• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以無機(jī)硫?yàn)樵现苽淞蚧U量子點(diǎn)及其表征

    2011-11-30 10:42:08張建文張敬波
    物理化學(xué)學(xué)報(bào) 2011年5期
    關(guān)鍵詞:北京化工大學(xué)硫化鈉光化學(xué)

    岳 棟 張建文 張敬波 林 原

    (1北京化工大學(xué)流體力學(xué)與傳熱研究室,北京100029;2中國(guó)科學(xué)院化學(xué)研究所光化學(xué)重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京100190)

    以無機(jī)硫?yàn)樵现苽淞蚧U量子點(diǎn)及其表征

    岳 棟1,2張建文1,*張敬波2,*林 原2

    (1北京化工大學(xué)流體力學(xué)與傳熱研究室,北京100029;2中國(guó)科學(xué)院化學(xué)研究所光化學(xué)重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京100190)

    根據(jù)高溫下快速成核低溫下慢速生長(zhǎng)的量子點(diǎn)制備原理,采用膠體化學(xué)的方法成功制備了不同粒徑的硫化鉛半導(dǎo)體量子點(diǎn).這種方法的特點(diǎn)是以無味和低毒的硫化鈉作為制備硫化鉛量子點(diǎn)硫的前驅(qū)物,因此這是一種量子點(diǎn)的綠色化學(xué)合成方法.油酸作為穩(wěn)定劑控制硫化鉛的粒徑.采用X射線衍射和高分辨透射電鏡表征了量子點(diǎn)的晶體結(jié)構(gòu)、形貌和粒徑,采用可見-近紅外吸收光譜研究了硫化鉛量子點(diǎn)的量子尺寸效應(yīng).通過降低油酸的添加量可以促進(jìn)量子點(diǎn)的生長(zhǎng),得到較大粒徑量子點(diǎn).并探討了量子點(diǎn)的生長(zhǎng)機(jī)理.

    量子點(diǎn);硫化鉛;硫化鈉;綠色合成;粒徑分布

    1 Introduction

    In recent years,scientists have followed awfully with interest of semiconductor quantum dots(QDs)due to their unique properties,such as the mechanical,chemical,optical,electrical,electro-optical,and magneto-optical properties,which are fully different from those of bulk semiconductors.In principle, electro-optical properties of quantum dots are intensively size and shape dependent.As the size of quantum dot is reduced to its exciton Bohr radius,its band structure begins to change, known as the quantum size effect.1

    Lead sulfide(PbS)is an important IV-VI semiconductor material with a directly narrow bulk band gap of 0.41 eV at 300 K.Compared to other semiconductors,its exciton Bohr radius of 18 nm is relatively large,which results in a significant quantum confinement.Its optical absorption band is ease to be tuned from 0.4 to 1.5 eV.2Because PbS quantum dots can provide the luminescence over the whole visible and near-infrared (NIR)regions,this nanoscale materials can be potentially used for the universal optical applications,such as Pb2+ion-selective sensors,3photography,4IR detectors,5solar absorbers,6and optical switch.7Recently,efficient multiple exciton generation has been detected in PbS quantum dots,making it a promising candidate for highly efficient photovoltaic conversion devices.8

    Various methods have been rapidly developed to fabricate PbS nanocrystals in recent years such as solution or interface route,9,10hydrothermal or solvothermal process,11-14sonochemical method,15and microemulsion technique.16,17Organometallic method has also been used to prepare PbS nanocrystals in an organic solution.18,19Hines and Scholes18reported the organometallic synthesis of PbS nanocrystals with size-tunable NIR emission.The best size distribution can be obtained by this method,and based on these samples,many novel properties of PbS quantum dots were studied further.20,21However,the formation of PbS nanocrystals synthesized by such methods is still challengeable,because these reported methods usually involve some dangerous and unstable chemicals such as(TMS)2S (bis(trimethylsilyl)sulfide)and trioctylphosphine.It is very meaningful to find a synthesis route of the narrow size distribution quantum dots based on environmentally benign precursors.

    Here,we focused on the controlled synthesis of PbS quantum dots using relatively green inorganic sulfide,sodium sulfide,which is inodorous and less noxious than organic S.A successful PbS quantum dot synthesis depends on two key elements,a controlled nucleation event and subsequent particle growth.We gained a narrow size distribution of PbS quantum dots by adjusting the added amount of oleic acid(OA).As a stabilizing ligand in this system,OA influences the reactivity of the precursors and hence controls the nanoparticle growth.

