• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron Momentum Spectroscopy for Saturated Alkanes CnH2n+2(n=4-6)

    2012-11-06 07:01:07YANGZeJinGUOYunDongZHUZhengHeYANGXiangDong
    物理化學(xué)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:烷烴動(dòng)量譜線

    YANG Ze-Jin GUO Yun-Dong ZHU Zheng-He YANG Xiang-Dong

    (1School of Physics and Electronic Information Engineering,Neijiang Normal University,Neijiang 641112,Sichuan Province,P.R.China; 2Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,P.R.China)

    Electron Momentum Spectroscopy for Saturated Alkanes CnH2n+2(n=4-6)

    YANG Ze-Jin2GUO Yun-Dong1,*ZHU Zheng-He2YANG Xiang-Dong2

    (1School of Physics and Electronic Information Engineering,Neijiang Normal University,Neijiang 641112,Sichuan Province,P.R.China;2Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,P.R.China)

    Orbital electron momentum spectroscopies for saturated alkanes CnH2n+2(n=4-6)were systematically studiedusing the B3LYP/TZVP//B3LYP/aug-cc-pVTZ model.The effect of saturated alkanes CnH2n+2(n=4-6)isomers on orbital momentum distributions was analyzed.Electronic density distributions of coordinate space were systematically investigated by dual space analysis.The results indicate that the innermost valence orbitals are s-dominated whereas the next innermost valence orbitals exhibit p-dominant orbital profiles.The other valence orbitals are sp-mixed because of strong chemical bonding.The relative intensity of innermost valence orbitals is far larger than that of other orbitals.Furthermore,the relative intensity of n-alkane is larger than that of iso-alkane,which indicates that there is an obvious correlationbetweentherelativeintensityandthenumberofmigratedmethyls.

    Electron momentum spectroscopy;Dual space analysis; Saturated alkane

    The advantage of electron momentum spectroscopy(EMS)is that it can measure the orbital binding energy and momentum distributions for electrons located on individual orbitals of the molecule target,which provides more comprehensive information on electronic structures of molecules than conventional position space information only.With the development of experimental technique,valence orbitals rather than frontier orbitals for sizable molecules can be resolved[1].As a result,the great potential of EMS for exploring the electron structures of atoms and molecules can be extended[2].

    Small saturated hydrocarbon molecules using EMS can be used as prototypes to study larger alkanes and provide necessary information as a probe for the growth of the linear chain structures or turning into branched species.According to the author′s knowledge,only some small saturated hydrocarbons CnH2n+2(n=1-5)have been investigated extensively both theoretically andexperimentally by EMS[3-22],whereas there is very little research on systematical studies to reveal valence orbital responses to the chain growth.For exemple,addition of a methyl shift is still rare.In the present study,individual orbital responses to the isomerization of the saturated alkanes are carried out.It focuses on orbital responses to energy shift caused by the addition of methyl functional group in the molecule using dual space analysis(DSA)[20].

    1 Computational methods and details

    The B3LYP/TZVP method[20,23-24]has been used to calculate wave functions in coordinate space based on the stable geometry structures for the alkanes obtained using the B3LYP/aug-ccpVTZ model.The Gaussian 03 computational chemistry package is employed for related quantum mechanical calculations[25]. The orbitals obtained in position space are then Fourier transformed into momentum space using the HEMS code[26],under a number of approximations,such as Born-Oppenheimer approximation,independent particle approximation,and the plane wave impulse approximation(PWIA)[26].The overlap between the targetion is the one electron Dyson orbital[27],

    σ∝∫dΩ|φj(p)|2(1) where Ω is solid angle and p is the momentum of the target electron at the instant of ionization.The Dyson orbital φj(p)in momentum space is approximated by the Kohn-Sham(KS)orbitals in ground electronic states[28].

    2 Results and discussion

    According to the responses of the valence orbital to the methyl moiety,one could sort out the molecular orbitals as:(a) methyl affected orbitals,which engage with significant changes in intensity and shape,and(b)methyl disturbed orbitals,which experience minor changes in the orbitals.From a comprehensive analysis of the valence orbitals one could know that methyl site changes only cause the changes in certain valence orbitals not all the valence orbitals,indicating a molecular structural dependence.As a result,the nearly unchanged orbitals can be viewed as signature orbitals.The detailed highest occupied molecular orbitals(HOMOs)and total collision reaction cross section of the CnH2n+2(n=4-6)were published elsewhere[23],this article reveals the re sponses of the inner valence molecular orbitals to the branched carbon chains.

    2.1 Isomer independence of the relative intensity of the inner most valence orbitals

    Fig.1(a,b)reports the simulated inner most valence molecular orbitals(MOs)of the alkanes in momentum and coordinate spaces.Strong s-dominated orbital profiles in momentum space are also seen in the orbital electron density distributions in coordinate space.The very similar s-electron dominant shape of the orbital momentum profile suggests that the momentum space information is not sensitive to reflect small orbital electron density changes in the alkanes.The normal linear alkanes exhibit slightly stronger intensities than their isomers but in the order of n-bu-tane>iso-butane,n-pentane>iso-pentane>neo-pentane,hexane>iso-hexane>3-methylhexane≈2,3-dimethylbutane>2,2-dimethylbutane.

