李美航,仇楊,劉帥,董培越,寧小敏,李艷杰,楊公社,孫世鐸
西北農(nóng)林科技大學(xué) 動(dòng)物脂肪沉積與肌肉發(fā)育實(shí)驗(yàn)室,陜西 楊凌 712100
MicroRNA是19~24個(gè)核苷酸長度的單鏈非編碼RNA,它能夠特異性識別其靶基因mRNA的 3¢UTR序列,以不完全互補(bǔ)配對方式與之結(jié)合,從而在轉(zhuǎn)錄后水平抑制靶基因表達(dá)。microRNA參與生長發(fā)育、細(xì)胞增殖、疾病發(fā)生等幾乎所有的生物學(xué)過程,在動(dòng)植物中發(fā)揮廣泛的調(diào)節(jié)基因表達(dá)的作用[1]。研究表明一些microRNA 在脂肪細(xì)胞中發(fā)揮重要作用,如miR-27a/b、miR-138等是抑制成脂的microRNA,而Let-7、miR-335、miR-143、miR-122和miR-378等能夠促進(jìn)脂肪細(xì)胞分化[2-9]。
MiR-103是機(jī)體中重要的 microRNA,Graziano Martello等發(fā)現(xiàn)miR-103/107靶作用于microRNA成熟所必需的Dicer酶,miR-103/107表達(dá)變化對其他 microRNAs產(chǎn)生廣泛的影響,其表達(dá)上調(diào)還能促進(jìn)腫瘤的形成與遷移[10];Mirko Trajkovski等證實(shí)抑制miR-103導(dǎo)致糖耐量和胰島素敏感性升高[11];Bernard等預(yù)測miR-103可能參與細(xì)胞內(nèi)乙酰輔酶A和脂質(zhì)的代謝[12]。但miR-103在豬前體脂肪細(xì)胞成脂分化中的作用尚不明確。另外,本實(shí)驗(yàn)室提取3日齡與180日齡榮昌豬背部脂肪組織 RNA進(jìn)行 solexa測序分析。在129個(gè)表達(dá)量差異顯著microRNA中,miR-103在大豬中是小豬的3.4倍,且在大豬小豬的脂肪組織中均有較高的表達(dá)豐度,預(yù)示著 miR-103在脂肪細(xì)胞的發(fā)育過程中存在作用。
本研究檢測了 miR-103在豬原代前體脂肪細(xì)胞分化過程中的表達(dá)模式,構(gòu)建了miR-103的腺病毒超表達(dá)載體,用其侵染豬原代前體脂肪細(xì)胞并進(jìn)行誘導(dǎo)分化,使用無靶位點(diǎn)的亂序miRNA——miR-NTC (miR-nontargeting control)作為對照,采用Real-time PCR和Western blotting手段檢測脂肪細(xì)胞成脂標(biāo)記基因 PPARγ與 aP2的 mRNA及蛋白水平變化,進(jìn)而明確 miR-103在豬前體脂肪細(xì)胞分化中的作用。PPARγ (過氧化物酶體增殖物激活受體 γ) 主要表達(dá)于脂肪組織及免疫系統(tǒng),具有脂肪組織特異性。PPARγ在許多脂肪細(xì)胞基因轉(zhuǎn)錄激活前被脂肪酸及外源性過氧化物酶體增殖劑誘導(dǎo),對脂肪細(xì)胞分化具有重要作用[13-17];aP2/FABP4 (脂肪細(xì)胞型脂肪酸結(jié)合蛋白) 是一些小的、存在于細(xì)胞內(nèi)的蛋白質(zhì), 主要在脂肪細(xì)胞和巨噬細(xì)胞中表達(dá),參與炎癥反應(yīng)與脂類代謝,是 PPARγ的直接下游靶基因[18-21]。PPARγ、aP2是除 C/EBPα、C/EBPβ、SREBP1c等之外,目前常用的脂肪沉積標(biāo)記基因,被廣泛用作驗(yàn)證目的基因成脂功能的檢測指標(biāo)[22-24]。
1.1.1 實(shí)驗(yàn)動(dòng)物、細(xì)胞株與載體
豬原代前體脂肪細(xì)胞取自楊凌光明豬場健康長白仔豬,由于3日齡仔豬體內(nèi)含有較多的前體脂肪組織,故選其為實(shí)驗(yàn)動(dòng)物。293A細(xì)胞系購于中國科學(xué)院上海生命科學(xué)研究院。293A (293Adhere)含有腺病毒基因組E1A和E1B區(qū)域,使得缺失E1基因的腺病毒重組載體得以在其中包裝出毒,且293A細(xì)胞具有傾向于形成單層細(xì)胞,便于空斑計(jì)數(shù)測定病毒滴度,轉(zhuǎn)染效率高,易產(chǎn)生高滴度腺病毒等優(yōu)點(diǎn),是腺病毒的包裝擴(kuò)繁的常用細(xì)胞。pAdmiR-NTC (miR-nontargeting control)、pAdTrack-CMV及骨架載體pAd-easy均為實(shí)驗(yàn)室保存。