    2 Experimental

    Oleic acid(Fluka)and phenylate(Aldrich)were used without further purification.Na2S·9H2O was purchased from Shanghai Mei Xing Chemical Co.,Ltd.,Pb(AC)2·5H2O,methanol,and carbon tetrachloride was obtained from Beijing Chemical Reagent Plant.All chemicals used in the synthesis were of analytical grade.

    PbS quantum dots were synthesized using phenylate as a reaction solvent and OA as a stabilizing ligand.In a typical process,408.3 mg Na2S·9H2O,10 mL OA,and 10 mL phenylate were loaded into a 50 mL three-neck flask at room temperature.The mixture was purged by Ar to remove oxygen and then heated to 180°C to form the S precursor.Meanwhile,the Pb precursor was prepared by heating 644.9 mg Pb(AC)2·5H2O in 2 mL OA and 4 mL phenylate under Ar at 80°C for 30 min. Then,a solution of Pb precursor was injected quickly into the vigorously stirring sodium sulfide solution at 180°C with a 1:1 molar ratio of Pb to S.Upon injection,the mixed solution became black instantly meaning that PbS nucleation occurred quickly.The temperature of the reaction vessel was decreased to 150°C and maintained for the remaining growth time,then cooled to room temperature.Purification of PbS quantum dots was done by precipitation of quantum dots with ethanol.This precipitation was repeated for several times to completely remove the unreacted precursors and solvents.Finally,black products were dried in vacuum at 80°C.The synthesis process was also carried out at different temperatures and with different concentrations of OAto adjust the size of quantum dots.

    Absorption spectra of quantum dots solution were acquired with NIR-900 spectro-photometer.The crystalline structure of the as-prepared powders was characterized by X-ray powder diffraction(XRD)on a Rigaku X-ray diffractometer with Cu Kαradiation(λ=0.15406 nm).High-resolution transmission electron microscope(HRTEM)images of PbS quantum dots were performed on a FEI-TecnaiG2 20 S-TWIN TEM(Fei Co., Ltd.)operated at 150 or 300 kV,and the sample was loaded on amorphous carbon-coated copper grids(Ernest F.Fullam Inc. No.14560)by drop casting a very dilute solution of QDs in 90%ethanol and allowing the film to assemble and dry in vacuum drying oven under room-temperature.

    3 Results and discussion

    The syntheses of sulfide semiconductor quantum dots using inorganic S in aqueous or organic solvent have been reported.22,23But it is difficult to control the size distribution of quantum dots prepared by these reported methods.In this experiment, we chose sodium sulfide as a sulfur source to combine with lead acetate in order to acquire best purity and granularity of PbS quantum dots.There are three reasons to use sodium sulfide.First,sodium sulfide is less noxious than organic S such as(TMS)2S,and it is more feasible to deal with than other inorganic S such as H2S.Second,sodium sulfide is apt to dissolve in mixture of oleic acid and phenyl ether to form transparent and viscous solution,which can release S2-ions to react with lead cation after injection of sodium sulfide precursor solution. Finally,this sulfur source mixes well with lead acetate and there are no precipitates or stable complexes formed at room temperature,and the residuum can be completely removed during purification process of quantum dots with organic reagents such as methanol or ethanol.The coordinating agent plays an important role in controlling the growth process,stabilizing the resulting colloidal dispersion,and electronically passivating the semiconductor surface.According to the reported synthetic route of PbS nanocrystals,24OAwas usually regarded as the stabilizing ligand to control the short burst of homogeneous nucleation with the injection of reagents into the hot reaction flask. Therefore,OA was used as a size-controlling agent to adjust the size of quantum dots and their size distribution.The reaction equation to synthesize the PbS nanoparticles could be described as following,

    Vis-NIR absorption spectra of the as-prepared PbS nanocrystals were measured at room temperature and are shown in Fig.1.It can be seen that,the optical absorption spectra for two sizes of PbS nanocrystals samples prepared with different amounts of OA at 180°C show two clear exciton absorption peaks at 1720 and 1790 nm,respectively.The clear exciton absorption peak of PbS quantum dots reflects the narrow size distribution achieved without any post size-selective precipitation, which is usually used to optimize the size distribution of quantum dots according to the fact that larger particles are easier to precipitate than the smaller ones as the anti-solvent is added into the quantum dots solution.The blue shift of optical absorption edge shows low dimension of PbS nanoparticles obtained in present way is attributed to the size dependent band gap structure,which is reflected by the blue shifting toward short wavelength of the absorption edge with decreasing particle size.The effect of different OA amounts on the syntheses of PbS nanocrystals is obviously observed from Fig.1.The absorption edge shifts to blue in the NIR region with increasing addition amount of OA from 8 mL(a)to 12 mL(b).OA serves well in the capacity to influence the reactivity of the monomer species and to control the growth of nanocrystals.The higher concentration of OA will induce the lower precursor reactivity. Furthermore,the absorption spectrum of PbS quantum dots prepared with 8 mL OA displays a narrower size-distribution compared to that of the as-obtained samples prepared with 12 mL OA.Peng et al.24reported that the narrowly size-dispersed CdS nanocrystals can be successfully synthesized in high concentrations of OA.A rapid nucleation event occurs upon injection of lead acetate into the inorganic precursor S as evidenced by an immediate black color change in the reaction container.The rapid injection is critical to achieve a narrow size distribution. If the concentration of OA is too high,the rapid nucleation will be impressed and thus worsening size distribution.