    Fig.1 Electron momentum spectroscopies(EMS)and electron density distributions(EDD)of the innermost molecular orbitals of butane,pentane(a),and hexane(b)

    Compared to n-alkanes,the iso-alkanes have smaller intensities and the neo-alkanes have the smallest intensities,suggesting that linear species corresponds to the more intensive electron distributions in momentum space.Therefore,the general variation tendencies of the relative intensity in the innermost valence orbitals are correlated with the carbons saturated by the number of the other carbon atoms.Moreover,the relative intensity of the innermost valence orbital quickly reaches zero at about 1 a.u., which is slightly smaller than the other valence orbitals,indicating that the electrons in the innermost valence orbitals spread over the molecular backbone into long range.From analyses of the orbital electron density distributions in coordinate space,it is clearly seen that all of the electrons contribute to this orbital.

    2.2 Isomer dependence of the relative intensity of other valence orbitals

    Other valence orbitals,such as the second innermost valence orbitals,however,reveal bell-shaped orbital profiles.The orbital cross sections exhibit a bell-shaped distributions,as shown in Fig.2(a,b).The similarities in the shape of the orbital momentum distributions indicate that the related orbitals contain a nodal plane in the orbitals,that is,the orbital electron density distributions contain positive and negative contributions,separated by a zero charge plane.

    The second innermost valence orbital of pentane exhibits a similar trend that has been seen in the innermost s-dominated profiles.That is the maximum momentum intensity order of n-pentane>iso-pentane>neo-pentane with values of 0.50,0.40, and 0.30,respectively,is observed.Similarly,this order of relative intensity variation for hexane is clearly observed.For example,n-hexane has the largest intensity with a value of 0.60,the relative intensity reduces to about 0.50 for iso-hexane and 3-methylpentane,whereas the maximum relative intensity decreases to about 0.40 for 2,2-dimethylbutane and 2,3-dimethylbutane.

    Comparison of the three n-alkanes,it is found that the intensity increases with the increase of the number of the carbons,and the order of the maximum peak value of butane,pentane,and hexane is given by n-butane<n-pentane<n-hexane as more electrons are bound with hexane.The fact that the bell-shaped orbital momentum profiles of these second innermost valence orbitals of the alkanes distribute into larger momentum region of up to 1.5 a.u.,whereas the innermost valence orbitals spread to smaller momentum region of<1.0 a.u.,indicated the latter(innermost valence orbitals)spread into larger space in position space. The nodal plane in the former(the second innermost valence orbitals)contributes to the shrinkage of the electron density in this orbital.

    2.3 Isomer dependence of the relative intensity of valence orbitals of alkane

    Fig.2 EMS and EDD of the next innermost valence orbitals of butane,pentane(a)and hexane(b)

    Fig.3 EMS and EDD of the selected valence orbitals of n-buane and iso-butane

    Selected electron orbital momentum distributions for n-butane and iso-butane are shown in Fig.3 to understand the carbon chain branching in butane.The selected representative orbitals reveal that the methyl moiety indeed causes significant changes to electron distributions.For example,MO7 of n-butane is formed by mixed sp-electrons,whereas a bell-shaped profile is observed in iso-butane.However,opposite contributions are found in orbital MO9.The orbital profiles vary from a half bell shaped orbital profiles in iso-butane to a bell shaped orbital profiles in butane.Moreover,in orbital MO15,the half bell-shaped orbital profiles in n-butane are distorted to reflect the methyl addition,as given in Fig.3.This figure indicates strong distortion of the orbital momentum distributions as the addition of the methyl moiety,depending on the number of electron density nodal planes and the degree of the electron density overlap.Fig. 4 and Fig.5 present orbital distributions of pentane and hexane, respectively.In Fig.4,momentum distributions of MO10 of pentane gradually vary from bell-shaped to half bell shaped orbital distributions,which are the opposite trend found in Fig.4 for MO14 and MO19,respectively.In Fig.5,it is found that the more complicated momentum distributions among five hexane isomers have been occurred.The orbital momentum distributions show three clusters of orbital profile behaviors,consisting of bell-shaped,half bell-shaped,and sp-hybridized shaped orbitals.Further analysis finds that certain pzelectrons have contributed to the distributions of MO15 in 3-methylpentane and 2,3-dimethylbutane,together with MO24 in n-hexane.The sphybrided two peaks in MO15 of n-hexane and in MO24 of 2,2-dimethylbutane revealed the strong interactions between different electrons.

    Fig.4 EMS and EDD of the selected valence orbitals of n-pentane and iso-pentane presented

    Fig.5 EMS and EDD of the selected valence orbitals of n-hexane,iso-hexane

    3 Conclusions

    Valence orbitals for three saturated alkanes(butane,pentane, and hexane)and their isomers have been studied on their valence orbitals using dual space analysis.The innermost valence orbitals of the alkanes show certain similarities,differing only in their relative intensities.The second innermost valence orbitals of the alkanes reveal bell shaped orbital distributions,indicating the existence of a nodal plane in their orbital electron density distrubitions.The selected valence orbitals further reveal the structural dependence of the orbitals.The n-alkanes show stronger intensities than their isomers and the intensities increase with the number of the carbon atoms.

