• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Characterization of Human Parathyroid Hormone 1 Receptor

    2012-11-06 07:01:07LINKeJiangZHUDongJiLENGYongGanYOUQiDong
    物理化學(xué)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:藥科同源復(fù)合物

    LIN Ke-Jiang ZHU Dong-Ji LENG Yong-Gan YOU Qi-Dong

    (Department of Medicinal Chemistry,China Pharmaceutical University,Nanjing 210009,P.R.China)

    Structural Characterization of Human Parathyroid Hormone 1 Receptor

    LIN Ke-Jiang ZHU Dong-Ji LENG Yong-Gan YOU Qi-Dong*

    (Department of Medicinal Chemistry,China Pharmaceutical University,Nanjing 210009,P.R.China)

    Parathyroid hormone 1 receptor(PTH1R)is a member of the class B G-protein coupled receptor(B-GPCR)family and is involved in bone formation.Its substrate parathyroid hormone(PTH)and its analogues are being developed as anti-osteoporosis therapeutics.The structure-based rational drug design of PTH1R substrates has been hampered by the lack of experimentally determined three-dimensional(3D)structures from techniques such as nuclear magnetic resonance(NMR)and X-ray crystallography.Here,we have constructed a 3D model of PTH1R including its extracellular domain(ECD),transmembrane(TM)domain,and other domains using a homology modeling approach.In addition,to capture the ligand-receptor interactions,we have manually docked human parathyroid hormone(1-34)into the top scoring receptor model,and subjected the PTH-PTH1R complex to an unconstrained energy minimization.The integral 3D receptor model provides an easier way to understand the interactions involved at the TM,ECD,and other domains.Furthermore,the parameters of hydrogen bonding,hydrophobic,and other interactions from the ligand-receptor model,enabled us to elucidate the important interactions between PTH(1-34)and PTH1R.This ligand-receptor model could potentially serve as a tool for structure-based virtual screening in the development of non-peptide based anti-osteoporosis drugs.

    Parathyroid hormone 1 receptor;Parathyroid hormone;Homology modeling;PTH-PTH1R complex

    1 lntroduction

    Parathyroid hormone(PTH)is an 84-amino acid polypeptide endocrine hormone.It is produced by the chief cells of parathyroid glands in response to either low calcium or high phosphate levels in the circulation.1-3The N-terminus(1-34 residues of PTH)is fully active,reproducing all biological responses characterized by the native intact PTH.The biologic effects of PTH are primarily mediated through its binding to the parathyroid hormone 1 receptor(PTH1R).4,5PTH1R is a member of the B family of G-protein coupled receptors(GPCRs),a class of receptors for many therapeutically important peptide hormones,such as secretin,glucagon,and calcitonin.6PTH has been used in clinics as a treatment for osteoporosis,which further sparks interest in developing non-peptide PTH1R substrates as anti-osteoporosis drugs.

    However,the progress in PTH1R drug design is hamperedby the scarcity of its structural information.As a class of B GPCR,PTH1R contains an N-terminal extracellular domain (ECD)with three conserved disulfide bonds and a C-terminal with seven transmembrane helices(TMs).4Although,the crystal structure of the extracellular domain of PTH1R engineered as a fusion protein with maltose-binding protein was published,7it did not provide information about the N terminus of PTH with the TM helices of PTH1R.Recently,researchers have created PTH1R models by homology modeling using the crystal structure of bacteriorhosopsin as a template for the seven TMs.8,9However,the models were generated only with the TMs,and they may not adequately describe the possible interactions among domains without modeling the ECD of PTH1R.

    In this work,we presented an integral PTH1R model with ECD,TM,and extracellular loop 1(ECL1)using different structures as template.PTH(1-34)was then docked into the receptor model manually and the interactions between PTH (1-34)and PTH1R were thoroughly analyzed.Given its pharmaceutical importance,the PTH1R model may provide a rational structure for designing new non-peptide anti-osteoporosis drugs.

    2 Experimental

    Three-dimensional(3D)model of PTH1R was built using Discovery Studio 2.5(DS2.5)10with details described below.

    2.1 Template preparation

    Templates with the highest sequence identity to the target sequence were identified and used to generate homology models. 3C4M(PDB code),71BL1(PDB code)11and human β2-adrenergic receptor(PDB code:2RH1)12were used to model ECD, ECD/TM junction,and TM domain of PTH1R,respectively. For ECL1,the protein 1CYI(PDB code)13was employed as template.

    2.2 Sequence alignment

    The program Align Multiple Sequences was used for aligning multiple sequences via a progressive pairwise alignment algorithm based on the ClustalW program named Align123.In Align123,the term for scoring a match of secondary structure can be added to the original ClustalW multiple sequence alignment score.14The matrix assigns BLOSUM as score.Sequence alignment of TMs region is accomplished by ADD MEMBRANE AND ORIENT MOLECULE module.This module optimizes the position and the orientation of a molecule relative to an implicit membrane.The optimization algorithm has a stepwise search for the minimum solvation energy of the molecule,calculated by CHARMm modules GBIM and ASPENMB15or GBSW16.The solvent model with implicit membrane is selected in GBIM.The default settings were applied for other parameters.

    2.3 Homology modeling

    The MODELER module was used to build homology models based on the sequence alignment between templates and target.All template structures discussed above were set as template while the default values for other parameters were kept constant.Subsequently,3D models were created and the top 5 scoring models were collected.

    2.4 Optimization and quality assessment of 3D models

    Energy minimization was carried out using a none implicit solvent model by the CHARMm forcefield.Then,the Verify Protein(MODELER)protocol was used to assess the quality of protein molecules with the Discrete Optimized Protein Energy(DOPE)method.Afterwards,the 3D model scores and the Ramachandran plot of PTH1R model were generated to identify the residues in the regions of unrealistic conformation for further refinement.