1.1.2 主要試劑與儀器設(shè)備
胎牛血清購自Hyclone公司;Lipofectamine 2000、PVDF 膜均購自 Invitrogen公司;DMEM/F12培養(yǎng)基、I型膠原酶購于Gibco;油紅O染料,aP2、β-actin一抗購自Santa Cruz公司;Real-time PCR試劑盒、反轉(zhuǎn)錄試劑盒購于TaKaRa公司;地塞米松、IBMX、胰島素均購自Sigma公司;PPARγ、aP2與GAPDH實(shí)時(shí)定量引物購于生工生物工程 (上海) 有限公司;miR-103與內(nèi)參U6的實(shí)時(shí)定量引物由廣州銳博生物科技有限公司設(shè)計(jì)合成。
所用儀器設(shè)備有:Bio-Rad PCR儀、iQ5 Multicolor Real-Time PCR Detection System、Molecular Imager ChemiDocTMXRS+凝膠成像系統(tǒng) (美國Bio-Rad公司);REVOC CO2細(xì)胞培養(yǎng)箱,Olympus IX71倒置相差顯微鏡;NIKON Microscope Digital Camera Model DP71顯微成像系統(tǒng)及熒光顯微鏡 (日本NIKON)。
1.2.1 miR-103的序列查詢及同源性比對
miRbase (http://www.mirbase.org/index.shtml)是microRNA的信息數(shù)據(jù)庫,記錄了microRNA在基因組中的定位、亞型、前體序列、成熟序列等完整信息。截止到目前,miRbase共收錄了168個(gè)物種的18 226種前體microRNA和21 643種成熟microRNA。登陸miRbase數(shù)據(jù)庫,查詢豬miR-103的前體 (pre-miR-103) 序列,使用primer5.0設(shè)計(jì)帶有限制性內(nèi)切酶XhoⅠ與KpnⅠ序列的引物,并搜索人、鼠、豬、牛、馬、狗等哺乳動(dòng)物的miR-103成熟序列,進(jìn)行同源性比對。
1.2.2 豬 MiR-103腺病毒的載體構(gòu)建、包裝與擴(kuò)繁
用帶有限制性內(nèi)切酶XhoⅠ與KpnⅠ序列的引物擴(kuò)增miR-103前體,之后連接到腺病毒穿梭載體pAdTrack-CMV中,經(jīng)PmeⅠ線性化后,與Easy骨架載體重組,最后進(jìn)行PacⅠ酶切鑒定和測序鑒定。構(gòu)建好的質(zhì)粒載體用PacⅠ酶切線性化后,乙醇沉淀純化。將293A細(xì)胞以2×104細(xì)胞/cm2的密度接種于60 mm培養(yǎng)皿,待細(xì)胞融合至70%~80%時(shí),參考Lipofectamine 2000說明書,用純化的腺病毒質(zhì)粒載體轉(zhuǎn)染293-A細(xì)胞進(jìn)行包裝。待7~14 d,整皿細(xì)胞都出現(xiàn)熒光,細(xì)胞部分飄起時(shí),將細(xì)胞收集到凍存管中,加入1 mL培養(yǎng)基于-80 ℃和37 ℃反復(fù)凍融3~4次,收集上清,-80 ℃保存。將293A細(xì)胞以5×106細(xì)胞/cm2的密度接種于100 mm培養(yǎng)皿中,待細(xì)胞融合至90%加入病毒上清進(jìn)行擴(kuò)繁,36~48 h后收集細(xì)胞,以同樣的方法收集病毒上清,用于后續(xù)實(shí)驗(yàn)使用。
1.2.3 豬原代脂肪細(xì)胞的培養(yǎng)與腺病毒侵染