    Acknowledgments: One of the authors,YANG Ze-Jin(ZY),thanks Swinburne University of Technology (SUT,Australia)for hospitality. ZY completed doctoral thesis research at SUT supervised by Professor WANG Feng.

    1 Ning,C.G.;Liu,K.;Luo,Z.H.;Zhang,S.F.;Deng,J.K.Chem. Phys.Lett.,2009,476:157

    2 Takahashi,M.Bull.Chem.Soc.Jpn.,2009,82:751

    3 Dey,S.;Dixon,A.J.;McCarthy,I.E.;Weigold,E.J.Electron Spectrosc.Relat.Phenom.,1976,9:397

    4 Weigold,E.;Dey,S.;Dixon,A.J.;McCarthy,I.E.Chem.Phys. Lett.,1976,41:21

    5 Clark,S.A.C.;Reddish,T.J.;Brion,C.E.;Davidson,E.R.;Frey, R.F.Chem.Phys.,1990,143:1

    6 Chen,X.J.;Tian,S.X.;Jia,C.C.;Yu,X.Q.;Yang,B.Y.;Xu,K. Z.Acta Phys.-Chim.Sin.,1998,14:490 [陳向軍,田善喜,賈昌春,虞孝麒,楊炳忻,徐克尊.物理化學(xué)學(xué)報(bào),1998,14:490]

    7 Fan,X.W.;Zhou,S.J.;Zhang,Q.X.;Deng,J.K.;Zheng,Y.Y.; Gao,N.F.;Chen,X.J.Acta Phys.-Chim.Sin.,1998,14:573 [樊曉偉,周少杰,張慶祥,鄧景康,鄭延友,高乃飛,陳學(xué)俊.物理化學(xué)學(xué)報(bào),1998,14:573]

    8 Pang,W.;Shang,R.;Gao,N.;Zhang,W.;Gao,J.;Deng,J.;Chen, X.;Zheng,Y.Phys.Lett.A,1998,248:230

    9 Pang,W.N.;Zhang,W.X.;Gao,N.F.;Shang,R.C.;Deng,J.K.; Chen,X.J.Chin.Phys.Lett.,1998,15:648 [龐文寧,張文新,高乃飛,尚仁成,鄧景康,陳學(xué)俊.中國(guó)物理快報(bào),1998,15:648]

    10 Tian,S.X.;Chen,X.J.;Jia,C.C.;Xu,C.K.;Yang,B.X.;Xu,K. Z.;Shuang,F.;Yang,J.L.J.Phys.B-At.Mol.Opt.Phys.,1998, 31:2055

    11 Deng,J.K.;Li,G.Q.;Huang,J.D.;Deng,H.;Wang,X.D.;Wang, F.;He,Y.;Zhang,Y.A.;Ning,C.G.;Gao,N.F.;Wang,Y.;Chen, X.J.;Zheng,Y.;Brion,C.E.Chem.Phys.Lett.,1999,313:134

    12 Jia,C.C.;Chen,X.J.;Tian,S.X.;Oy,G.;Peng,L.L.;Yang,B. X.;Xu,K.Z.;Yuan,L.F.;Yang,J.L.J.Phys.B-At.Mol.Opt. Phys.,1999,32:1515

    13 Pang,W.N.;Shang,R.C.;Gao,N.F.;Zhang,W.X.;Chen,X.J.; Zheng,Y.;Brion,C.E.Chem.Phys.Lett.,1999,299:207

    14 Zheng,Y.;Pang,W.N.;Shang,R.C.;Chen,X.J.;Brion,C.E.; Ghanty,T.K.;Davidson,E.R.J.Chem.Phys.,1999,111:9526

    15 Deng,J.K.;Li,G.Q.;He,Y.;Huang,J.D.;Deng,H.;Wang,X. D.;Wang,F.;Zhang,Y.A.;Ning,C.G.;Gao,N.F.;Wang,Y.; Chen,X.J.;Zheng,Y.Y.Chin.Phys.Lett.,2000,17:795 [鄧景康,李桂琴,何 垚,黃建東,鄧 慧,王曉東,王 芳,張亦安,寧傳剛,高乃飛,王 巖,陳學(xué)俊,鄭延友.中國(guó)物理快報(bào),2000,17: 795]

    16 Pang,W.N.;Gao,J.F.;Ruan,C.J.;Shang,R.C.;Trofimov,A.B.; Deleuze,M.S.J.Chem.Phys.,2000,112:8043

    17 Brion,C.E.;Cooper,G.;Zheng,Y.;Litvinyuk,I.V.;McCarthy,I. E.Chem.Phys.,2001,270:13

    18 Deleuze,M.S.;Pang,W.N.;Salam,A.;Shang,R.C.J.Am.Chem. Soc.,2001,123:4049

    19 Deng,J.K.;Li,G.Q.;He,Y.;Huang,J.D.;Deng,H.;Wang,X. D.;Wang,F.;Zhang,Y.A.;Ning,C.G.;Gao,N.F.;Wang,Y.; Chen,X.J.;Zheng,Y.J.Chem.Phys.,2001,114:882

