房偉,方澤民,常飛,彭惠,張學(xué)成,肖亞中
1 安徽大學(xué)生命科學(xué)學(xué)院,安徽 合肥 230039
2 安徽省微生物與生物催化工程技術(shù)研究中心,安徽 合肥 230039
合成染料 (Synthetic dye) 在紡織工業(yè)的規(guī)?;瘧?yīng)用中產(chǎn)生了大量的染料廢水,造成了嚴(yán)重的環(huán)境污染問題。印染廢水的處理方法有物理法、化學(xué)法及生物法等,但是物理法、化學(xué)法不能完全破壞難降解染料化合物的結(jié)構(gòu),易產(chǎn)生二次污染[1-2]。生物法具有脫色率高、運行成本低、綠色環(huán)保的優(yōu)勢,是處理印染廢水的有效手段[3-4]。
生物法處理難降解染料主要依靠各類微生物轉(zhuǎn)化酶,如漆酶、錳過氧化物酶等[5]。漆酶(Laccase,EC 1. 10. 3. 2) 是一類含銅的多酚氧化酶,其活性中心含有4個銅原子,底物在單核銅中心失去電子被氧化,氧分子在三核銅中心得到電子被還原成水。漆酶作用的底物特異性不強(qiáng),能夠催化多種酚類和非酚類化合物氧化;在介體存在的條件下,漆酶的作用底物范圍更為廣泛。寬泛的作用底物以及環(huán)境友好的催化特性,使漆酶在染料脫色、生物修復(fù)及生物漂白等領(lǐng)域顯示出良好的應(yīng)用潛力[6-7]。
真菌漆酶的紡織工業(yè)染料脫色已經(jīng)得到較多研究,其中以白腐真菌 (White rot fungi) 來源的漆酶研究較多[8]。真菌漆酶在偏酸或中性條件下,具有較好的脫色效果,而在偏堿性、氯離子存在的條件下難以發(fā)揮作用[9-11]。細(xì)菌漆酶擁有不同于真菌漆酶的特性,如在偏堿性條件下催化活性高、鹵族離子耐受性強(qiáng)等,在合成染料脫色中的應(yīng)用潛力受到關(guān)注[12-18]。不斷發(fā)掘新型細(xì)菌漆酶,并探討其在偏堿性等條件下的染料脫色能力,對于擴(kuò)大新型工業(yè)用酶的種類、推進(jìn)漆酶的產(chǎn)業(yè)化應(yīng)用進(jìn)程具有重要意義。
我們前期通過元基因組文庫技術(shù)從海洋微生物篩選獲得了新型細(xì)菌漆酶 Lac15 (GenBank Accession No. ADM87301),其氨基酸序列與已報道的細(xì)菌漆酶的序列一致性低于40%。rLac15有優(yōu)良的鹵元素耐受性,耐受濃度Ki為1 mol/L,并顯示了良好的常用紡織工業(yè)染料脫色潛能[13]。本文在前期工作的基礎(chǔ)上,進(jìn)一步優(yōu)化了rLac15對部分蒽醌類和偶氮類人工合成紡織染料脫色條件,考察了介體、給酶量、反應(yīng)pH、染料濃度以及溫度對脫色效果的影響,為其工業(yè)化應(yīng)用奠定基礎(chǔ)。
漆酶表達(dá)菌株E. coli BL21 (DE3)/pET22b-lac15為本實驗室構(gòu)建;丁香醛聯(lián)氮 (Syringaldazine),ABTS (2,2'-azino-bis (3-ethylbenzothazoline-6-sulfonate)),HBT (1-hydroxybenzotriazole),丁香酸甲酯 (Methylsyringate),丁香醛 (Syringaldehyde)購自Sigma公司;染料由江蘇省泰興市錦雞染料有限公司饋贈,或購自上海生工生物工程有限公司 (表1)。
1.2.1 漆酶制備及純化
E. coli BL21(DE3)/pET22b-lac15 接種于液體LB培養(yǎng)基,37 ℃培養(yǎng)至OD600達(dá)到0.6,加入終濃度為0.2 mmol/L IPTG,16 ℃誘導(dǎo)表達(dá)10 h。收集菌體,超聲破碎,30 000×g 離心30 min,收集上清,利用Ni-NTA柱親和純化蛋白, 純化過程參照Novagen使用說明書。SDS-PAGE電泳檢測蛋白純度,BCA法 (Bio-Rad) 測定蛋白濃度。
1.2.2 漆酶活力測定
以丁香醛聯(lián)氮為底物考察漆酶活力,測定方法參照Fang等[13]。酶活力單位 (U) 定義為每分鐘氧化1 μmol丁香醛聯(lián)氮所需的酶量。
1.2.3 染料脫色率測定體系
采用1 mL反應(yīng)體系,包括Na2HPO4-KH2PO4緩沖液 (50 mmo/L,pH 7.5)、不同終濃度的染料,rLac15以及介體。各脫色體系在45 ℃反應(yīng)1 h,在各染料最大吸收波長處檢測吸收值。