實(shí)驗(yàn)室已建立完善的原代細(xì)胞取材與培養(yǎng)方法:將3日齡仔豬在含有新吉爾滅的溫水中清洗30 min,電擊致死。于無菌工作臺(tái)中取仔豬后頸、肩胛及背部皮下脂肪組織,PBS清洗3次,用眼科剪剪成 1 mm3大小的碎塊。用膠原酶在37 ℃水浴振蕩鍋中消化1 h;消化結(jié)束后用等體積的完全培養(yǎng)液 (含 10%胎牛血清的DMEM/F12培養(yǎng)基) 中和消化液,消化物依次通過孔徑為100 mm和25 mm的尼龍篩,收取過濾液,離心10 min (2 000 r/min)。棄上清液,加入紅細(xì)胞裂解液,吹打均勻,室溫靜置10 min。離心5 min (2 000 r/min),棄上清液;再用完全培養(yǎng)液重懸細(xì)胞,再離心1~2次。然后,將消化分離出的細(xì)胞稀釋,吹打均勻后以5×104細(xì)胞/cm2的密度接種于60 mm培養(yǎng)皿,加入3 mL含完全培養(yǎng)液,置于含有5% CO2的37 ℃恒溫培養(yǎng)箱培養(yǎng)。次日將細(xì)胞用PBS清洗3次后換液,之后隔天換液[25]。待接種的細(xì)胞融合至70%~80%,棄去培養(yǎng)基,加入miR-103腺病毒上清300 μL培養(yǎng)3 h,之后換成10%胎牛血清DMEM/F12培養(yǎng)基培養(yǎng)至完全融合。
1.2.4 油紅O染色
待豬原代脂肪細(xì)胞融合后,采用雞尾酒誘導(dǎo)液 (配方:以DMEM/F12完全培養(yǎng)基為基礎(chǔ)并含有10%胎牛血清,1 μmol/L地塞米松,0.5 mmol/L IBMX,10 μmol/L胰島素) 誘導(dǎo)脂肪細(xì)胞分化,在誘導(dǎo)第8天進(jìn)行油紅O染色。首先配制油紅O原液,稱取油紅O粉末0.5 g溶于100 mL異丙醇,60 ℃水浴至完全溶解,即為油紅O原液,4 ℃可長期儲(chǔ)存。按原液與去離子水3∶2的比例混勻后用濾紙過濾3遍,室溫靜置10 min使雜質(zhì)沉淀,即為油紅O染液。將需染色的細(xì)胞帶出細(xì)胞間,棄去培養(yǎng)基并用PBS清洗3次,加入2 mL的4%多聚甲醛37 ℃固定45 min,緩慢加入PBS清洗3次,然后加入適量預(yù)先準(zhǔn)備好的油紅O染液,37 ℃靜置30 min,再用PBS清洗直至無雜質(zhì)殘留。置于顯微鏡下觀察、拍照。
1.2.5 實(shí)時(shí)熒光定量PCR (Real-time PCR)
用PBS清洗細(xì)胞,使用DEPC水處理過的槍頭及離心管用 Trizol法提取細(xì)胞總 RNA,DEPC處理水溶解,分別用1%瓊脂糖凝膠電泳和核酸定量儀檢測總RNA的質(zhì)量及濃度,-80 ℃保存。成脂標(biāo)記基因PPARγ、aP2與microRNA分別用Oligo (dT) 隨機(jī)引物和microRNA特異性反轉(zhuǎn)錄引物反轉(zhuǎn)。參照TaKaRa公司的Real-time PCR說明書,采用20 μL體系對PPARγ、aP2和miR-103進(jìn)行定量分析,引物見表1。
表1 實(shí)時(shí)定量PCR相關(guān)基因的引物序列及參數(shù)Table 1 Primer sequences and parameters for real-time PCR of related genes
1.2.6 Western blotting
在細(xì)胞間內(nèi)棄去培養(yǎng)皿中的培養(yǎng)基,PBS清洗3次,用胰酶將細(xì)胞消化下來,收集到1.5 mL離心管中,帶出細(xì)胞間,加入1 mL PBS吹打均勻,5 000 r/min離心3 min,棄上清,-80 ℃保存。使用時(shí),加入200 mL含1% PMSF (蛋白酶抑制劑) 的細(xì)胞裂解液,4 ℃、12 000 r/min離心5 min,取上清,用BCA法繪制標(biāo)準(zhǔn)曲線將蛋白定量。加入適量含1% PMSF的細(xì)胞裂解液調(diào)整蛋白濃度,使樣品濃度均一化。按與上清 1∶1的比例加入2×上樣緩沖液,100 ℃煮沸10 min,分裝后保存。配制蛋白質(zhì)電泳膠,吸取20 μL蛋白樣品上樣,電泳分離,然后轉(zhuǎn)移到PVDF膜 (硝酸纖維素膜) 上,5%脫脂奶粉封閉2 h,用aP2與β-actin的一抗孵育過夜,次日再用二抗孵育2 h,Bio-Rad GS-800曝光系統(tǒng)顯示結(jié)果,使用Quantity One Manuel軟件換算成數(shù)值,繪制柱形圖。
1.2.7 統(tǒng)計(jì)學(xué)分析