    Fig.1 Absorption spectra of PbS quantum dots prepared with addition of 12 mL(a)and 8 mL(b)OAat 180°C and with 3.5 mL OAat 150°C(c)

    When the concentration of OA was decreased to 3.5 mL,the reaction of Pb2+and S2-ions becomes very fast,because the amount of OA is not enough to control the growth of nanocrystals.An alternate way to slow down the reaction is to decrease the reaction temperature.PbS quantum dots with smaller size and narrower size distribution were successfully synthesized with addition of 3.5 mL OA at 150°C and its absorption line (c)is showed in Fig.1.Therefore,the concentration of OA is not the only factor to control the growth of quantum dots.The monodisperse quantum dots with other particle sizes can be prepared by system optimization of synthesis conditions such as reaction temperature and time,added amount of OA,and ratio of S2-to Pb2+.

    Fig.2 shows transmission electron microscope(TEM)images of PbS quantum dots prepared with addition of 12 mL OA. In low-resolution TEM(Fig.2(a)),regular circular spots were observed,which indicated that the tailoring of OA created to control the growth of PbS quantum dots with the mean size of about 5 nm.High-resolution TEM image,as shown in Fig.2(b), displays some well-defined crystal lattices.According to the distance of these lattices(0.34 nm),we can determine that PbS single crystals grow along the[111]direction.It is well known, nucleation is generally referred to the formation of seeds with a stable structure,and the shape of seeds is primarily determined by the minimization of surface energy,the growth rates on different facets are also dominated by the surface energy.25After nucleation process,the growth in the lower surface energy[111]direction is faster than others with higher surface energy.This favors the growth of the[111]facet leading to a spherical morphology with the lowest total surface energy.

    Fig.2 Low(a)and high(b)resolution TEM images of 5 nm PbS quantum dots synthesized with 12 mLOA

    The crystalline structure of the synthesized PbS nanocrystals prepared with 12 mL OA is shown in Fig.3.It is obvious that all of the XRD peaks of the sample are consistent with the values in the standard card(JCPDS No.5-592).Its main diffraction peaks at 26.1°,29.9°,43.0°,50.7°,53.2°,62.9°,71.1°,and 79.1°are indexed as(111),(200),(220),(311),(222),(400), (420),and(422)planes of the cubic crystalline structure of PbS.Other as-prepared samples show same crystalline structure.It is well known,the average crystallite sizes D can be estimated from the half-width of the diffraction peaks according to Debye-Scherrer formula,26

    where,D is the mean particle size,α is a geometric factor(here equals to 1.00),λ is the X-ray wavelength used in experiments (here equals to 0.154178 nm),β is the half-peak width of diffraction peak and can be measured from XRD pattern,and θ is the angle of the corresponding diffraction peak.The average crystallite size was estimated as 5.4 nm from the half-width of the diffraction peaks according to Debye-Scherrer formula. This estimated mean size is consistent with the result from the TEM observation.

    PbS quantum dots have ability to extend their absorption range to near-IR region,emphasizing their application in solar cell.Recently,PbS quantum dots as photo sensitizer were intensively studied in different structural solar cells such as Schottky cell,depleted heterojuction cell,and quantum dots sensitized solar cell.27-30We fabricated PbS quantum dots sensitized TiO2porous thin film solid state solar cell with poly(3-hexylthiophene)(P3HT)as hole transport material(HTM).The light to electricity conversion efficiency of the device is not satisfied now.We wish to enhance its performance by optimizing the fabrication process,nanocrystalline film structure,layer thickness of HTM,and interfacial modification.

    Fig.3 X-ray powder diffraction pattern of PbS quantum dots synthesized with 12 mLOA

    4 Conclusions

    A relatively novel route to synthesize macroscopic quantities of PbS quantum dots with uniform diameters was presented to use sodium sulfide as the ideal resource of S precursor due to its cost-effective,low toxicity,and stability.According to this synthetic way,the narrowly dispersed colloidal PbS nanocrystals with different sizes were successfully prepared by changing the concentration of oleic acid or temperature of nucleation and growth.It is expected that this approach may open new avenues for the green chemical synthesis of size-controlled semiconductor nanocrystallites,which would have potential applications in fabricating devices with special optical,electrical,and magnetic properties.