    The Verify Protein(Profiles-3D)protocol was used to measure the compatibility between an amino acid sequence and its 3D protein structure.The effect of a lipid membrane was included in the calculation of Profile-3D scores.17

    The Ramachandran plot provides a graphical representation of the local backbone conformation of each residue in a protein.Each point on the Ramachandran plot represents the φ and ψ torsion angles of a residue.The plot also includes a representation of the favorable and unfavorable regions for residues,so that one can determine whether individual residues are likely to be built correctly.The Ramachandran plot computed here is as updated by Richardson and coworkers.18

    2.5 Docking

    PTH(1-34)was docked into the top scoring receptor model manually by constraining the distance(1 nm)between Ser1 of PTH and Met425 of PTH1R,Lys13 of PTH and Arg186 of PTH1R,and Arg20 of PTH,and Asp137 of PTH1R according to the literature.19The PTH-PTH1R complex was then subjected to dynamics simulation without any constraints.The Standard Dynamics Cascade simulation was performed which included minimizations,heating,dynamics,and production with a set of defined simulation procedures.For energy minimizations,the steepest descent method20was employed first to a 418400 J·mol-1·nm-1root mean square(RMS)energy gradient and followed by the Polak and Ribiere conjugate gradient method21until the final convergence criterion reached 418.4 J· mol-1·nm-1RMS gradient.Then the whole system was heated from 100 to 300 K in 2 ps and equilibrated in 300 K for 100 ps.One hundred conformations were collected in 20 ps production phase at 300 K.The conformation with the lowest potential energy was further minimized.The final refined model of the complex was calculated by using MOE program.22

    2.6 lnteraction between PTH and receptor

    Mapping receptor-ligand interaction was performed using MOE.The method was fully described by Clark et al.23Briefly, the method captures and displays selected receptor ligand interacting entities including hydrogen bonds(HB),solvent interactions,metal ligation,and nonbonded residues.The HB scores were expressed by percentage and the HB directionality was noted.The ligand and residue solvent accessibility metricswere estimated by measuring the exposed surface area when each of the atoms had been assigned a van der Waals radius of +0.14 nm(water solvent).The solvent exposure of receptor residues was calculated by examining the difference between the solvent-exposed surface areas of the receptor with and without the presence of the ligand.The solvent-accessible surface area and the ligand proximity outline were also estimated.For the ligands,the surface accessibility calculation was carried out on the ligand-receptor complex.The default settings were applied for the definition of hydrogen-bonded and proximity interactions.

    3 Results and discussion

    3.1 Sequence alignment

    PTH1R contains a N-terminal ECD with three conserved disulfide bonds,a C-terminal domain with seven transmembrane helices,and a connection domain including the residues 168-198.We used multiple templates including 3C4M,1BL1, and 2RH1 to model PTH1R structure.The templates were aligned with the target individually and then compared by the percentage of their sequence identities.The alignment of the final model with all templates is shown in Fig.S1 in Supporting Information.All three templates showed acceptable sequence identities.

    3.1.1 Sequence alignment of ECD

    3C4M(PDB code)7was selected as a template because of its partly containing the maltose-binding ECD of PTH1R fusion protein.The interactions between the residues 56-105 of PTH1R and PTH remained unknown.Thus,the sequence of 3C4M was aligned with the sequence of PTH1R after deleting the residues 56-105.The identity is 79.8%while similarity is 83.1%.

    3.1.2 Sequence alignment of the connection domain between ECD and TM

    The ECD/TM junction includes the residues 169-189 of ECD and the residues 190-196 of TM.After a BLAST search, a 31-amino acid fragment(PDB code:1BL1)11was found with highest similarity to the connection domain between ECD and TM.The 31-amino acid fragment includes the residues 169-189 of PTH1R ECD,containing two helix both of which are amphipathic on the surface of the micelle.The fragment also includes the residues 190-196 of TM1 of PTH1R,which is very hydrophobic and embedded in the lipid core.11Thus,the fragment structure would be the perfect template for modeling the connection domain between ECD and TM.The sequences of 1BL1 and our target share 93.5%sequence identity and similarity.

    3.1.3 Sequence alignment of TM

    PTH1R belongs to class B GPCR with seven transmembrane helices.The position of each TM helix of PTH1R was predicted before sequence alignment.The TM helix sequence of human β2-adrenergic receptor(PDB code:2RH1)12were aligned with the TM helices of PTH1R(Fig.S1).Despite the low overall sequence homology(identity:8.5%,similarity: 25.5%)between human β2-adrenergic receptor and PTH1R, they share similarly seven TM secondary helical structures. Therefore,the parameters of secondary structure were set as“TRANSMEM”when applying aligning sequence in DS2.5. Despite the relatively low sequence identity/similarity(Fig. S1),the secondary structures were closely aligned and used for modeling the TMs structure of PTH1R.

    3.1.4 Sequence alignment of ECL1

    In transmembrane,the main difference between PTH1R and template is a long loop domain located at the residues 240-280 region of PTH1R,also named the first extracellular domain(ECL1)of PTH1R.Previous studies have identified Leu261,in the ECL1 of PTH1R,as a putative contact site for Lys27 in the principal bonding domain of PTH(1-34).24So the modeling of ECL1 is very important for PTH1R-PTH structural characterization.A new template(PDB code:1CYI)13was identified to model the tertiary structure of ECL1 according to identity and similarity.Both of the identity and similarity between 1CYI and ECL1 are 88.7%.

    3.2 Construction,optimization and evaluation of PTH1R model

    3.2.1 Homology modeling of PTH1R

    The sequence alignment results discussed above were aligned with the target sequence sequentially.The structures of 3C4M,1BL1,2RH1,and 1CYI were all set as templates for modeling the tertiary structure of PTH1R.Five models were constructed and the results were satisfactory.Eventually,the best one was selected for further optimization(Table 1).

    Table 1 lists the probability density function(PDF)total energy(in ascending order),PDF physical energy,and DOPE scores of output models.Smaller PDF energy indicates that the model satisfies the homology restraints better.Lower DOPE score also indicates a better model.25Based on the smallest PDF energy and lowest DOPE scores,the model target. B99990005 was selected for further study(Fig.1).

    3.2.2 Validation and evaluation of PTH1R models

    To assess the reliability of the chosen model,we carried out further loop refinement and optimization.The Verify(Profile-3D)Scores improved significantly from 98.5701 to 155.36 and was close to the Expected High Score(181.516).In Ramachandran plot,most residues are in the favorable regions(Fig.2). The results show that the model of PTH1R is reliable.