采用SPSS 11.5統(tǒng)計(jì)軟件One-way ANOVA進(jìn)行方差分析與顯著性檢驗(yàn)。實(shí)驗(yàn)數(shù)據(jù)以±s表示。P<0.05時(shí)差異顯著。
在miRbase數(shù)據(jù)庫中查詢可知,miR-103定位于豬PANK3基因的第5個(gè)內(nèi)含子中。隨后在多個(gè)物種中查詢miR-103序列,結(jié)果顯示,雖然miR-103的前體序列不盡相同,但其成熟序列在豬、人、小鼠、大鼠、牛、馬、狗等哺乳動(dòng)物中高度保守,同源性達(dá)100% (圖1)。
2.2.1 pre-miR-103腺病毒質(zhì)粒載體構(gòu)建
用帶有 XhoⅠ和 KpnⅠ酶切位點(diǎn)的引物從Pgenesile1.2質(zhì)粒載體上克隆長為100 bp、帶酶切位點(diǎn)序列的pre-miR-103 (圖2A);將回收的目的片段插入到pAdTrack-CMV載體中,轉(zhuǎn)化大腸桿菌DH5α后測序鑒定;含pre-miR-103的穿梭載體與Easy骨架載體重組。經(jīng)PacⅠ酶切后,出現(xiàn)一條4.5 kb的小片段和一條23 bp的大片段,說明重組成功 (圖 2B),測序鑒定 (正反向測序拼接) 結(jié)果顯示,所測得序列與miRbase中序列完全一致 (圖2C)。
圖1 miR-103成熟序列的同源性比對Fig. 1 Homologous comparison of mature sequence of miR-103. When compared swine miR-103 mature sequence with that of human, chimpanzee, mouse, rat, bovine, horse and dog, apparent consistency can be seen.
2.2.2 pre-miR-103腺病毒的包裝與擴(kuò)繁
將構(gòu)建好的重組腺病毒載體 pAd-premiR-103用PacⅠ酶切后,乙醇沉淀純化,用脂質(zhì)體2000轉(zhuǎn)化約70%融合的293A細(xì)胞。熒光顯微鏡下觀看,第1天有少量的細(xì)胞表達(dá)GFP熒光 (圖 3A-B),第 3天隱約可見成簇的熒光存在 (圖 3C),第 5天時(shí)已有大量的熒光表達(dá)(圖 3D),到第 7天熒光最亮處的細(xì)胞大片飄起(圖3E),表明腺病毒已經(jīng)成熟。收集病毒進(jìn)行擴(kuò)繁 (圖3F)。
圖2 pre-miR-103腺病毒質(zhì)粒載體的構(gòu)建Fig. 2 Construction of pre-miR-103 adenovirus plasmid vector. (A) Clone the sequence of pre-miR-103 from Pgenesile-1.2. M: marker; 1: pre-miR-103. After the construction of adenovirus plasmid vector was done, digested with Pac I. (B) M: Hind III marker; 1: easy vector contains pre-miR-103 digested with Pac I. (C) Sequencing map of recombinant adenovirus vector pAd-pre-miR-103. (a) shows part of nucleotides of reverse sequencing, which are exactly identical with sequence of pre-miR-103 from 1 to 43 bp; (b) is part of nucleotides of forward sequencing, which are identical with pre-miR-103 sequence from 38 bp to the end. These two parts jointly proved the accuracy of the inserted pre-miR-103 sequence.