    20 Wang,F.J.Phys.Chem.A,2003,107:10199

    21 Knippenberg,S.;Huang,Y.R.;Hajgato,B.;Francois,J.P.;Deng, J.K.;Deleuze,M.S.J.Chem.Phys.,2007,127:174306

    22 Wang,F.;Pang,W.Mol.Simul.,2007,33:1173

    23 Saha,S.;Wang,F.;Falzon,C.T.J.Chem.Phys.,2005,123: 124315

    24 Tian,S.X.;Chen,X.J.;Xu,C.K.;Xu,K.Z.;Yuan,L.F.;Yang,J. L.J.Electron Spectrosc.Relat.Phenom.,1999,105:99

    25 Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03. Revision C.02.Wallingford,CT:Gaussian Inc.,2004

    26 Duffy,P.;Casida,M.E.;Brion,C.E.;Chong,D.P.Chem.Phys., 1992,165:183

    27 Coulson,C.A.Rev.Mod.Phys.,1960,32:170

    28 Duffy,P.;Chong,D.P.;Casida,M.E.;Salahub,D.R.Phys.Rev. A,1994,50:4707

    飽和烷烴分子CnH2n+2(n=4-6)的電子動(dòng)量光譜

    楊則金2郭云東1,*朱正和2楊向東2

    (1內(nèi)江師范學(xué)院物理與電子信息工程學(xué)院,四川內(nèi)江 641112;2四川大學(xué)原子與分子物理研究所,成都 610065)

    使用B3LYP/TZVP//B3LYP/aug-cc-pVTZ方法系統(tǒng)研究了飽和烷烴分子CnH2n+2(n=4-6)的軌道電子動(dòng)量光譜,比較了同分異構(gòu)體CnH2n+2(n=4-6)對(duì)軌道動(dòng)量分布的影響.結(jié)合二維空間分析方法對(duì)電子在坐標(biāo)空間中的密度分布進(jìn)行了系統(tǒng)的研究.計(jì)算結(jié)果表明,最內(nèi)價(jià)殼層電荷分布主要由s電子貢獻(xiàn),第二近鄰芯價(jià)殼層則主要由p電子貢獻(xiàn),而其余的價(jià)殼層則為sp雜化.最內(nèi)價(jià)軌道表現(xiàn)出最大的譜線強(qiáng)度并且遠(yuǎn)大于其它軌道的譜線強(qiáng)度,而且正烷烴的譜線強(qiáng)度要大于異烷烴等同分異構(gòu)體的譜線強(qiáng)度,表現(xiàn)出了明顯的與甲基移動(dòng)的個(gè)數(shù)有關(guān)的性質(zhì).

    電子動(dòng)量光譜; 二維空間分析; 飽和烷烴

    O644

    Received:April 10,2010;Revised:July 16,2010;Published on Web:July 19,2010.

    *Corresponding author.Email:g308yd@126.com;Tel:+86-832-2341982;Fax:+86-832-2341679.

    The project was supported by the National Natural Science Foundation of China(10676025,10574096),China Scholarship Council(CSC),and Science-Technology Foundation for Young Scientist of Sichuan Province,China(09ZQ026-049).

    國(guó)家自然科學(xué)基金(10676025,10574096),國(guó)家留學(xué)基金委員會(huì)(CSC)和四川省青年科技基金(09ZQ026-049)資助項(xiàng)目