    Table 1 Results of PTH1R model

    Fig.1 The best model target.B99990005 in Table 1The PTH1R model includes the ECD,ECL1,and TM shown in different styles.The ECD of PTH1R is indicated in line ribbon.The ECL1 is shown in tube on the top surface of juxtamembrane domain.The remaining part in solid ribbon is the TM of PTH1R.

    An integral 3D structure of PTH1R was constructed above, which contains complete ECD,TM,especially the ECL1 and the connection domain between ECD and TM(Fig.3).

    3.3 Structure characterization for ligand binding to PTH1R

    3.3.1 Structure characterization of ligand binding to ECD of PTH1R

    The C-terminal fragment of PTH(residues 15-34)binds to the ECD of PTH1R with high affinity and specificity.26The interactions between PTH and PTH1R are mainly H-bonds and hydrophobic interactions.The Asn16 of PTH(15-34)forms a direct H-bond with the residue Asp30 of PTH1R.Most importantly,Arg20 of PTH(15-34)forms a pair of charged interaction with Asp137 and two H-bonds with Asp29 and Met32 of PTH1R,7which provides a significant insight for designing better PTH mimics.The dramatic effects on binding affinity seen with NH methylations near Trp23 at Leu24 and Arg25 provide evidence to support an important role for this interaction in the stability of the complex.27When the flexibility site residues Arg20 are substituted,the PTH reduces affinity for the intact PTH1R by at least~200-fold.Similar effects were observed for Glu substitution at Trp23,Leu24,and Leu28.26,28

    The integrated ligand receptor model discussed above was subjected to dynamics simulation without any constraints.The ligand-receptor interactions including H-bonds(Fig.4)and hydrophobic interactions(Fig.S2 in Supporting Information) were calculated.Using this model,we confirmed the interaction sites which have been previously reported.9,29-35In addition,we identified additional contact sites between the ligand and receptor.For example,Glu19,Arg25,His32 of PTH formed H-bond respectively to Lys34,Leu174,Arg162 of PTH1R,which may be used as additional binding sites for ligand design.

    3.3.2 Structure characterization for ligand binding to the TM of PTH1R

    Fig.2 Ramachandran plot of PTH1R model before(A)and after (B)optimizationThe plot includes a representation of the favorable and unfavorable regions for residues,so that one can determine whether individual residues are likely to be built correctly.Amino acid types are represented graphically as follows:glycine as a triangle,proline as a square,and all other types as a circle.

    The ligand-receptor interactions between the PTH(1-14) and TM of PTH1R including H-bonds(Fig.5)and hydrophobic interaction(Fig.S3 in Supporting Information)were calculated. Interestingly,new contact sites were also identified.For example,Gly12 and His16 of PTH interacted with Phe184,Asp185, Arg186,and Val183,which may provide new binding sites for further research.

    Fig.3 Complex diagram of PTH(1-34)binding to PTH1R model in different views(A)the side view of receptor/ligand complex;(B)the top view of receptor/ligand complex with the PTH1R indicated in schematic.The PTH(1-34)is shown in line type with N-terminal and C-terminal labeled,of which the N-terminal is inserted in the cavity of PTH1R.

    Fig.4 Interaction diagram of PTH(15-34)binding to the ECD of PTH1R with H-bondsThe PTH(15-34)is displayed in 2D chemical structure and the residues of PTH1R are shown in circle.

    Fig.5 Interaction diagram of PTH(1-14)binding to the TM of PTH1R with H-bondsThe PTH(1-14)is displayed in 2D chemical structure and the residues of PTH1R are shown in circle.

    Our results validated the existence of the interaction recognized previously. Studies using receptor/ligand photo cross-linking indicated that the N-terminal fragment of PTH (residues 1-14)bound with the low affinity.36,37The C-terminal of PTH,on the other hand,interacted with PTH1R through H-bonds and hydrophobic interactions.The Ser1 of PTH was found generating interaction with the Met425 and Phe375 of PTH1R by the photo affinity cross-linking approach.38Val2, Ile5,and Met8 were proved as key amino acids to activation.29Gln6 and Asn10 of PTH binding to the hydrophobic pocket that generated by Phe447,Phe238 were important for activating the receptor.39

    3.3.3 Structure characterization of connection domain and the ECL1 of PTH1R

    The connection domain(residues 168-198)between ECD and TM is an important fragment of PTH1R for ligand receptor interaction.This fragment includes the residues 169-189 of PTH1R ECD,containing two amphipathic helices.This fragment also includes the residues 190-196 of TM1 of PTH1R,which is hydrophobic and embedded in the lipid core.11There is a bend in the mid-region of this fragment and the direction and degree of the bend would decide the position of ECD.In addition,Lys13 of PTH forms a direct H-bond with Arg186 of PTH1R,which is a critical contact point between the ligand and receptor in this connection domain.19These structural characteristics could affect the C-terminal of PTH binding to the ECD of PTH1R.

    The ECL1 domain(residues 240-280)of PTH1R contains more than 40 residues,which is different from other GPCRs. Piserchio et al.31suggested that the ECL1 was embedded into the membrane.Our model predicts that the ECL1(Fig.1)is perpendicular to rather than embedded into the TM,in parallel with the ECD.This explains the observation that Glu19 of PTH interacted with Lys240 of PTH1R situated in ECL1 region,and Lys27 of PTH interacted with Leu261 of PTH1R.40Both Glu19 and Lys27,which pertain to C-terminus of PTH, were anticipated to interact with the ECD instead of extracellular loop ECL1.However,from the interaction calculation,no interaction between the two parts was shown.This may be because the ECL1 is more flexible and far away from the C-terminal fragment of PTH.

    4 Conclusions

    This study is intended to elucidate the structural characterization of PTH1R.The integral 3D model encompasses major structure components of the ligand receptor binding and activation,and helps to describe the interactions among the TM, ECD,and ECL1.

    Although the TM and ECD domains of PTH1R have been modeled separately in literature,the complete structure of PTH1R has not been reported.Our study comes first to define an integral 3D structure of PTH1R upon binding with the PTH (1-34).

    Our ligand-receptor model has the potential to serve as a tool for structure-based virtual design as well as screening of novel PTH analogues and mimics for the treatment of osteoporosis.