圖3 重組腺病毒載體pAd-pre-miR-103的包裝Fig. 3 The package of recombinant adenovirus vector pAd-pre-miR-103. (A-B) The first day after 293A cells transfected with pAd-pre-miR-103, few cells expressed EGFP. (C) In the third day, we can indistinctly see clusters of cells fluoresced. (D) In the fifth day, the EGFP expression increased rapidly, and the shape of EGFP was like a comet tail. (E) In the seventh day, above 95% of 293A cells expressed EGFP, and cells that fluoresced first, began to float. (F) PAd-miR-103 proliferated in 293A cells.
培養(yǎng)豬原代脂肪細(xì)胞,分別在誘導(dǎo)成脂的0、2、4、6、8 d收集細(xì)胞,提取總RNA。Real-time PCR分析miR-103與PPARγ的表達(dá)水平,結(jié)果顯示,miR-103的表達(dá)趨勢變化與成脂基因一致(圖4E)。pAd-miR-NTC與pAd-miR-103分別侵染豬原代脂肪細(xì)胞 (圖4A-B),48 h后提取細(xì)胞總 RNA,用特異性反轉(zhuǎn)錄引物反轉(zhuǎn)成 cDNA,Real-time PCR結(jié)果顯示,超表達(dá)miR-103后其表達(dá)量升高了 3.7倍 (P<0.05) (圖 4F)。收集pAd-miR-103侵染后,誘導(dǎo)成脂0、2、4、6、8 d的細(xì)胞,Real-time PCR結(jié)果顯示,從第2天起,成脂標(biāo)記基因 PPARγ、aP2的表達(dá)量與pAd-miR-NTC轉(zhuǎn)染組相比顯著升高 (P<0.05) (圖 4H-I);與 Real-time PCR檢測結(jié)果一致,pAd-miR-103侵染的細(xì)胞成脂分化8 d后提取總蛋白,Western blotting檢測結(jié)果表明,aP2蛋白水平表達(dá)明顯增加 (P<0.05) (圖4G);油紅O染色可見miR-103侵染后脂滴聚集增多 (誘導(dǎo)后第8天) (圖4C-D)。說明miR-103可促進(jìn)豬前體脂肪細(xì)胞成脂。
近年來,隨著人們生活水平的提高,肥胖引起的代謝類疾病如糖尿病、高血壓、冠心病等逐漸成為影響人類健康的又一結(jié)癥。研究表明,MicroRNA是一種由內(nèi)源基因編碼的,長約22 nt的非編碼RNA,在轉(zhuǎn)錄后水平抑制靶基因mRNA的翻譯[26]可在脂肪細(xì)胞的分化與代謝中發(fā)揮重要作用,如miR-27b、miR-27a可通過抑制PPARγ的表達(dá)抑制脂肪細(xì)胞分化[2-3],miR-378可促進(jìn)甘油三酯形成[5]等。因此繼續(xù)尋找新的影響脂肪細(xì)胞分化代謝的microRNA成為科研工作者研究的新目標(biāo)。
豬與人的基因組有83%相似,且與其他動(dòng)物相比,豬的器官與人的大小最為相近[27-29],因此,近年來豬被作為研究人類疾病和器官移植的模式生物而廣泛研究。本實(shí)驗(yàn)室提取3日齡與180日齡榮昌豬背部脂肪組織RNA進(jìn)行solexa測序分析,擬在篩選豬脂肪細(xì)胞發(fā)育過程中重要的microRNA。分析結(jié)果顯示有 129 個(gè) microRNA表達(dá)量差異顯著,其中miR-103在大豬中是小豬的3.4倍,且在大豬小豬的脂肪組織中均有較高的表達(dá)豐度,預(yù)示著miR-103在脂肪細(xì)胞的發(fā)育過程中存在作用,因此選擇miR-103作進(jìn)一步深入研究。
實(shí)驗(yàn)中 miR-103的超表達(dá)使用了腺病毒作為載體,其與逆轉(zhuǎn)錄病毒和慢病毒相比,具有安全性高、易擴(kuò)繁、滴度高、靶細(xì)胞種類多、侵染效率高、不整合到宿主基因組中等優(yōu)點(diǎn),是基因治療研究的首選載體[30]。本實(shí)驗(yàn)室李國喜博士早期使用miR-103抑制劑 (miR-103 inhibitor) 研究miR-103對成脂的作用[31],inhibitor與腺病毒相比,侵染效率遠(yuǎn)不如后者。因此本實(shí)驗(yàn)使用腺病毒超表達(dá)的方法研究 miR-103對豬前體脂肪細(xì)胞分化的作用,不僅是對李國喜博士miR-103干擾實(shí)驗(yàn)的補(bǔ)充,同時(shí)也更具說服力。從圖3C可看出,經(jīng)293A細(xì)胞包裝擴(kuò)繁的腺病毒幾乎100 %感染豬前體脂肪細(xì)胞,侵染效率極高。在MicroRNA的Real-time PCR實(shí)驗(yàn)中選擇了莖環(huán)結(jié)構(gòu)的microRNA特異性反轉(zhuǎn)錄引物,這是由于microRNA的3¢末端沒有類似mRNA的Poly (A)尾巴,而反轉(zhuǎn)錄中普遍使用的Oligo (dT) 引物是通過與mRNA 3¢端的Poly (A) 尾互補(bǔ)結(jié)合,進(jìn)而反轉(zhuǎn)出完整 cDNA[32],因此不適合于缺乏Poly (A) 尾的 microRNA。本實(shí)驗(yàn)使用莖環(huán)結(jié)構(gòu)的microRNA特異性反轉(zhuǎn)錄引物,替代了普通的Oligo (dT) 引物,有效提高反轉(zhuǎn)錄的效率和特異性[33]。