    ?Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    烷烴動(dòng)量譜線
    動(dòng)量守恒定律在三個(gè)物體系中的應(yīng)用
    氣相色譜六通閥在正構(gòu)烷烴及碳數(shù)分布測(cè)定中的應(yīng)用
    云南化工(2021年11期)2022-01-12 06:06:30
    基于HITRAN光譜數(shù)據(jù)庫(kù)的合并譜線測(cè)溫仿真研究
    應(yīng)用動(dòng)量守恒定律解題之秘訣
    動(dòng)量相關(guān)知識(shí)的理解和應(yīng)用
    高苯原料油烷烴異構(gòu)化的MAX-ISOM技術(shù)
    鐵合金光譜譜線分離實(shí)驗(yàn)研究
    鍶原子光鐘鐘躍遷譜線探測(cè)中的程序控制
    烷烴油滴在超臨界二氧化碳中溶解的分子動(dòng)力學(xué)模擬
    藥芯焊絲GMAW電弧光譜的研究
    亚洲五月天丁香| 国产亚洲最大av| 午夜日本视频在线| 天天一区二区日本电影三级| 亚洲图色成人| 一区二区三区乱码不卡18| 九九热线精品视视频播放| 国内精品美女久久久久久| 亚洲欧美成人精品一区二区| av黄色大香蕉| 又爽又黄无遮挡网站| 麻豆成人午夜福利视频| 少妇裸体淫交视频免费看高清| 亚洲av成人精品一二三区| 人妻夜夜爽99麻豆av| 久久亚洲国产成人精品v| 国产久久久一区二区三区| 国产人妻一区二区三区在| 卡戴珊不雅视频在线播放| 国产男人的电影天堂91| 最近最新中文字幕免费大全7| 男人舔奶头视频| 欧美三级亚洲精品| 国产精品.久久久| 可以在线观看毛片的网站| 亚洲精品乱码久久久v下载方式| 中文乱码字字幕精品一区二区三区 | 69人妻影院| 欧美区成人在线视频| 一本久久精品| 国产精品人妻久久久影院| 天天躁夜夜躁狠狠久久av| 精品不卡国产一区二区三区| 亚洲在久久综合| 99久久精品一区二区三区| 久久久久久久久久久丰满| 国产老妇伦熟女老妇高清| 天美传媒精品一区二区| 久久精品影院6| 久久久久精品久久久久真实原创| 久久久亚洲精品成人影院| 亚洲国产高清在线一区二区三| 99久久九九国产精品国产免费| 免费无遮挡裸体视频| 97超碰精品成人国产| 国产综合懂色| 国产综合懂色| 亚洲av成人精品一区久久| 99久国产av精品| 如何舔出高潮| 欧美3d第一页| 亚洲欧美一区二区三区国产| 男人和女人高潮做爰伦理| 免费观看人在逋| 亚洲欧美日韩卡通动漫| 最后的刺客免费高清国语| 亚洲四区av| 禁无遮挡网站| videossex国产| 一本久久精品| 午夜福利在线观看吧| 观看美女的网站| 麻豆国产97在线/欧美| 国产成人91sexporn| 汤姆久久久久久久影院中文字幕 | 啦啦啦韩国在线观看视频| 国产精品麻豆人妻色哟哟久久 | 日韩视频在线欧美| 可以在线观看毛片的网站| a级一级毛片免费在线观看| 国产色婷婷99| kizo精华| 高清午夜精品一区二区三区| 一级黄色大片毛片| 黄色日韩在线| 九草在线视频观看| 国产午夜精品论理片| 国产精品一及| 久久这里只有精品中国| 亚洲精品,欧美精品| 91aial.com中文字幕在线观看| 亚洲真实伦在线观看| 久久99蜜桃精品久久| 日本五十路高清| 日韩精品有码人妻一区| 亚洲美女视频黄频| 男人舔女人下体高潮全视频| 少妇丰满av| 亚洲一级一片aⅴ在线观看| 亚洲国产欧美人成| 男人的好看免费观看在线视频| 久久久国产成人精品二区| 看黄色毛片网站| 成人毛片60女人毛片免费| 日本午夜av视频| 国产精品爽爽va在线观看网站| 免费搜索国产男女视频| 最后的刺客免费高清国语| 美女内射精品一级片tv| 一级黄片播放器| 内地一区二区视频在线| 国产伦精品一区二区三区四那| 联通29元200g的流量卡| 国产又色又爽无遮挡免| 18+在线观看网站| 伦精品一区二区三区| 在线a可以看的网站| 国产精品一区二区三区四区免费观看| 免费看光身美女| 成人高潮视频无遮挡免费网站| 国产探花极品一区二区| 国产伦理片在线播放av一区| 免费人成在线观看视频色| 久久久久久久久久久丰满| 久久草成人影院| 国产视频内射| 久久精品久久久久久久性| a级毛色黄片| 在线免费观看不下载黄p国产| 简卡轻食公司| 欧美色视频一区免费| 中文乱码字字幕精品一区二区三区 | 亚洲人成网站高清观看| 中文字幕亚洲精品专区| 久久久国产成人精品二区| 欧美丝袜亚洲另类| 国产精品嫩草影院av在线观看| av卡一久久| 少妇裸体淫交视频免费看高清| 