    Supporting Information Available: The sequence alignments and the hydrophobic interaction diagrams of PTH (1-14)and PTH(15-34)binding to PTH1R have been included.This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (3) Murray,T.M.;Rao,L.G.;Divieti,P.;Bringhurst,F.R.Endocr. Rev.2005,26,78.doi:10.1210/er.2003-0024

    (4) Gardella,T.J.;Juppner,H.Trends Endocrinol.Metab.2001,12, 210.doi:10.1016/S1043-2760(01)00409-X

    (5) Juppner,H.;Abou-Samra,A.B.;Freeman,M.;Kong,X.F.; Schipani,E.;Richards,J.;Kolakowski,L.F.,Jr.;Hock,J.;Potts, J.T.,Jr.;Kronenberg,H.M.Science 1991,254,1024.doi: 10.1126/science.1658941

    (6) Pioszak,A.A.;Harikumar,K.G.;Parker,N.R.;Miller,L.J.; Xu,H.E.J.Biol.Chem.2010,285,12435.doi:10.1074/jbc. M109.093138

    (7) Pioszak,A.A.;Xu,H.E.Proc.Natl.Acad.Sci.U.S.A.2008, 105,5034.doi:10.1073/pnas.0801027105

    (8) Jin,L.;Briggs,S.L.;Chandrasekhar,S.;Chirgadze,N.Y.; Clawson,D.K.;Schevitz,R.W.;Smiley,D.L.;Tashjian,A.H.; Zhang,F.J.Biol.Chem.2000,275,27238.

    (9) Rolz,C.;Pellegrini,M.;Mierke,D.F.Biochemistry 1999,38, 6397.doi:10.1021/bi9829276

    (10) Discovery Studio,2.5;Accelrys Software Inc.:San Diego,US, 2010.

    (11) Pellegrini,M.;Bisello,A.;Rosenblatt,M.;Chorev,M.;Mierke, D.F.Biochemistry 1998,37,12737.doi:10.1021/bi981265h

    (12) Cherezov,V.;Rosenbaum,D.M.;Hanson,M.A.;Rasmussen, S.G.;Thian,F.S.;Kobilka,T.S.;Choi,H.J.;Kuhn,P.;Weis, W.I.;Kobilka,B.K.;Stevens,R.C.Science 2007,318,1258. doi:10.1126/science.1150577

    (13) Kerfeld,C.A.;Anwar,H.P.;Interrante,R.;Merchant,S.; Yeates,T.O.J.Mol.Biol.1995,250,627.doi:10.1006/ jmbi.1995.0404

    (14) Thompson,J.D.;Higgins,D.G.;Gibson,T.J.Nucleic Acids Res.1994,22,4673.doi:10.1093/nar/22.22.4673

    (15) Spassov,V.;Yan,L.;Szalma,S.J.Phys.Chem.B 2002,106, 8726.doi:10.1021/jp020674r

    (16) Im,W.;Lee,M.S.;Brooks,C.L.J.Comput.Chem.2003,24, 1691.doi:10.1002/jcc.10321

    (17) Luthy,R.;Bowie,J.U.;Eisenberg,D.Nature 1992,356,83. doi:10.1038/356083a0

    (18) Lovell,S.C.;Davis,I.W.;Arendall,W.B.,III;de Bakker,P.I.; Word,J.M.;Prisant,M.G.;Richardson,J.S.;Richardson,D. C.Proteins 2003,50,437.doi:10.1002/prot.10286

    (19)Adams,A.E.;Bisello,A.;Chorev,M.;Rosenblatt,M.;Suva,L. J.Mol.Endocrinol.1998,12,1673.doi:10.1210/me.12.11.1673

    (20) Fletcher,R.;Powell,M.J.D.The Computer Journal 1963,6, 163.

    (21) Grippo,L.;Lucidi,S.Mathematical Programming 1997,78, 375.

    (22) MOE,2009;Chemical Computing Group:Montreal,Canada, 2009.

    (23) Clark,A.M.;Labute,P.J.Chem.Inf.Model.2007,47,1933. doi:10.1021/ci7001473

    (24) Greenberg,Z.;Bisello,A.;Mierke,D.F.;Rosenblatt,M.; Chorev,M.Biochemistry 2000,39,8142.doi:10.1021/ bi000195n

    (25) Sali,A.Mol.Med.Today 1995,1,270.doi:10.1016/S1357-4310 (95)91170-7

    (26) Dean,T.;Khatri,A.;Potetinova,Z.;Willick,G.E.;Gardella,T. J.J.Biol.Chem.2006,281,32485.doi:10.1074/jbc. M606179200

    (27) Barbier,J.R.;Gardella,T.J.;Dean,T.;MacLean,S.; Potetinova,Z.;Whitfield,J.F.;Willick,G.E.J.Biol.Chem. 2005,280,23771.doi:10.1074/jbc.M500817200

    (28) Mierke,D.F.;Maretto,S.;Schievano,E.;DeLuca,D.;Bisello, A.;Mammi,S.;Rosenblatt,M.;Peggion,E.;Chorev,M. Biochemistry 1997,36,10372.doi:10.1021/bi970771o

    (29) Caporale,A.;Biondi,B.;Schievano,E.;Wittelsberger,A.; Mammi,S.;Peggion,E.Eur.J.Pharmacol.2009,611,1.doi: 10.1016/j.ejphar.2009.03.040

    (30) Pioszak,A.A.;Parker,N.R.;Gardella,T.J.;Xu,H.E.J.Biol. Chem.2009,284,28382.doi:10.1074/jbc.M109.022905

    (31) Piserchio,A.;Bisello,A.;Rosenblatt,M.;Chorev,M.;Mierke, D.F.Biochemistry 2000,39,8153.doi:10.1021/bi000196f

    (32) Hoare,S.R.Drug Discov.Today 2005,10,417.doi:10.1016/ S1359-6446(05)03370-2

    (33) Mierke,D.F.;Mao,L.;Pellegrini,M.;Piserchio,A.;Plati,J.; Tsomaia,N.Biochem.Soc.Trans.2007,35,721.doi:10.1042/ BST0350721