    (1) Henglein,A.Chem.Rev.1989,89,1861.

    (2) Dutta,A.K.;Ho,T.;Zhang,L.;Stroeve,P.Chem.Mater.2000, 12,1042.

    (3)Wang,Y.;Suna,A.;Mahler,W.;Kasowski,R.J.Chem.Phys. 1987,87,7315.

    (4) Hirata,H.;Higashiyama,K.Bull.Chem.Soc.Jpn.1971,44, 2420.

    (5) Nair,P.K.;Gomezdaza,O.;Nair,M.T.S.Adv.Mater.Opt. Electron.1992,1,139.

    (6) Gadenne,P.;Yagil,Y.;Deutscher,G.J.Appl.Phys.1989,66, 3019.

    (7) Chaudhuri,T.K.;Chatterjes,S.Proc.Int.Conf.Thermoelectr. 1992,11,40.

    (8) Kane,R.S.;Cohen,R.E.;Silbey,R.J.J.Phys.Chem.1996, 100,7928.

    (9) Ellingson,R.J.;Beard,M.C.;Johnson,J.C.;Yu,P.;Micic,O. I.;Nozik,A.J.;Shabaev,A.;Efros,A.L.Nano Lett.2005,5, 865.

    (10) Zeng,Z.;Wang,S.;Yang,S.Chem.Mater.1999,11,3365.

    (11)Wang,S.;Yang,S.Langmuir 2000,16,389.

    (12)Yu,D.;Wang,D.;Zhang,S.Liu,X.;Qian,Y.J.Cryst.Growth 2003,249,195.

    (13)Trindade,T.;O′Brien,P.;Zhang,X.M.;Motevalli,M.J.Mater. Chem.1997,7,1011.

    (14)Wang,D.;Yu,D.;Shao,M.S.;Liu,X.;Yu,W.;Qian,Y. J.Cryst.Growth 2003,257,384.

    (15)Wang,S.F.;Gu,F.;Lu,M.K.Langmuir 2006,22,398.

    (16) Ding,Y.H.;Liu,X.X.;Guo,R.J.Cryst.Growth 2007,307, 145.

    (17) Ding,Y.H.;Liu,X.X.;Guo,R.Colloid.Surf.A-Physicochem. Eng.Asp.2007,296,8.

    (18) Hines,M.A.;Scholes,G.D.Adv.Mater.2003,15,1844.

    (19) Rogach,A.L.;Eychmüller,A.;Hickey,S.G.;Kershaw,S.V. Small 2007,3,536.

    (20) Hyun,B.;Zhong,Y.;Bartnik,A.C.;Sun,L.;Abruna,H.D.; Wise,F.W.;Goodreau,J.D.;Matthews,J.R.;Leslie,T.M.; Borrelli,N.F.ACS Nano 2008,2,2206.

    (21) Leventis,H.C.;O′Mahony,F.;Akhtar,J.;Afzaal,M.;O′Brien, P.;Haque,S.A.J.Am.Chem.Soc.2010,132,2743.

    (22) Lee,H.;Wang,M.;Chen,P.;Gamelin,D.R.;Zakeeruddin,S. M.;Gr?tzel,M.;Nazeeruddin,M.K.Nano Lett.2009,9,4221.

    (23)Wang,P.;Wang,L.;Ma,B.;Li,B.;Qiu,Y.J.Phys.Chem.B 2006,110,14406.

    (24)Yu,W.W.;Peng,X.Angew.Chem.Int.Edit.2002,41,2368.

    (25) Zhou,G.J.;Lu,M.K.;Xiu,Z.L.;Wang,S.F.;Zhang,H.P.; Zhou,Y.Y.;Wang,S.M.J.Phys.Chem.B 2006,110,6543.

    (26) Wilson,A.J.C.Proc.Phys.Soc.London 1962,80,286.

    (27) Zhao,N.;Osedach,T.P.;Chang,L.Y.;Geyer,S.M.;Wanger, D.;Binda,M.T.;Arango,A.C.;Bawendi,M.G.;Bulovic,V. ACS Nano 2010,4,3743.

    (28) Pattantyus-Abraham,A.G.;Kramer,I.J.;Barkhouse,A.R.; Wang,X.;Konstantatos,G.;Debnath,R.;Levina,L.;Raabe,I.; Nazeeruddin,M.K.;Gr?tzel,M.;Sargent,E.H.ACS Nano 2010,4,3374.