圖4 MiR-103促進(jìn)豬前體脂肪細(xì)胞分化Fig. 4 MiR-103 promote adipogenesis of porcine preadipocyte. (A) Porcine preadipocyte before being infected by pAd-pre-miR-103. (B) Porcine preadipocyte after being infected by pAd-pre-miR-103. (C-D) Oil red O stain of porcine adipocyte after 8days’ induction which infected with pAd-miR-NTC and pAd-pre-miR-103. (E) Real-time PCR(n=3) showed similar tendency of expression level of miR-103 and PPARγ mRNA during adipocyte differentiation of porcine preadipocyte. (F) The overexpression efficiency of miR-103 was detected by real-time PCR (n=3) after 48 h after being infected. The resource of control was the mRNA of porcine preadipocyte without any treatment, and cultivated for the same days and (J) is the picture of the agarose gel electrophoresis after real-time PCR. M: 100 bp ladder; I: pAd-pre-miR-103 infected preadipocyte; C: preadipocyte without any treatment. (G) In the 8th day, aP2 expression was tested by Western blotting (a is the exposure picture, b is quantitative result). (H?I) The detection of PPARγ and aP2 mRNA expression level using real-time PCR(n=3). Their expression level in pAd-miR-NTC infected porcine preadipocyte was significantly higher than that in pAd-miR-103 infected cells in day2, 4, 6, 8 after induced differentiation (*P < 0.005).
總之,本實(shí)驗(yàn)成功地構(gòu)建了miR-103重組腺病毒載體pAd-pre-miR-103,并用其以幾乎100%的侵染效率感染原代培養(yǎng)的豬前體脂肪細(xì)胞。檢測發(fā)現(xiàn)成脂標(biāo)記基因PPARγ和aP2的mRNA與蛋白水平均有顯著上升,油紅O染色后顯微鏡下可見更多的脂滴聚集;在 miRbase中查找miR-103成熟序列,發(fā)現(xiàn)其在豬、人、黑猩猩、小鼠、大鼠、牛、馬、狗等哺乳動(dòng)物中同源性達(dá)到100%。以上結(jié)果共同證明miR-103能夠促進(jìn)脂肪細(xì)胞分化,鑒于其在哺乳動(dòng)物中的高保守性,miR-103亦可為治療人類由肥胖引起的代謝疾病提供新的思路。
[1] Ambros V. The functions of animal microRNAs. Nature, 2004, 431(7006): 350?355.
[2] Karbiener M, Fischer C, Nowitsch S, et al. microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem Biophys Res Commun, 2009, 390(2): 274?251.
[3] Kim SY, Kim AY, Lee HW, et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARγ expression. Biochem Biophys Res Commun, 2010, 392(3): 323?328.