    (34) Rolz,C.;Mierke,D.F.Biophys.Chem.2001,89,119.doi: 10.1016/S0301-4622(00)00222-2

    (35) Barbier,J.R.;MacLean,S.;Whitfield,J.F.;Morley,P.;Willick, G.E.Biochemistry 2001,40,8955.doi:10.1021/bi010460k

    (36) Luck,M.D.;Carter,P.H.;Gardella,T.J.Mol.Endocrinol. 1999,13,670.doi:10.1210/me.13.5.670

    (37) Gardella,T.J.;Juppner,H.;Wilson,A.K.;Keutmann,H.T.; Abou-Samra,A.B.;Segre,G.V.;Bringhurst,F.R.;Potts,J.T., Jr.;Nussbaum,S.R.;Kronenberg,H.M.Endocrinology 1994, 135,1186.doi:10.1210/en.135.3.1186

    (38) Bisello,A.;Adams,A.E.;Mierke,D.F.;Pellegrini,M.; Rosenblatt,M.;Suva,L.J.;Chorev,M.J.Biol.Chem.1998, 273,22498.doi:10.1074/jbc.273.35.22498

    (39) Monticelli,L.;Mammi,S.;Mierke,D.F.Biophys.Chem.2002, 95,165.doi:10.1016/S0301-4622(02)00005-4

    (40) Gensure,R.C.;Shimizu,N.;Tsang,J.;Gardella,T.J.Mol. Endocrinol.2003,17,2647.doi:10.1210/me.2003-0275

    人甲狀腺旁素1型受體的結(jié)構(gòu)特征

    林克江 朱冬吉 冷勇敢 尤啟冬*

    (中國(guó)藥科大學(xué)藥物化學(xué)教研室,南京210009)

    人甲狀腺旁素1型受體(PTH1R)是骨形成相關(guān)的B類G蛋白偶聯(lián)受體,其底物甲狀腺旁腺素(PTH)及類似物具有抗骨質(zhì)疏松作用.由于此類受體的三維結(jié)構(gòu)難以進(jìn)行實(shí)驗(yàn)測(cè)定,本文采用同源模建的方法,完整構(gòu)建了胞外區(qū)、跨膜區(qū)及其它相關(guān)區(qū)域,并通過(guò)對(duì)接研究,闡明復(fù)合物的氫鍵、疏水性相互作用及其與底物的相互作用關(guān)系和關(guān)鍵位點(diǎn).為進(jìn)一步設(shè)計(jì)和發(fā)展此類藥物提供理論依據(jù).

    甲狀腺旁素1型受體; 甲狀腺旁素; 同源模建; 甲狀腺旁素復(fù)合物

    O641

    10.1196/annals.1402.088

    10.1677/ joe.1.06057

    Received:February 22,2012;Revised:April 19,2012;Published on Web:April 19,2012.?

    .Email:Youqd@163.com;Tel:+86-25-83271351

    ?Editorial office ofActa Physico?Chimica Sinica

    (1) Potts,J.T.;Gardella,T.J.Annals of the New York Academy of Sciences 2007,1117,196.