    (29) Ju,T.;Graham,R.L.;Zhai,G.;Rodriguez,Y.W.;Breeze,A.J.; Yang,L.;Alers,G.B.;Carter,S.A.Appl.Phys.Lett.2010,97, 043106.

    (30) Luther,J.M.;Gao,J.;Lloyd,M.T.;Semonin,O.E.;Beard,M. C.;Nozik,A.J.Adv.Mater.2010,22,3704.

    January 14,2011;Revised:March 8,2011;Published on Web:March 31,2011.

    Preparation of PbS Quantum Dots Using Inorganic Sulfide as Precursor and Their Characterization

    YUE Dong1,2ZHANG Jian-Wen1,*ZHANG Jing-Bo2,*LIN Yuan2
    (1Laboratory of Computational Fluid Dynamics and Heat Transfer,Beijing University of Chemical Technology,Beijing 100029,P.R. China;2Beijing National Laboratory for Molecular Sciences,Key Laboratory of Photochemistry,Institute of Chemistry, Chinese Academy of Sciences,Beijing 100190,P.R.China)

    PbS semiconductor quantum dots with different particle sizes were successfully prepared by the colloidal chemistry method according to the theory of fast nucleation at high temperature and slow growth at low temperature.Sodium sulfide was used as a sulfur precursor because it is odorless and is less noxious,which allows it to be classified as a green precursor.Oleic acid was used as a stabilizing agent to control the particle growth and it thus assisted in the formation of monodisperse PbS quantum dots.The crystalline structures,morphology,and particle size of the quantum dots were characterized by powder X-ray diffraction and high-resolution transmission electron microscopy.The quantum size effect of the PbS nanoparticles was analyzed by visible near-infrared(Vis-NIR)absorption spectroscopy.The mean size of the PbS quantum dots increased with a decrease in the concentration of oleic acid.A possible growth mechanism for the PbS nanoparticles was also discussed.

    Quantum dots;Lead sulfide;Sodium sulfide;Green synthesis;Size distribution

    O649

    *Corresponding authors.ZHANG Jian-Wen,Email:zhangjw@mail.buct.edu.cn;Tel:+86-10-64436277.

    ZHANG Jing-Bo,Email:jbzhang@iccas.ac.cn;Tel:+86-10-82615031.

    The project was supported by the National Natural Science Foundation of China(20873162)and State Key Laboratory of Pollution Control and Resource Reuse Foundation of China(PCRRF09006).

    國(guó)家自然科學(xué)基金(20873162)和污染控制與資源化研究國(guó)家重點(diǎn)實(shí)驗(yàn)室開放課題(PCRRF09006)資助項(xiàng)目

