人黄网站| 欧美黑人精品巨大| 欧美av亚洲av综合av国产av| 免费在线观看日本一区| 精品福利永久在线观看| 精品亚洲乱码少妇综合久久| 青青草视频在线视频观看| 永久免费av网站大全| 韩国精品一区二区三区| 久久国产精品人妻蜜桃| 亚洲欧美一区二区三区黑人| 天天躁夜夜躁狠狠躁躁| av天堂久久9| 精品免费久久久久久久清纯 | 一本—道久久a久久精品蜜桃钙片| 人人妻人人爽人人添夜夜欢视频| 不卡av一区二区三区| 99热国产这里只有精品6| 免费看不卡的av| 免费在线观看视频国产中文字幕亚洲 | 国产成人91sexporn| 亚洲成av片中文字幕在线观看| 曰老女人黄片| 国产成人一区二区三区免费视频网站 | 欧美xxⅹ黑人| 狠狠精品人妻久久久久久综合| 成人影院久久| 亚洲欧美一区二区三区黑人| 天天躁夜夜躁狠狠躁躁| 久久国产精品人妻蜜桃| 国产女主播在线喷水免费视频网站| 韩国精品一区二区三区| 人人澡人人妻人| 美女大奶头黄色视频| 精品亚洲成国产av| 亚洲色图综合在线观看| 18在线观看网站| 日韩 欧美 亚洲 中文字幕| 精品国产国语对白av| 成人手机av| 久热这里只有精品99| 高清欧美精品videossex| 精品国产乱码久久久久久小说|