    猜你喜歡
    藥科同源復(fù)合物
    藥食同源
    ——紫 蘇
    兩岸年味連根同源
    以同源詞看《詩(shī)經(jīng)》的訓(xùn)釋三則
    BeXY、MgXY(X、Y=F、Cl、Br)與ClF3和ClOF3形成復(fù)合物的理論研究
    中國(guó)藥科大學(xué)2020年1~7月獲授權(quán)專利情況(3)
    中國(guó)藥科大學(xué)2020年1~7月獲授權(quán)專利情況(1)
    中國(guó)藥科大學(xué)2020年1~7月獲授權(quán)專利情況(2)
    中國(guó)藥科大學(xué)2018年1~6月獲授權(quán)專利情況
    柚皮素磷脂復(fù)合物的制備和表征
    中成藥(2018年7期)2018-08-04 06:04:18
    黃芩苷-小檗堿復(fù)合物的形成規(guī)律
    中成藥(2018年3期)2018-05-07 13:34:18
    日韩免费高清中文字幕av| 一级毛片久久久久久久久女| 少妇的逼好多水| 91久久精品国产一区二区三区| 亚洲欧洲日产国产| 中文精品一卡2卡3卡4更新| 十分钟在线观看高清视频www | 亚洲成色77777| 精品少妇久久久久久888优播| 亚洲精品成人av观看孕妇| 久久久久网色| 日韩亚洲欧美综合| 我要看黄色一级片免费的| 99热6这里只有精品| 99热6这里只有精品| 超碰97精品在线观看| 在线 av 中文字幕| 99久国产av精品国产电影| 日韩 亚洲 欧美在线| 免费黄色在线免费观看| 久热久热在线精品观看| 丝瓜视频免费看黄片| 熟妇人妻不卡中文字幕| 国产成人精品一,二区| 国产乱人偷精品视频| 中文字幕人妻熟人妻熟丝袜美| 精品一区二区三卡| 国产av一区二区精品久久 | 国内少妇人妻偷人精品xxx网站| 自拍偷自拍亚洲精品老妇| 亚洲美女黄色视频免费看| 又粗又硬又长又爽又黄的视频| 性色avwww在线观看| 免费黄网站久久成人精品| 日本黄色日本黄色录像| 最新中文字幕久久久久| 天天躁日日操中文字幕| videos熟女内射| 免费av不卡在线播放| 亚洲av成人精品一二三区| 日日摸夜夜添夜夜爱| 国产精品久久久久久精品古装| 91精品一卡2卡3卡4卡| 91午夜精品亚洲一区二区三区| 2018国产大陆天天弄谢| 少妇人妻精品综合一区二区| 国产在线男女| 亚洲欧美精品专区久久| 日本av手机在线免费观看| 色视频www国产| 尾随美女入室| 五月伊人婷婷丁香| av卡一久久| av线在线观看网站| 大陆偷拍与自拍| 99热网站在线观看| 色婷婷久久久亚洲欧美| 午夜视频国产福利| 欧美日韩视频精品一区| 午夜福利视频精品| 久久久久久久亚洲中文字幕| 我的老师免费观看完整版| 国产男人的电影天堂91| 亚洲国产精品成人久久小说| 国产精品国产av在线观看| 婷婷色麻豆天堂久久| 国产视频首页在线观看| 美女视频免费永久观看网站| 黄色日韩在线| 日日撸夜夜添| 精品一区二区三区视频在线| 国产精品国产av在线观看| 蜜臀久久99精品久久宅男| 成人影院久久| 亚洲国产成人一精品久久久| h日本视频在线播放| 九九久久精品国产亚洲av麻豆| 国模一区二区三区四区视频| 新久久久久国产一级毛片| 欧美日韩一区二区视频在线观看视频在线| 大片电影免费在线观看免费| 老司机影院成人| 久久精品熟女亚洲av麻豆精品| av在线蜜桃| 多毛熟女@视频| 精品人妻熟女av久视频| 欧美人与善性xxx| 婷婷色综合大香蕉| 一区二区三区乱码不卡18| 少妇精品久久久久久久| 欧美精品人与动牲交sv欧美| 久久人人爽av亚洲精品天堂 | 国产成人免费观看mmmm| 亚洲av免费高清在线观看| 国产淫语在线视频| 天天躁夜夜躁狠狠久久av| 舔av片在线| 一级毛片aaaaaa免费看小| 亚洲美女搞黄在线观看| 夜夜爽夜夜爽视频| 五月开心婷婷网| 亚洲欧美日韩无卡精品| 高清av免费在线| 中文字幕精品免费在线观看视频 | av免费观看日本| 久久毛片免费看一区二区三区| 国产熟女欧美一区二区| 国产免费福利视频在线观看| 少妇被粗大猛烈的视频| 国产精品爽爽va在线观看网站| 色婷婷久久久亚洲欧美| 欧美一级a爱片免费观看看| 久久久久久久久久人人人人人人| 午夜福利高清视频| 99久久精品热视频| 色视频在线一区二区三区| 亚洲,一卡二卡三卡| 欧美成人一区二区免费高清观看| 国产亚洲精品久久久com| 国产精品蜜桃在线观看| 联通29元200g的流量卡| 一个人看视频在线观看www免费| 永久网站在线| 日本av免费视频播放| 国产亚洲91精品色在线| 日本av手机在线免费观看| 亚洲欧美一区二区三区国产| av在线app专区| 国产一区二区三区综合在线观看 | 午夜福利高清视频| 观看美女的网站| 狠狠精品人妻久久久久久综合| 欧美区成人在线视频| 午夜激情久久久久久久| 蜜桃亚洲精品一区二区三区| 午夜福利在线观看免费完整高清在| 亚洲内射少妇av| 性色av一级| 亚洲色图av天堂| 成人国产av品久久久| 久久青草综合色| 亚洲国产精品国产精品| 久久精品人妻少妇| 国产成人免费无遮挡视频| 中文在线观看免费www的网站| 两个人的视频大全免费| 嫩草影院新地址| 直男gayav资源| 寂寞人妻少妇视频99o| 伦理电影免费视频| 欧美成人精品欧美一级黄| 黑丝袜美女国产一区| 又粗又硬又长又爽又黄的视频| 日韩一区二区三区影片| 99精国产麻豆久久婷婷| 丰满迷人的少妇在线观看| 内地一区二区视频在线| 久久久久久九九精品二区国产| 综合色丁香网| 精品人妻一区二区三区麻豆| 欧美精品一区二区大全| 久久久久久伊人网av| 久久久久久久精品精品| 丝袜脚勾引网站| 久久精品国产a三级三级三级| 国产精品不卡视频一区二区| 国产高潮美女av| 国产精品三级大全| 久久6这里有精品| 91精品国产九色| 欧美老熟妇乱子伦牲交| 边亲边吃奶的免费视频| 久久久国产一区二区| 国产精品99久久99久久久不卡 | 亚洲经典国产精华液单| 日日啪夜夜撸| 国产亚洲欧美精品永久| 国模一区二区三区四区视频| 国产69精品久久久久777片| 中文字幕久久专区| 国产av码专区亚洲av| 黄片wwwwww| 校园人妻丝袜中文字幕| 