    猜你喜歡
    北京化工大學(xué)硫化鈉光化學(xué)
    光化學(xué)蒸汽發(fā)生法在分析化學(xué)實(shí)驗(yàn)教學(xué)中的應(yīng)用
    云南化工(2021年9期)2021-12-21 07:44:10
    硫氫化鈉處理含銅砷廢酸的探討
    揮發(fā)性硫化物測(cè)定法中標(biāo)準(zhǔn)硫化鈉溶液的標(biāo)定
    北京化工大學(xué)流體密封技術(shù)研究中心
    北京化工大學(xué)流體密封技術(shù)研究中心
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    煤粉還原芒硝法制無水硫化鈉工業(yè)化實(shí)踐
    av一本久久久久| 欧美激情久久久久久爽电影 | 久久九九热精品免费| 国产成人av教育| 正在播放国产对白刺激| 美女国产高潮福利片在线看| 免费少妇av软件| 国产av精品麻豆| 黄片大片在线免费观看| 精品一区二区三区av网在线观看| 精品国产超薄肉色丝袜足j| 精品人妻在线不人妻| 久久精品人人爽人人爽视色| 久久久国产成人免费| 黑人欧美特级aaaaaa片| 国产精品1区2区在线观看. | 狂野欧美激情性xxxx| 国产1区2区3区精品| 亚洲中文字幕日韩| 国产蜜桃级精品一区二区三区 | 亚洲三区欧美一区| 亚洲男人天堂网一区| 69av精品久久久久久| 女人被狂操c到高潮| 亚洲成人手机| 人人妻,人人澡人人爽秒播| 啦啦啦 在线观看视频| 男人的好看免费观看在线视频 | 久久久国产一区二区| 91九色精品人成在线观看| av国产精品久久久久影院| 亚洲欧美精品综合一区二区三区| 老熟女久久久| 精品乱码久久久久久99久播| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看免费高清a一片| 亚洲精品中文字幕在线视频| 亚洲精品国产精品久久久不卡| 大香蕉久久成人网| 欧美最黄视频在线播放免费 | 午夜免费成人在线视频| 中文字幕人妻丝袜制服| 欧美成人免费av一区二区三区 | 欧美激情极品国产一区二区三区| 国产国语露脸激情在线看| av国产精品久久久久影院| 亚洲精品在线美女| 亚洲精品粉嫩美女一区| 国产成人一区二区三区免费视频网站| 99久久99久久久精品蜜桃| 欧美亚洲日本最大视频资源| 欧美激情极品国产一区二区三区| 免费不卡黄色视频| 午夜91福利影院| www.自偷自拍.com| 中文字幕人妻丝袜制服| 国产精品欧美亚洲77777| 久久久久国产精品人妻aⅴ院 | 搡老乐熟女国产| 久久国产精品影院| 精品国产美女av久久久久小说| 欧美在线一区亚洲| 久久久久精品国产欧美久久久| 欧美日韩av久久| 国产精品香港三级国产av潘金莲| 这个男人来自地球电影免费观看| av国产精品久久久久影院| 欧美 日韩 精品 国产| 在线天堂中文资源库| 男人操女人黄网站| 看片在线看免费视频| 12—13女人毛片做爰片一| 亚洲av成人av| 成年人黄色毛片网站| xxx96com| 一区二区三区激情视频| 成人免费观看视频高清| 久久这里只有精品19| 久久 成人 亚洲| 久久人人97超碰香蕉20202| 大香蕉久久网| 视频区图区小说| 中文字幕高清在线视频| 国产在线一区二区三区精| 啪啪无遮挡十八禁网站| 中文字幕最新亚洲高清| 黄色 视频免费看| 国产欧美亚洲国产| 国产区一区二久久| 97人妻天天添夜夜摸| 人妻 亚洲 视频| 电影成人av| √禁漫天堂资源中文www| 国产精品1区2区在线观看. | 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美精品综合一区二区三区| 久久久水蜜桃国产精品网| 一区在线观看完整版| 日日夜夜操网爽| 天天躁夜夜躁狠狠躁躁| 少妇裸体淫交视频免费看高清 | 正在播放国产对白刺激| ponron亚洲| 大香蕉久久网| aaaaa片日本免费| 韩国av一区二区三区四区| 午夜影院日韩av| 51午夜福利影视在线观看| 大码成人一级视频| 亚洲中文字幕日韩| 亚洲熟妇熟女久久| 精品一区二区三区四区五区乱码| 老司机亚洲免费影院| 久久精品熟女亚洲av麻豆精品| 老鸭窝网址在线观看| 国产精品永久免费网站| 亚洲中文字幕日韩| 国产精品一区二区在线观看99| e午夜精品久久久久久久| 国产免费男女视频| 另类亚洲欧美激情| 人人妻人人澡人人看| 亚洲色图综合在线观看| 国产日韩欧美亚洲二区| 成人影院久久| 美女 人体艺术 gogo| 精品一品国产午夜福利视频| 亚洲精品在线观看二区| 久久久久久免费高清国产稀缺| 