久久人人爽人人爽人人片va| 国产精品国产三级国产av玫瑰| 婷婷六月久久综合丁香| 久久国产乱子免费精品| 日韩人妻高清精品专区| 精品一区二区三区人妻视频| 人人妻人人澡人人爽人人夜夜 | 亚洲国产色片| 亚洲va在线va天堂va国产| 99久久无色码亚洲精品果冻| 91在线精品国自产拍蜜月| 99九九线精品视频在线观看视频| 一级毛片我不卡| 日韩一区二区三区影片| 超碰97精品在线观看| 三级毛片av免费| 亚洲精品456在线播放app| 精品无人区乱码1区二区| 国产一级毛片在线| 国产91av在线免费观看| 一级毛片aaaaaa免费看小| av天堂中文字幕网| 夜夜看夜夜爽夜夜摸| 只有这里有精品99| 99热网站在线观看| 99在线人妻在线中文字幕| 国产av不卡久久| 日韩精品有码人妻一区| 久久99热这里只有精品18| 亚洲av免费在线观看| 欧美性猛交黑人性爽| 在线观看美女被高潮喷水网站| 日本免费a在线| 成人午夜高清在线视频| 18禁在线无遮挡免费观看视频| 午夜免费激情av| 精品人妻熟女av久视频| 如何舔出高潮| 国产 一区 欧美 日韩| 看黄色毛片网站| 久久亚洲国产成人精品v| 欧美最新免费一区二区三区| 欧美日韩综合久久久久久| 免费av不卡在线播放| 一级黄色大片毛片| 日本免费一区二区三区高清不卡| 91aial.com中文字幕在线观看| 亚洲真实伦在线观看| 亚洲中文字幕日韩| 久久热精品热| 国产午夜精品久久久久久一区二区三区| 午夜a级毛片| 国产一区二区在线观看日韩| 精品久久久久久电影网 | 亚洲不卡免费看| 97超碰精品成人国产| 亚洲第一区二区三区不卡| 亚洲精品成人久久久久久| 国产成人91sexporn| 97超视频在线观看视频| 日韩强制内射视频| 国内精品宾馆在线| 亚洲一区高清亚洲精品| 亚洲在线观看片| 高清视频免费观看一区二区 | 日韩一区二区视频免费看| 亚洲在久久综合| 国产极品精品免费视频能看的| 在线观看一区二区三区| 美女国产视频在线观看| 久久精品综合一区二区三区| 一级毛片久久久久久久久女| 欧美成人a在线观看| 水蜜桃什么品种好| 国产v大片淫在线免费观看| 国产一区有黄有色的免费视频 | 一个人观看的视频www高清免费观看| 国产精品久久久久久精品电影小说 | 天美传媒精品一区二区| 最近手机中文字幕大全| 久久精品国产99精品国产亚洲性色| 大又大粗又爽又黄少妇毛片口| 一个人看视频在线观看www免费| 国产一级毛片七仙女欲春2| 中文欧美无线码| 丰满人妻一区二区三区视频av| 最近中文字幕高清免费大全6| 最近的中文字幕免费完整| 亚洲图色成人| av在线亚洲专区| 国产午夜福利久久久久久| 久久精品人妻少妇| 久久精品夜夜夜夜夜久久蜜豆| 97超视频在线观看视频| 男女边吃奶边做爰视频| 嫩草影院新地址| 春色校园在线视频观看| 欧美xxxx性猛交bbbb| 亚洲av电影不卡..在线观看| 国产综合懂色| 18+在线观看网站| 老司机影院毛片| 久久精品人妻少妇| 国产精品一区二区三区四区久久| 少妇的逼好多水| 国产黄色小视频在线观看| 成人无遮挡网站| 99久国产av精品国产电影| 青春草国产在线视频| 日本三级黄在线观看| 中文字幕av在线有码专区| 国产精品国产高清国产av| 国产女主播在线喷水免费视频网站 | 免费看av在线观看网站| 91精品一卡2卡3卡4卡| 一区二区三区高清视频在线| www.色视频.com| 五月玫瑰六月丁香| 日本av手机在线免费观看| 禁无遮挡网站| 一级av片app| 一级毛片aaaaaa免费看小| 色综合色国产| 又粗又爽又猛毛片免费看| 亚洲怡红院男人天堂| 九九热线精品视视频播放| 性色avwww在线观看| 内射极品少妇av片p| 欧美+日韩+精品| 国产女主播在线喷水免费视频网站 | 最近最新中文字幕大全电影3| 91狼人影院| 成年女人看的毛片在线观看| 日韩中字成人| 亚洲最大成人av| 国产在视频线精品| 99热全是精品| 国产 一区 欧美 日韩| 日韩成人伦理影院| 国产午夜福利久久久久久| 久久精品国产自在天天线| 中国国产av一级| 亚洲国产最新在线播放| 少妇熟女欧美另类| 国产成人精品一,二区| 国内精品一区二区在线观看| 日韩欧美 国产精品| 成人三级黄色视频| av卡一久久| 国产69精品久久久久777片| 黄色欧美视频在线观看| 精品酒店卫生间| 中文天堂在线官网| 亚洲av男天堂| 一区二区三区四区激情视频| av女优亚洲男人天堂| 又爽又黄a免费视频| 一个人看视频在线观看www免费| 又粗又爽又猛毛片免费看| 一级毛片电影观看 | av黄色大香蕉| 亚洲成人av在线免费| 