国产精品一区www在线观看| 新久久久久国产一级毛片| 五月开心婷婷网| 国产亚洲5aaaaa淫片| 97在线视频观看| 亚洲国产精品成人久久小说| 日韩电影二区| 亚洲欧美精品自产自拍| 亚洲国产欧美在线一区| 人妻少妇偷人精品九色| 国产乱人偷精品视频| 99国产精品免费福利视频| 国产乱人视频| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品第二区| 亚洲精华国产精华液的使用体验| 国产乱人视频| 亚洲av.av天堂| 天美传媒精品一区二区| 一级黄片播放器| av专区在线播放| 欧美xxⅹ黑人| 中国三级夫妇交换| 国精品久久久久久国模美| 99热这里只有是精品在线观看| 精品一区二区三卡| 成人毛片60女人毛片免费| 中国三级夫妇交换| 好男人视频免费观看在线| 亚洲国产精品国产精品| 欧美日韩综合久久久久久| 搡女人真爽免费视频火全软件| 六月丁香七月| 欧美xxxx性猛交bbbb| 一级毛片 在线播放| 成人特级av手机在线观看| 一区二区三区乱码不卡18| 久久精品久久久久久久性| a级一级毛片免费在线观看| 91午夜精品亚洲一区二区三区| 大码成人一级视频| a 毛片基地| 成年女人在线观看亚洲视频| 黑丝袜美女国产一区| 亚洲国产av新网站| av国产精品久久久久影院| 建设人人有责人人尽责人人享有的 | 下体分泌物呈黄色| 亚洲国产毛片av蜜桃av| 三级经典国产精品| 亚洲av成人精品一二三区| 久久久久网色| 久久精品国产亚洲av涩爱| 国产精品无大码| 色婷婷久久久亚洲欧美| 一个人免费看片子| 国产成人精品福利久久| 国产成人免费观看mmmm| 99久久综合免费| 国产亚洲午夜精品一区二区久久| 插阴视频在线观看视频| 久久精品国产a三级三级三级| 成人亚洲精品一区在线观看 | 丰满少妇做爰视频| 国产久久久一区二区三区| 日韩国内少妇激情av| 久久国产乱子免费精品| 亚洲欧美日韩卡通动漫| 欧美高清性xxxxhd video| 欧美最新免费一区二区三区| 国产一区亚洲一区在线观看| 蜜桃亚洲精品一区二区三区| 亚洲精品,欧美精品| 99久久综合免费| 久久av网站| 免费久久久久久久精品成人欧美视频 | 久久av网站| 久久久国产一区二区| 内地一区二区视频在线| 精品久久久久久久久亚洲| 精品人妻熟女av久视频| 成年美女黄网站色视频大全免费 | 亚洲av电影在线观看一区二区三区| 一个人免费看片子| 国产精品一及| 高清毛片免费看| 国产精品无大码| 亚洲国产精品成人久久小说| 身体一侧抽搐| 国内精品宾馆在线| 天堂中文最新版在线下载| 久久韩国三级中文字幕| 久久精品国产亚洲av涩爱| 成人特级av手机在线观看| 国产精品麻豆人妻色哟哟久久| 国产一区二区在线观看日韩| 亚洲成人一二三区av| 纵有疾风起免费观看全集完整版| 日本欧美国产在线视频| 天堂中文最新版在线下载| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 欧美少妇被猛烈插入视频| 国产精品久久久久久久久免| 免费看不卡的av| 少妇人妻精品综合一区二区| 亚洲第一av免费看| 三级国产精品欧美在线观看| 美女国产视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 伊人久久国产一区二区| 三级国产精品欧美在线观看| 国产精品免费大片| 熟女人妻精品中文字幕| 日韩在线高清观看一区二区三区| 国产黄色免费在线视频| 啦啦啦中文免费视频观看日本| 99热这里只有精品一区| 全区人妻精品视频| 免费av中文字幕在线| 国产成人aa在线观看| 国产伦在线观看视频一区| 蜜臀久久99精品久久宅男| 一区二区三区免费毛片| 99国产精品免费福利视频| 伦理电影免费视频| 亚洲精品一二三| 国产精品免费大片| a级一级毛片免费在线观看| 在线观看三级黄色| 青春草视频在线免费观看| av免费在线看不卡| 涩涩av久久男人的天堂| 日本vs欧美在线观看视频 | av视频免费观看在线观看| 国产精品一及| 妹子高潮喷水视频| 免费观看在线日韩| 久久影院123| 亚洲精品中文字幕在线视频 | 青春草视频在线免费观看| 婷婷色麻豆天堂久久| 黄色怎么调成土黄色| 国产乱人偷精品视频| 国产高潮美女av| 人人妻人人添人人爽欧美一区卜 | 国产女主播在线喷水免费视频网站| 亚洲国产精品一区三区| av黄色大香蕉| 亚洲精品,欧美精品| 亚洲国产最新在线播放| 午夜视频国产福利| 国产亚洲欧美精品永久| 午夜免费观看性视频| 国产精品人妻久久久影院| 最近最新中文字幕大全电影3| 亚洲国产精品专区欧美| 精品亚洲成a人片在线观看 | 午夜免费男女啪啪视频观看| 国产精品一区二区在线不卡| 国产伦在线观看视频一区| 激情 狠狠 欧美| 丝袜喷水一区| 中文欧美无线码| 最近中文字幕高清免费大全6| 色婷婷av一区二区三区视频| 王馨瑶露胸无遮挡在线观看| 一级毛片aaaaaa免费看小| 日韩av在线免费看完整版不卡| 卡戴珊不雅视频在线播放| 欧美97在线视频| 最黄视频免费看| 国产人妻一区二区三区在| 黄色配什么色好看| 一级片'在线观看视频| 极品教师在线视频| 亚洲欧美精品自产自拍| 啦啦啦中文免费视频观看日本| 亚洲三级黄色毛片| 成人国产麻豆网| 国产中年淑女户外野战色| 黑丝袜美女国产一区| 噜噜噜噜噜久久久久久91| 亚洲av在线观看美女高潮| 中文字幕av成人在线电影| av国产久精品久网站免费入址| 欧美老熟妇乱子伦牲交| 777米奇影视久久| 亚洲av综合色区一区| freevideosex欧美| 91精品国产九色| 3wmmmm亚洲av在线观看| 亚洲av在线观看美女高潮| 色婷婷av一区二区三区视频| 成人美女网站在线观看视频| 多毛熟女@视频| 国产精品国产av在线观看| 久久ye,这里只有精品| 中国美白少妇内射xxxbb| 少妇裸体淫交视频免费看高清| 日韩国内少妇激情av| av在线播放精品| 久久鲁丝午夜福利片| 国精品久久久久久国模美| 成人免费观看视频高清| 亚洲综合精品二区| 亚洲av日韩在线播放| a 毛片基地| 亚洲精品乱码久久久久久按摩| 久久人人爽人人片av| 亚洲av国产av综合av卡| 国产一级毛片在线| 草草在线视频免费看| 国产乱人偷精品视频| 