国产成人欧美在线观看 | 国产精品一区二区免费欧美| 欧美一级毛片孕妇| 很黄的视频免费| 青草久久国产| 夜夜爽天天搞| 黄频高清免费视频| 视频区欧美日本亚洲| 人人妻人人爽人人添夜夜欢视频| avwww免费| 久久国产乱子伦精品免费另类| 欧美日韩亚洲高清精品| 麻豆成人av在线观看| 中文字幕精品免费在线观看视频| 成人精品一区二区免费| 怎么达到女性高潮| 丰满迷人的少妇在线观看| 黑人猛操日本美女一级片| 成人国语在线视频| 操出白浆在线播放| 欧美人与性动交α欧美精品济南到| 啪啪无遮挡十八禁网站| 午夜亚洲福利在线播放| 国产一区二区三区在线臀色熟女 | 国产精品久久久人人做人人爽| 波多野结衣av一区二区av| 国产高清视频在线播放一区| 黄色成人免费大全| 亚洲国产精品合色在线| netflix在线观看网站| 午夜免费鲁丝| 正在播放国产对白刺激| 自拍欧美九色日韩亚洲蝌蚪91| 18禁黄网站禁片午夜丰满| 免费观看a级毛片全部| 成人黄色视频免费在线看| 很黄的视频免费| 免费在线观看日本一区| 超碰97精品在线观看| 人妻一区二区av| 久久精品国产亚洲av香蕉五月 | 国产激情欧美一区二区| 久久久久久久久免费视频了| 国产成人av教育| 老司机午夜福利在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 女人高潮潮喷娇喘18禁视频| 国产免费男女视频| 国产男女内射视频| 国产黄色免费在线视频| 欧美激情 高清一区二区三区| 老汉色∧v一级毛片| 真人做人爱边吃奶动态| 久久久精品国产亚洲av高清涩受| 天天添夜夜摸| 亚洲欧美色中文字幕在线| 久久国产精品大桥未久av| 少妇裸体淫交视频免费看高清 | 亚洲三区欧美一区| 一本大道久久a久久精品| 精品欧美一区二区三区在线| 99国产精品一区二区蜜桃av | 美女 人体艺术 gogo| 老司机影院毛片| av超薄肉色丝袜交足视频| 成年女人毛片免费观看观看9 | 欧美亚洲日本最大视频资源| 中文字幕制服av| 免费看a级黄色片| 日韩 欧美 亚洲 中文字幕| 国产精品免费视频内射| 国产99久久九九免费精品| 人人妻人人澡人人看| 日本a在线网址| 免费在线观看完整版高清| 无遮挡黄片免费观看| 免费在线观看影片大全网站| 不卡av一区二区三区| 人人澡人人妻人| 国产单亲对白刺激| 亚洲第一欧美日韩一区二区三区| 一级毛片女人18水好多| 激情在线观看视频在线高清 | 免费女性裸体啪啪无遮挡网站| 99riav亚洲国产免费| 日本vs欧美在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 窝窝影院91人妻| 久久久久国产精品人妻aⅴ院 | 青草久久国产| 国产单亲对白刺激| 女人爽到高潮嗷嗷叫在线视频| 亚洲一区中文字幕在线| 麻豆乱淫一区二区| 日韩免费av在线播放| 啦啦啦免费观看视频1| 亚洲精品中文字幕一二三四区| 夜夜爽天天搞| 极品人妻少妇av视频| 午夜免费鲁丝| 亚洲专区中文字幕在线| 久久精品人人爽人人爽视色| 国产精品秋霞免费鲁丝片| 亚洲 欧美一区二区三区| 久久久久国产精品人妻aⅴ院 | 中出人妻视频一区二区| 老司机在亚洲福利影院| 精品国产一区二区三区四区第35| 视频区欧美日本亚洲| 视频区图区小说| 日韩免费高清中文字幕av| 国产一区二区三区视频了| 一二三四社区在线视频社区8| 亚洲人成电影观看| 黄色怎么调成土黄色| 中文字幕精品免费在线观看视频| 啦啦啦免费观看视频1| 中文字幕另类日韩欧美亚洲嫩草| 99国产综合亚洲精品| 丝袜美腿诱惑在线| 亚洲精品中文字幕一二三四区| 久久99一区二区三区| 电影成人av| 欧美日韩成人在线一区二区| 欧美精品一区二区免费开放| 久久ye,这里只有精品| av电影中文网址| 黄色 视频免费看| 一区二区日韩欧美中文字幕| 天堂动漫精品| 岛国毛片在线播放| 亚洲av电影在线进入| 欧美日韩乱码在线| 人成视频在线观看免费观看| xxxhd国产人妻xxx| 久久午夜综合久久蜜桃| 丰满迷人的少妇在线观看| 一二三四在线观看免费中文在| 午夜免费观看网址| 91国产中文字幕| 成人三级做爰电影| 国产1区2区3区精品| 老司机靠b影院| 91麻豆精品激情在线观看国产 | 免费人成视频x8x8入口观看| 精品久久久久久电影网| 成人18禁高潮啪啪吃奶动态图| 欧美 亚洲 国产 日韩一| 亚洲全国av大片| 成人亚洲精品一区在线观看| 亚洲一区二区三区欧美精品| 女人精品久久久久毛片| 精品少妇久久久久久888优播| 女性被躁到高潮视频| 午夜福利欧美成人| 国产精品二区激情视频| 久久久久久久精品吃奶| 国产区一区二久久| 久久 