[4] Nakanishi N, Nakagawa Y, Tokushige N, et al. The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochem Biophys Res Commun, 2009, 385(4): 492?496.
[5] Gerin I, Bommer GT, McCoin CS, et al. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am J Physiol Endocrinol Metab, 2010, 299(2): E198?E206.
[6] Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab, 2006, 3(2): 87?98.
[7] Takanabe R, Ono K, Abe Y, et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem Biophys Res Commun, 2008, 376(4): 728?732.
[8] Yang Z, Bian CJ, Zhou H, et al. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev, 2011, 20(2): 259?267.
[9] Sun TW, Fu MG, Bookout AL, et al. MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol, 2009, 23(6): 925?931.
[10] Martello G, Rosato A, Ferrari F, et al. A microRNA targeting dicer for metastasis control. Cell, 2010, 141(7): 1195?1207.
[11] Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature, 2011, 474(7353): 649?653.
[12] Wilfred BR, Wang WX, Nelson PT, et al. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab, 2007, 91(3): 209?217.
[13] Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev, 1999, 20(5): 649?688.
[14] Kliewer SA, Forman BM, Blumberg B, et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA, 1994, 91(15): 7355?7359.
[15] Zhu Y, Alvares K, Huang Q, et al. Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver. J Biol Chem, 1993, 268(36): 26817–26820.
[16] Rosen ED, Spiegelman BM, et al. PPARγ: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem, 2001, 276 (41): 37731?37734.
[17] Rosen ED, Sarraf P, Troy AE, et al. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell, 1999, 4(4): 611?617.
[18] Chmurzy?ska A. The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet, 2006, 47(1): 39?48.
[19] Adida A, Spener F. Adipocyte-type fatty acid-binding protein as inter-compartmental shuttle for peroxisome proliferator activated receptor γ agonists in cultured cell. Biochim Biophys Acta, 2006, 1761(2): 172?181.
[20] Matarese V, Bernlohr DA. Purification of murine adipocyte lipid-binding protein. characterization as a fatty acid- and retinoic acid-binding protein. J Biol Chem, 1988, 263(28): 14544?14551.
[21] Tontonoz P, Hu E, Graves RA, et al. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev, 1994, 8(10): 1224?1234.
[22] Kajimoto K, Naraba H, Iwai N. MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA, 2006, 12(9): 1626?1632.
[23] Yang Z, Bian CJ, Zhou H, et al. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev, 2011, 20(2): 259?267.
[24] Sun TW, Fu MG, Bookout AL, et al. MicroRNAlet -7 regulates 3T3-L1 adipogenesis. Mol Endocrinol, 2009, 23(6): 925?931.
[25] Qu CQ, Zhang GH, Chen FF, et al. Primary culture of porcine preadipocyte. J Agric Biotechnol, 2005, 13(5): 649?653.屈長青, 張國華, 陳粉粉, 等. 豬前體脂肪細(xì)胞的原代培養(yǎng). 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2005, 13(5): 649?653.
[26] Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 2002, 21(17): 4663?4670.
[27] Fr?nicke L, Chowdhary BP, ScherthaN H, et al. A comparative map of the porcine and human genomes demonstrates ZOO-FISH and gene mapping-based chromosomal homologies. Mamm Genome, 1996, 7(4): 285?290.
[28] Shah G, Azizian M, Bruch D, et al. Cross-species comparison of gene expression between human and porcine tissue, using single microarray platform-preliminary results. Clin Transplant, 2004, 18(S12): 76?80.
[29] Ibrahim Z, Busch J, Awwad M, et al. Selected physiologic compatibilities and incompatibilities between human and porcine organ systems. Xenotransplantation, 2006, 13(6): 488?499.
[30] Wilson JM. Adenoviruses as gene-delivery vehicles. N Engl J Med, 1996, 334(18): 1185?1187.
[31] Li GX. Identification of microRNAs related to the swine adipose tissue development and primary research on the biological roles of miR-103[D]. Yangling: Northwest A&F University, 2011.李國喜. 豬脂肪組織發(fā)育相關(guān) miRNA的鑒定及miR-103生物學(xué)功能的初步研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2011.
[32] Okayama H, Berg P. High-efficiency cloning of full-length cDNA. Mol Cell Biol, 1982, 2(2): 161?170.
[33] Chen CF, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005, 33(20): e179.