精华霜和精华液先用哪个| av视频在线观看入口| 婷婷色av中文字幕| 伊人久久精品亚洲午夜| 1000部很黄的大片| 亚洲熟妇中文字幕五十中出| 一本久久精品| 丝袜喷水一区| 国产熟女欧美一区二区| 我的女老师完整版在线观看| 午夜老司机福利剧场| av黄色大香蕉| 网址你懂的国产日韩在线| av国产免费在线观看| 综合色丁香网| 欧美丝袜亚洲另类| 国产激情偷乱视频一区二区| 国产白丝娇喘喷水9色精品| 最新中文字幕久久久久| 午夜亚洲福利在线播放| 亚洲精品456在线播放app| 国产精品99久久久久久久久| 国产精品福利在线免费观看| 一个人免费在线观看电影| 美女高潮的动态| 看黄色毛片网站| 成人毛片a级毛片在线播放| 国产精品久久久久久精品电影| 亚洲欧美清纯卡通| av在线老鸭窝| 亚洲av日韩在线播放| 国产一区亚洲一区在线观看| 麻豆成人午夜福利视频| 国产探花极品一区二区| av又黄又爽大尺度在线免费看 | 啦啦啦啦在线视频资源| 国产精品乱码一区二三区的特点| 欧美日韩在线观看h| 女人十人毛片免费观看3o分钟| 久久久久久久国产电影| 国产黄片美女视频| 草草在线视频免费看| 日本av手机在线免费观看| 女的被弄到高潮叫床怎么办| 亚洲,欧美,日韩| 亚洲乱码一区二区免费版| 中文精品一卡2卡3卡4更新| 老司机影院成人| 久久精品熟女亚洲av麻豆精品 | 国产大屁股一区二区在线视频| 小说图片视频综合网站| 久久婷婷人人爽人人干人人爱| 久久99热这里只频精品6学生 | 少妇熟女aⅴ在线视频| 久久久久精品久久久久真实原创| 毛片一级片免费看久久久久| 十八禁国产超污无遮挡网站| 久久精品91蜜桃| 国产精品日韩av在线免费观看| 亚洲一区高清亚洲精品| 国产精品1区2区在线观看.| 亚洲18禁久久av| 最近的中文字幕免费完整| 亚洲人成网站在线观看播放| 久久久亚洲精品成人影院| 欧美性猛交黑人性爽| 亚洲欧美精品综合久久99| 国产精品国产高清国产av| 九九久久精品国产亚洲av麻豆| 亚洲高清免费不卡视频| 欧美潮喷喷水| 在线观看一区二区三区| 大香蕉97超碰在线| 欧美成人午夜免费资源| 九九在线视频观看精品| 国产av不卡久久| 午夜精品在线福利| 又爽又黄a免费视频| 波野结衣二区三区在线| 美女黄网站色视频| 在线免费十八禁| 色综合色国产| 国产一区二区在线av高清观看| 国产单亲对白刺激| 精品熟女少妇av免费看| 亚洲最大成人av| 国产大屁股一区二区在线视频| 日韩人妻高清精品专区| 国产精品女同一区二区软件| 亚洲欧美精品综合久久99| 国产精品一区二区在线观看99 | 岛国毛片在线播放| 亚洲av成人av| 国产乱人偷精品视频| 亚洲欧美精品专区久久| 亚洲四区av| 日日摸夜夜添夜夜添av毛片| 亚洲av成人av| videos熟女内射| 在线观看一区二区三区| 干丝袜人妻中文字幕| 22中文网久久字幕| 男插女下体视频免费在线播放| 久久久久久久久久久免费av| 淫秽高清视频在线观看| 国产精品久久久久久久久免| 国产爱豆传媒在线观看| 久久韩国三级中文字幕| 日韩视频在线欧美| 亚洲精品,欧美精品| 免费搜索国产男女视频| 久久久久久久久中文| 色吧在线观看| 欧美成人精品欧美一级黄| 欧美日韩一区二区视频在线观看视频在线 | 美女xxoo啪啪120秒动态图| 国产一级毛片在线| 搞女人的毛片| 中文精品一卡2卡3卡4更新| 观看免费一级毛片| 七月丁香在线播放| 青春草国产在线视频| 美女脱内裤让男人舔精品视频| 精品久久国产蜜桃| 99久国产av精品| 亚洲国产高清在线一区二区三| 岛国在线免费视频观看| 午夜免费男女啪啪视频观看| 五月玫瑰六月丁香| 国产大屁股一区二区在线视频| 亚洲精品成人久久久久久| a级毛色黄片| 国产午夜福利久久久久久| 日韩av在线大香蕉| 国产精品电影一区二区三区| 日本色播在线视频| videossex国产| 18+在线观看网站| 亚洲欧洲国产日韩| 国内精品宾馆在线| 日日摸夜夜添夜夜添av毛片| 亚洲乱码一区二区免费版| 免费观看的影片在线观看| 午夜激情福利司机影院| 伦理电影大哥的女人| 色哟哟·www| 成年av动漫网址| 黄色一级大片看看| 色综合站精品国产| 女的被弄到高潮叫床怎么办| 熟女电影av网| 乱人视频在线观看| 亚洲丝袜综合中文字幕| 午夜福利在线在线| 岛国在线免费视频观看| 亚洲人成网站高清观看| 村上凉子中文字幕在线| 禁无遮挡网站| 国产探花极品一区二区| 精品久久国产蜜桃| av黄色大香蕉| 少妇人妻一区二区三区视频| 欧美xxxx黑人xx丫x性爽| 小蜜桃在线观看免费完整版高清| av免费观看日本| 