脫色率 (%) =[ (A0?At)/A0]×100對照組添加等量100 ℃失活的酶液,A0、At分別為對照組和實驗組反應(yīng)t小時后在最大吸收波長處的吸光值。
表1 染料類型和性質(zhì)Table 1 Dye classification and maximum absorbance wavelengths
1.2.4 介體對染料脫色的影響
分別使用ABTS、丁香酸甲酯、丁香醛或HBT為介體,終濃度為100 μmo/L,以表1所列11種染料 (50 μmol/L) 為底物,測定脫色率以獲得最優(yōu)介體。
1.2.5 給酶量對染料脫色的影響
以 50 μmol/L M-2GE或 AR-6B為底物,100 μmo/L丁香酸甲酯作為介體,測定反應(yīng)體系給酶量分別為10、20、40、80 U/L時脫色率的變化。
1.2.6 pH對染料脫色的影響
選取100 μmol/L M-2GE、K-7R、KE-R或AR-6B為底物,在不同pH (6.5~9.5) 條件下測定脫色率。緩沖體系分別為 50 mmo/L Na2HPO4-KH2PO4緩沖液 (pH 6.5~8.5),50 mmo/L Tris-HCl緩沖液 (pH 8.5~9.5) 和50 mmo/L Gly-NaOH緩沖液 (pH 8.5~9.5)。
1.2.7 染料濃度對染料脫色的影響
分別以 100~400 μmol/L M-2GE、K-7R、KE-R或AR-6B為底物,100 μmo/L丁香酸甲酯作為介體,給酶量為20 U/L,考察脫色率的變化以確定染料濃度對脫色的影響。
1.2.8 溫度對染料脫色的影響
分別以200 μmol/L M-2GE、K-7R、KE-R或AR-6B為底物,在50 mmol/L Na2HPO4-NaH2PO4(pH 8.5) 緩沖體系中,25~55 ℃ (間隔10 ℃) 條件下,反應(yīng)24 h,測定脫色率的變化以確定溫度對脫色的影響。
SDS-PAGE電泳檢測純化后的誘導(dǎo)產(chǎn)物,顯示單一目標(biāo)蛋白條帶,說明 rLac15已純化到SDS-PAGE電泳純 (圖未顯示)。以丁香醛聯(lián)氮為底物,rLac15比酶活為1.0 U/mg。
rLac15對不同結(jié)構(gòu)的染料脫色效果有明顯差異 (圖1)。在無介體存在條件下,rLac15對部分偶氮類染料具有較好的脫色效果,M-2GE、KM-8B、KD-8B和K-7R脫色率在20%以上,其中M-2GE脫色率達(dá)到65%,對其他染料的脫色率均在4%以下。
小分子介體ABTS、HBT、丁香醛或丁香酸甲酯能夠不同程度地影響 rLac15對染料的脫色效率。其中,丁香酸甲酯為最優(yōu)催化介體。在丁香酸甲酯存在條件下,rLac15對M-2GE、AR-6B的脫色率分別達(dá)到92%和91%,對K-7R和KE-R的脫色率分別上升至73%和52%。
圖1 重組細(xì)菌漆酶rLac15對不同染料的脫色效果Fig. 1 Decolorization of different dyes by rLac15. The assay was measured in Na2HPO4-KH2PO4 buffer (50 mmol/L, pH 7.5) at 45 °C for 1 h, in the presence of ABTS, HBT, methylsyringate, or syringaldehyde as mediators.
在給酶量為 10 U/L的條件下,rLac15對 M-2GE和AR-6B的脫色率分別達(dá)到90%和52%;20 U/L的脫色效果優(yōu)于10 U/L,分別增至92%和 91%。繼續(xù)增加給酶量,脫色率不再升高(圖2)。
以4種脫色效率較好的偶氮類染料M-2GE、K-7R、KE-R或AR-6B為底物,考察pH對酶脫色效率的影響。pH 6.5~9.5范圍內(nèi),rLac15能不同程度脫色100 μmol/L染料;其中,pH 8.5時脫色率最高,對于M-2GE和AR-6B的脫色率分別達(dá)到93%和95%;對K-7R和KE-R脫色率達(dá)到76%和61% (圖3)。
圖2 給酶量對脫色率的影響Fig. 2 Effect of rLac15 activity on decolorization of dyes. The reaction system contained 50 μmol/L dyes, 100 μmol/L methylsyringate, Na2HPO4-KH2PO4 buffer (50 mmol/L, pH 7.5), and rLac15 from 10 U/L to 80 U/L.