欧美bdsm另类| 涩涩av久久男人的天堂| 国产亚洲欧美精品永久| 国产精品人妻久久久久久| 激情 狠狠 欧美| 欧美人与善性xxx| 亚洲欧美日韩卡通动漫| 一个人看的www免费观看视频| av国产久精品久网站免费入址| 日本免费在线观看一区| av女优亚洲男人天堂| 久久久久久九九精品二区国产| 久久精品夜色国产| 国产午夜精品久久久久久一区二区三区| 国产精品伦人一区二区| 亚洲av成人精品一二三区| av在线app专区| 在线观看三级黄色| 亚洲精华国产精华液的使用体验| 一区二区三区四区激情视频| 九九在线视频观看精品| 国产人妻一区二区三区在| 2022亚洲国产成人精品| 女的被弄到高潮叫床怎么办| av免费在线看不卡| 成人午夜精彩视频在线观看| 日韩成人av中文字幕在线观看| 色综合色国产| 亚洲欧美清纯卡通| 久久精品人妻少妇| 晚上一个人看的免费电影| 久久99热这里只有精品18| 99热这里只有是精品50| 伦理电影免费视频| 黄色一级大片看看| 国产亚洲精品久久久com| 午夜福利高清视频| 亚洲成人一二三区av| 视频区图区小说| tube8黄色片| 夫妻午夜视频| 日韩,欧美,国产一区二区三区| 99久久综合免费| 日本-黄色视频高清免费观看| 国产成人aa在线观看| 亚洲欧美精品专区久久| 亚洲国产精品国产精品| 精品久久国产蜜桃| 亚洲最大成人中文| 午夜福利影视在线免费观看| 久久精品人妻少妇| 欧美极品一区二区三区四区| 黑人高潮一二区| 人人妻人人看人人澡| 啦啦啦中文免费视频观看日本| 久久久久久久久久人人人人人人| a 毛片基地| 欧美精品一区二区免费开放| 久久久久久久久久久丰满| 精品午夜福利在线看| 大又大粗又爽又黄少妇毛片口| 久久ye,这里只有精品| 久久久久国产网址| 国产精品熟女久久久久浪| 日日啪夜夜撸| 亚洲图色成人| 国国产精品蜜臀av免费| 伊人久久精品亚洲午夜| 中文字幕精品免费在线观看视频 | 国产黄色免费在线视频| 免费播放大片免费观看视频在线观看| 97精品久久久久久久久久精品| 熟女电影av网| 天天躁日日操中文字幕| 国产精品国产三级国产av玫瑰| 亚洲精品第二区| 中文字幕av成人在线电影| 国产精品久久久久久精品电影小说 | 黄片无遮挡物在线观看| 久久久久性生活片| 免费人妻精品一区二区三区视频| 国产久久久一区二区三区| 国产亚洲欧美精品永久| 伊人久久精品亚洲午夜| 大香蕉97超碰在线| 在线观看免费日韩欧美大片 | 亚洲成人一二三区av| 少妇人妻久久综合中文| av视频免费观看在线观看| 国产av国产精品国产| 亚洲国产高清在线一区二区三| 熟女人妻精品中文字幕| 26uuu在线亚洲综合色| 国产日韩欧美在线精品| 观看美女的网站| 一级毛片黄色毛片免费观看视频| 麻豆乱淫一区二区| 亚洲伊人久久精品综合| 久久久欧美国产精品| 91精品伊人久久大香线蕉| 午夜福利在线观看免费完整高清在| 久久久久性生活片| 久久久久久久久大av| 国产午夜精品一二区理论片| 六月丁香七月| 男人舔奶头视频| 丝瓜视频免费看黄片| 有码 亚洲区| 成人高潮视频无遮挡免费网站| 高清欧美精品videossex| 这个男人来自地球电影免费观看 | 内地一区二区视频在线| 国产精品三级大全| 亚洲色图av天堂| 国产人妻一区二区三区在| 最黄视频免费看| 大又大粗又爽又黄少妇毛片口| 黄色怎么调成土黄色| 日本-黄色视频高清免费观看| 天堂俺去俺来也www色官网| 亚洲av男天堂| 日韩在线高清观看一区二区三区| 午夜老司机福利剧场| 蜜臀久久99精品久久宅男| 高清在线视频一区二区三区| 在线观看国产h片| 国产高清不卡午夜福利| 国产乱来视频区| 高清日韩中文字幕在线| 亚洲精品一二三| 精品久久久精品久久久| 亚洲精品,欧美精品| 免费黄频网站在线观看国产| 国产男女内射视频| 小蜜桃在线观看免费完整版高清| 国产亚洲最大av| 久久韩国三级中文字幕| 欧美+日韩+精品| 免费观看性生交大片5| 不卡视频在线观看欧美| 人人妻人人添人人爽欧美一区卜 | 午夜福利网站1000一区二区三区| 男人和女人高潮做爰伦理| 两个人的视频大全免费| 午夜激情福利司机影院| 国产精品无大码| 国产91av在线免费观看| 国产成人91sexporn| 少妇精品久久久久久久| 欧美精品国产亚洲| 少妇的逼水好多| 久久综合国产亚洲精品| 免费大片黄手机在线观看| 欧美成人一区二区免费高清观看| 肉色欧美久久久久久久蜜桃| 久久久色成人| 日韩av在线免费看完整版不卡| 热re99久久精品国产66热6| 黄片wwwwww| 精品亚洲成a人片在线观看 | 国产欧美日韩精品一区二区| 狂野欧美激情性xxxx在线观看| 久久久久久久久久成人| 日日摸夜夜添夜夜爱| 黑丝袜美女国产一区| 韩国高清视频一区二区三区| 在线观看三级黄色| 伦理电影大哥的女人| 一级黄片播放器| 18禁裸乳无遮挡动漫免费视频| 内射极品少妇av片p| 久久久久精品性色| 日韩制服骚丝袜av| 亚洲性久久影院| 成年人午夜在线观看视频| 亚洲欧洲国产日韩| 97超碰精品成人国产| 国产亚洲精品久久久com| 3wmmmm亚洲av在线观看| 久久毛片免费看一区二区三区| 性色avwww在线观看| 亚洲欧美日韩无卡精品| 在线观看免费视频网站a站| 王馨瑶露胸无遮挡在线观看| 亚洲欧美精品专区久久| 久久精品熟女亚洲av麻豆精品| 天天躁日日操中文字幕| 久久99蜜桃精品久久| 男女无遮挡免费网站观看| 好男人视频免费观看在线| 亚洲美女黄色视频免费看| 久久精品熟女亚洲av麻豆精品| 久久午夜福利片| 国产一区二区三区av在线| 国产欧美日韩精品一区二区| 能在线免费看毛片的网站| 亚洲熟女精品中文字幕| 国产av一区二区精品久久 | 五月开心婷婷网| 人妻系列 视频| 国产精品嫩草影院av在线观看| 久久精品国产自在天天线| 亚洲精品一二三| 五月天丁香电影| 精品久久久久久电影网| 欧美激情国产日韩精品一区| 乱系列少妇在线播放| 国产成人免费观看mmmm| 看免费成人av毛片| 99热全是精品| 一级片'在线观看视频| 久久久久久久久久人人人人人人| 免费看日本二区| 91久久精品国产一区二区三区| 国产av码专区亚洲av| 国产欧美日韩一区二区三区在线 | 日本猛色少妇xxxxx猛交久久| 成人亚洲欧美一区二区av|