中文乱码字字幕精品一区二区三区 | 亚洲av福利一区| 亚洲国产精品国产精品| 亚洲成人中文字幕在线播放| 中文字幕精品亚洲无线码一区| 久久久亚洲精品成人影院| 国产成人精品婷婷| 亚洲av福利一区| 国产高清三级在线| 色噜噜av男人的天堂激情| 久久人人爽人人爽人人片va| 久久精品国产亚洲av天美| 汤姆久久久久久久影院中文字幕 | 特级一级黄色大片| 亚洲伊人久久精品综合 | 久久久久久久亚洲中文字幕| 国产午夜精品久久久久久一区二区三区| 69av精品久久久久久| 日韩国内少妇激情av| 日本猛色少妇xxxxx猛交久久| 欧美成人午夜免费资源| 亚洲精品日韩在线中文字幕| 日韩欧美精品免费久久| 欧美+日韩+精品| 亚洲av成人av| 久久久久久久久久久丰满| 男人舔奶头视频| 亚洲欧美清纯卡通| 日韩欧美在线乱码| 丰满人妻一区二区三区视频av| 亚洲精品456在线播放app| 又粗又爽又猛毛片免费看| av女优亚洲男人天堂| 精品国产一区二区三区久久久樱花 | 久久草成人影院| 亚洲精品aⅴ在线观看| 欧美激情在线99| 久久久久久久久中文| 国产伦精品一区二区三区视频9| 午夜激情欧美在线| 你懂的网址亚洲精品在线观看 | 午夜精品一区二区三区免费看| 日本午夜av视频| 国产麻豆成人av免费视频| 熟女电影av网| 超碰av人人做人人爽久久| 国产在视频线在精品| 欧美日韩在线观看h| 插阴视频在线观看视频| 国产伦一二天堂av在线观看| 长腿黑丝高跟| 亚洲久久久久久中文字幕| 神马国产精品三级电影在线观看| 毛片一级片免费看久久久久| 在线播放无遮挡| 亚洲国产欧美人成| 男女那种视频在线观看| 免费播放大片免费观看视频在线观看 | 国内精品宾馆在线| 成人高潮视频无遮挡免费网站| 精品久久国产蜜桃| 观看免费一级毛片| 少妇被粗大猛烈的视频| 日韩一区二区三区影片| 三级国产精品欧美在线观看| 国模一区二区三区四区视频| 日日摸夜夜添夜夜添av毛片| 精品久久国产蜜桃| 日韩视频在线欧美| 美女国产视频在线观看| 亚洲av电影不卡..在线观看| 亚洲精品亚洲一区二区| 日韩亚洲欧美综合| 精品酒店卫生间| 亚洲av一区综合| 精品国内亚洲2022精品成人| 国产精品人妻久久久影院| 亚洲人成网站高清观看| 亚洲精品色激情综合| 免费黄网站久久成人精品| 亚洲成人精品中文字幕电影| 最近的中文字幕免费完整| 寂寞人妻少妇视频99o| 能在线免费看毛片的网站| 久久精品国产亚洲av涩爱| 色吧在线观看| 直男gayav资源| av国产免费在线观看| 色视频www国产| 国产精品福利在线免费观看| 韩国av在线不卡| 在线观看av片永久免费下载| 午夜福利视频1000在线观看| 女人久久www免费人成看片 | 高清在线视频一区二区三区 | 青春草亚洲视频在线观看| 亚洲精华国产精华液的使用体验| 国产亚洲91精品色在线| 真实男女啪啪啪动态图| 亚洲熟妇中文字幕五十中出| 成人一区二区视频在线观看| 国产成人91sexporn| 国产在线一区二区三区精 | 日本免费a在线| 国产免费男女视频| 偷拍熟女少妇极品色| 搞女人的毛片| 99国产精品一区二区蜜桃av| 少妇高潮的动态图| 欧美激情在线99| av福利片在线观看| 亚洲婷婷狠狠爱综合网| 成人亚洲欧美一区二区av| 99久国产av精品国产电影| 国产一级毛片七仙女欲春2| 日韩亚洲欧美综合| 两个人的视频大全免费| 成人av在线播放网站| 久久久久久九九精品二区国产| 三级毛片av免费| 久久国产乱子免费精品| 亚洲国产色片| 国产爱豆传媒在线观看| 午夜激情欧美在线| 91av网一区二区| 精品久久久久久成人av| 国内揄拍国产精品人妻在线| 嘟嘟电影网在线观看| 免费播放大片免费观看视频在线观看 | 麻豆精品久久久久久蜜桃| 亚洲精品久久久久久婷婷小说 | 可以在线观看毛片的网站| 床上黄色一级片| 国产激情偷乱视频一区二区| av在线天堂中文字幕| 精品少妇黑人巨大在线播放 | 日韩一区二区视频免费看| 综合色av麻豆| 99久久九九国产精品国产免费| 国产精华一区二区三区| 国产精品综合久久久久久久免费| 热99re8久久精品国产| 亚洲精品,欧美精品| 晚上一个人看的免费电影| 在线观看一区二区三区| 国产精品久久电影中文字幕| 亚洲精品乱久久久久久| 国产在线男女| 久久99热这里只频精品6学生 | 国产精品久久久久久精品电影| 日韩欧美国产在线观看| 九色成人免费人妻av| 尾随美女入室| av视频在线观看入口| 人人妻人人澡人人爽人人夜夜 | 亚洲美女视频黄频| 亚洲人成网站在线播| www.色视频.com| 尤物成人国产欧美一区二区三区|