圖3 pH對染料脫色的影響Fig. 3 Influence of pH on decolorization by rLac15. The assay was measured in 50 mmol/L Na2HPO4-KH2PO4, Tris-HCl or Gly-NaOH buffer under 45 ℃ for 1 h, with methylsyringate as mediator. (A) The assay was performed with M-2GE as substrate. (B) The assay was performed with KE-R as substrate. (C) The assay was performed with K-7R as substrate. (D) The assay was performed with AR-6B as substrate.
在pH 8.5條件下,隨著染料濃度的增加,脫色率呈現(xiàn)下降趨勢 (圖 4)。染料濃度低于100 μmol/L時,對M-2GE和AR-6B的脫色率均高于91%;濃度為200 μmol/L時,脫色率分別達(dá)到84%和82%;濃度達(dá)到400 μmol/L,仍可保持50%以上脫色率。K-7R和KE-R的濃度達(dá)到400 μmol/L時,脫色率為33%和1%。
在 25~45 ℃范圍內(nèi)反應(yīng) 24 h,rLac15對200 μmol/L M-2GE和AR-6B的脫色率為80%以上。45 ℃反應(yīng)30 min,兩種染料的脫色率可以達(dá)到80%,并不隨時間延長而提高;25 ℃反應(yīng)24 h,脫色率可以分別達(dá)到86%和96%。在25 ℃條件下反應(yīng)24 h,rLac15對K-7R和KE-R脫色率均達(dá)到66% (圖5)。
圖4 染料濃度對脫色的影響Fig. 4 Influence of concentrations of dyes on decolorization. The assay was performed with 200?400 μmol/L dyes as substrates under pH 8.5 and 45 ℃ for 1 h with methylsyringate as mediator.
真菌漆酶在中性偏酸的條件下,可以對人工合成染料進(jìn)行有效的脫色[19-23]。來源于野生革耳Panus rudis的漆酶對于試驗染料的脫色pH范圍為3.5~4.5[19];在pH 5.0時,雜色云芝Trametes versicolor的漆酶對蒽醌類染料的脫色率達(dá)90%以上,而在pH 7.0時不足10%[20]。其他的一些研究也表明,真菌漆酶在中性偏堿的環(huán)境下難以有效發(fā)揮脫色作用。本研究中,rLac15在中性偏堿條件下,對4種偶氮染料有較好的脫色效果,在pH 8.5條件下,脫色效果最佳,顯示出該細(xì)菌漆酶在中性偏堿環(huán)境下有優(yōu)于真菌漆酶的脫色特性。
染料大分子的空間結(jié)構(gòu)會阻礙其與酶分子活性中心的結(jié)合,隨著染料濃度的增加,酶的脫色率會降低[24]。目前已報道細(xì)菌漆酶脫色研究所采用的底物濃度均低于 100 μmol/L[14-18],以Pseudomonas desmolyticum漆酶脫色的染料濃度最高,為 90 μmol/L[17]。本研究中,在高于100 μmol/L底物濃度條件下,rLac15對部分染料顯示較高的脫色率;當(dāng)染料濃度達(dá)到400 μmol/L,脫色率仍可維持在 50%以上,而達(dá)到以上脫色效果所需rLac15的酶量僅為20 U/L,性能優(yōu)于番薯鏈霉菌Streptomyces ipomoea、枯草芽胞桿菌Bacillus subtilis以及 Pseudomonas desmolyticum等來源的細(xì)菌漆酶[15-17],因而rLac15具有使用較低酶量,脫色高濃度染料的特點。
低溫脫色有利于降低工業(yè)應(yīng)用能耗,已報道細(xì)菌漆酶脫色反應(yīng)溫度均在30 ℃~45 ℃[14-18]。rLac15在25 ℃條件下能對部分染料進(jìn)行有效脫色,顯示出其還具有低溫脫色的優(yōu)勢,這可能與酶來源于海洋環(huán)境有關(guān)。以上表明,rLac15的染料脫色性能優(yōu)良,且擁有鹵族離子激活和耐受等特性,是具有潛在工業(yè)應(yīng)用價值的新型細(xì)菌漆酶。
圖5 溫度對染料脫色的影響Fig. 5 Influence of temperature on decolorization of different dyes by rLac15. The assay was performed at 25 °C, 35 °C, 45 °C, or 55 °C for 24 h, with methylsyringate as mediator. (A) The assay was performed with M-2GE. (B) The assay was performed with KE-R. (C) The assay was performed with K-7R. (D) The assay was performed with AR-6B.
