張偉競(jìng) 黃天民 陳尚云
(西南交通大學(xué) 數(shù)學(xué)學(xué)院,四川 成都 610031)
權(quán)重信息不完全的梯形模糊數(shù)多屬性決策
張偉競(jìng) 黃天民 陳尚云
(西南交通大學(xué) 數(shù)學(xué)學(xué)院,四川 成都 610031)
針對(duì)權(quán)重信息不完全且屬性值為梯形模糊數(shù)的模糊多屬性決策問題,給出了基于梯形模糊數(shù)質(zhì)心的多屬性決策方法,并通過投影法建立了非線性規(guī)劃模型,通過數(shù)學(xué)軟件得到各屬性權(quán)重,并通過質(zhì)心橫坐標(biāo)與縱坐標(biāo)在虛擬理想方案上的投影率的乘積作為排序指標(biāo),進(jìn)行排序擇優(yōu).最后通過實(shí)例說明了該方法的有效性.
梯形模糊數(shù);質(zhì)心;投影率;多屬性決策
在很多多屬性決策中,由于備選方案的模糊性和復(fù)雜性,決策者往往不能準(zhǔn)確地給出決策方案的評(píng)價(jià)信息,而通常以模糊數(shù)的形式給出.因此,對(duì)各備選方案的排序和擇優(yōu)就成為重要的研究課題之一.
針對(duì)部分屬性權(quán)重信息已知且屬性值為梯形模糊數(shù)的多屬性決策問題,根據(jù)質(zhì)心橫坐標(biāo)與縱坐標(biāo)重要程度的不同,給出了基于質(zhì)心橫坐標(biāo)在虛擬理想方案上的投影法,建立了非線性規(guī)劃模型,從而得到各屬性權(quán)重向量,并進(jìn)行擇優(yōu).該方法便于用數(shù)學(xué)軟件操作實(shí)現(xiàn)且較為簡(jiǎn)單,且提供了新的途徑.
現(xiàn)考慮一個(gè)購(gòu)買轎車的多屬性決策問題,有4輛轎車分別為A1,A2,A3,A4,有3個(gè)屬性G1,G2,G3分別為轎車價(jià)格,安全系數(shù),總體設(shè)計(jì),其中G1為成本型屬性指標(biāo),G2,G3為效益型屬性指標(biāo),屬性集Gj(j=1,2,3)的權(quán)重不能完全確定.已知的部分權(quán)重信息為:w3-w2≤0.2,w1-w3≤0.35,0.6w1≤wi≤0.8w1.決策矩陣A為:
針對(duì)上述多屬性決策問題,依據(jù)質(zhì)心橫坐標(biāo)和縱坐標(biāo)重要程度的不同,通過質(zhì)心核橫(縱)坐標(biāo)來建立規(guī)劃模型,并進(jìn)行決策,該方法便于在計(jì)算機(jī)上操作實(shí)現(xiàn),并且梯形模糊數(shù)的質(zhì)心更能體現(xiàn)加權(quán)后梯形模糊數(shù)的所有信息,最后通過決策實(shí)例,說明這類決策模型的有效性和實(shí)用性.
[1] Wang Y M,Yang J B,Xu D L,et al.On the centroids of fuzzy number[J].Fuzzy Sets and Systems,2006,157:919-926
[2] Wang Y J,Lee S H.The revised method of ranking fuzzy numbers with an area between the centroid and original point[J].Computer & Mathematics with Applications,2008,55:2 033-2 042
[3] 王應(yīng)明.多指標(biāo)決策與評(píng)價(jià)的新方法-投影法[J].系統(tǒng)工程和電子技術(shù),1999,21(3):1-4
[4] Lee K S,Park K S,Eum Y S.Extend methods for identifying dominance and potential optimality in multicriteria analysis with imprecise information[J].European Journal of Operational Research,2001,134(4):557-563
[5] Kim S H,Han C H.An interactive procedure for multiple attribute group decision making procedure with incomplete information[J].Computer & Operational Research,1999,26(8):755-772
[6] 吳 超,胡 昆.區(qū)間數(shù)多屬性決策中權(quán)重靈敏度分析[J].系統(tǒng)工程和電子技術(shù),2004,26(2):1 217-1 219
[7] 徐澤水.不確定多屬性決策方法及應(yīng)用[M].北京:機(jī)械工業(yè)出版社,2001
[8] 李榮均.模糊多準(zhǔn)則決策理論與應(yīng)用[M].北京:科學(xué)出版社,2002
[9] 衛(wèi)貴武.基于模糊信息的多屬性決策理論與方法[M].北京:中國(guó)經(jīng)濟(jì)出版社,2010
Multiple Attribute Decision Making of Trapezoid Fuzzy Numbers Based on Attribute Weight Information is Incomplete
Zhang Weijing Huang Tianmin Chen Shangyun
(Department of Mathematic,Southwest Jiaotong University,Chengdu 610031,China)
With respect to multiple attribute decision making problems in which the attribute weight information is incomplete and the attribute values are trapezoid fuzzy numbers.Given a new method based on the centroid point of trapezoid fuzzy numbers,and how decisions by the projection method for nonlinear planning model,using software of mathematics for solve each attribute weight,and ranking with the product on the centroid point on horizontal axis and vertical axis the projection rate on the ideal solution,according to the relational degree,all alternatives are ranked.Finally,a numerical example is provided to illustrate the effectiveness of the method.
trapezoid fuzzy numbers;centroid point;the projection;multiple attribute decision making
王映苗】
1672-2027(2012)03-0053-04
C934;O29
A
2012-05-10
張偉競(jìng)(1986-),男,山西晉城人,西南交通大學(xué)在讀碩士研究生,主要從事模糊優(yōu)化與決策研究.