[1] Forgacs E, Cserháti T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environ Int, 2004, 30(7): 953?971.
[2] Zhang FF, Yediler A, Liang XM, et al. Effects of dye additives on the ozonation process and oxidation by-products: a comparative study using hydrolyzed C.I. Reactive Red 120. Dyes Pigments, 2004, 60(1): 1?7.
[3] Rai HS, Bhattacharya MS, Singh J, et al. Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit Rev Environ Sci Technol, 2005, 35(3): 219?238.
[4] Verma P, Madamwar D. Decolourization of synthetic dyes by a newly isolated strain of Serratia marcescens. World J Microbiol Biotechnol, 2003, 19(6): 615?618.
[5] Saratale G, Kalme S, Bhosale S, et al. Biodegradation of kerosene by Aspergillus ochraceus NCIM-1146. J Basic Microbiol, 2007, 47(5): 400?405.
[6] Kaushik P, Malik A. Fungal dye decolourization: recent advances and future potential. Environ Int, 2009, 35(1):127?141.
[7] Robinson T, McMullan G, Marchant R, et al. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol, 2001, 77(3): 247?255.
[8] Rodríguez Couto S, Toca Herrera JL. Industrial and biotechnological applications of laccases: a review. Biotechnol Adv, 2006, 24(5), 500–513.
[9] Baldrian P. Fungal laccases-occurrence and properties. FEMS Microbiol Rev, 2006, 30(2), 215-242.
[10] Sharma P, Goel R, Capalash N. Bacterial laccases. World J Microbiol Biotechnol, 2007, 23(6): 823–832.
[11] Jimenez JN, Roman MR, Baeza A, et al. Alkali and halideresistant catalysis by the multipotent oxidase from Marinomonas mediterranea. J Biotechnol, 2005, 117(1): 73–82.
[12] Mao Y, Gang L, Wei QL, et al. Molecular cloning and characterization of a novel metagenomederived multicopper oxidase with alkaline laccase activity and highly soluble expression. Appl Microbiol Biotechnol, 2010, 87(3): 1023-1031.
[13] Fang ZM, Li TL, Wang Q, et al. A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Appl Microbiol Biotechnol, 2010, 89(4): 1103?1110.
[14] Lu L, Zhao M, Wang TN, et al. Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04. Bioresour Technol, 2012, 115: 35?40.
[15] Pereira, L, Coelho AV, Viegas CA, et al. Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. J Biotechnol, 2009, 139(1): 68?77.
[16] Molina-Guijarro JM, Pérez J, Mu?oz-Dorado J, et al. Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea. Int Microbial, 2009, 12(1): 13?21.
[17] Kalmea S, Jadhavb S, Jadhavb M, et al. Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112. Enzyme Microb Technol, 2009, 44(2): 65?71.
[18] Liu YH, Ye M, Lu Y, et al. Improving the decolorization for textile dyes of a metagenomederived alkaline laccase by directed evolution. Appl Microbiol Biotechnol, 2011, 91(3): 667?675.
[19] Zhang M, Wu F, Wei ZY, et al. Characterization and decolorization ability of a laccase from Panus rudis. Enzyme Microb Tech, 2006, 39(1): 92?97. [20] Guo M, Lu FP, Liu MY, et al. Purification of recombinant laccase from Trametes versicolor in Pichia methanolica and its use for the decolorization of anthraquinone dye. Biotechnol Lett, 2008, 30(12): 2091?2096.
[21] Rodríguez Couto S, Sanromán M, Gübitz GM. Influence of redox mediators and metal ions on synthetic acid dye decolourization by crude laccase from Trametes hirsuta. Chemosphere, 2005, 58(4): 417–422.
[22] Nyanhongo GS, Gomes J, Gübitz GM, et al. Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Res, 2002, 36(6): 1449?1456.
[23] Hong YZ, Zhou HM, Tu XM, et al. Cloning of a laccase gene from a novel Basidiomycete trametes sp. 420 and its heterologous expression in Pichia pastoris. Curr Microbiol, 2007, 54(4): 260?265.
[24] Saratale RG, Saratale GD, Chang JS, et al. Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng, 2011, 42(1): 138?157.