成人 亚洲| 18禁观看日本| 亚洲中文av在线| 无人区码免费观看不卡| 国产精品久久久久成人av| 免费看a级黄色片| 中文字幕另类日韩欧美亚洲嫩草| 国产精品美女特级片免费视频播放器 | 日韩中文字幕欧美一区二区| 一进一出抽搐gif免费好疼 | 国产无遮挡羞羞视频在线观看| 国产高清激情床上av| 欧美日本中文国产一区发布| 国产欧美日韩综合在线一区二区| 精品卡一卡二卡四卡免费| 久久人人97超碰香蕉20202| 国产免费av片在线观看野外av| 精品国产乱码久久久久久男人| 一区在线观看完整版| 国产成人欧美在线观看 | 人人妻,人人澡人人爽秒播| 十八禁网站免费在线| 久9热在线精品视频| 伦理电影免费视频| 不卡av一区二区三区| 人人妻,人人澡人人爽秒播| 日韩三级视频一区二区三区| 久久精品91无色码中文字幕| 国产高清videossex| 久久香蕉精品热| av视频免费观看在线观看| 大型av网站在线播放| 久久草成人影院| 看片在线看免费视频| 欧美日韩av久久| 18禁观看日本| 日韩欧美一区视频在线观看| 黄色视频不卡| 男女免费视频国产| 国产欧美日韩一区二区精品| 狂野欧美激情性xxxx| 久久人人爽av亚洲精品天堂| 国产精品1区2区在线观看. | 日本黄色日本黄色录像| 黄片大片在线免费观看| 久久ye,这里只有精品| 变态另类成人亚洲欧美熟女 | 国产人伦9x9x在线观看| 欧美精品亚洲一区二区| 国产主播在线观看一区二区| 天天操日日干夜夜撸| 老司机午夜十八禁免费视频| 亚洲精品久久午夜乱码| 久久香蕉精品热| 精品国产美女av久久久久小说| 老鸭窝网址在线观看| 黄色丝袜av网址大全| 欧美不卡视频在线免费观看 | 亚洲欧美激情综合另类| 国产精品乱码一区二三区的特点 | 狂野欧美激情性xxxx| 老司机在亚洲福利影院| www.999成人在线观看| 一边摸一边抽搐一进一小说 | 国产一区在线观看成人免费| 国产精品久久久久久人妻精品电影| 成人三级做爰电影| 一边摸一边抽搐一进一出视频| 日韩欧美一区二区三区在线观看 | 国产激情久久老熟女| 精品国产亚洲在线| 天堂动漫精品| 久99久视频精品免费| 看片在线看免费视频| 欧美亚洲日本最大视频资源| 一二三四社区在线视频社区8| 后天国语完整版免费观看| 人妻丰满熟妇av一区二区三区 | 亚洲熟妇中文字幕五十中出 | 日本wwww免费看| 99久久99久久久精品蜜桃| 久久国产精品男人的天堂亚洲| 黑人巨大精品欧美一区二区mp4| 久久人人97超碰香蕉20202| 视频区欧美日本亚洲| 日韩一卡2卡3卡4卡2021年| 色婷婷久久久亚洲欧美| 啦啦啦免费观看视频1| 亚洲黑人精品在线| 午夜久久久在线观看| 又紧又爽又黄一区二区| 国产91精品成人一区二区三区| 久久性视频一级片| 脱女人内裤的视频| 自线自在国产av| 极品教师在线免费播放| 精品久久蜜臀av无| 97人妻天天添夜夜摸| 黄片小视频在线播放| 久久性视频一级片| 日日夜夜操网爽| 久久精品国产a三级三级三级| 国产一区二区三区在线臀色熟女 | 99久久国产精品久久久| 久久精品国产综合久久久| 亚洲成人国产一区在线观看| 色综合欧美亚洲国产小说| 亚洲伊人色综图| 桃红色精品国产亚洲av| 下体分泌物呈黄色| 99精国产麻豆久久婷婷| 脱女人内裤的视频| 他把我摸到了高潮在线观看| 亚洲成国产人片在线观看| 久久久久久人人人人人| 亚洲精品自拍成人| 亚洲自偷自拍图片 自拍| 成在线人永久免费视频| 精品一区二区三区av网在线观看| 欧美黑人精品巨大| 91麻豆av在线| 韩国精品一区二区三区| 久久九九热精品免费| 欧美日韩精品网址| 久久人妻福利社区极品人妻图片| 亚洲在线自拍视频| 国产高清激情床上av| 久久精品国产99精品国产亚洲性色 | 日韩制服丝袜自拍偷拍| 在线观看免费日韩欧美大片| 亚洲国产精品合色在线| 美女高潮到喷水免费观看| 黑人猛操日本美女一级片| 韩国精品一区二区三区| 国产精品久久视频播放| 在线国产一区二区在线| 欧美老熟妇乱子伦牲交| 欧美成人免费av一区二区三区 | 中文字幕人妻丝袜一区二区| 国产精品 欧美亚洲| 国产成人系列免费观看| 老司机午夜十八禁免费视频| 国产一区二区三区视频了| 久久精品成人免费网站| 国产精品乱码一区二三区的特点 | 国产亚洲精品久久久久久毛片 | 9191精品国产免费久久| 亚洲久久久国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 一进一出抽搐gif免费好疼 | 啪啪无遮挡十八禁网站| 免费在线观看日本一区| 国产精品香港三级国产av潘金莲| a级毛片在线看网站| 精品无人区乱码1区二区| 身体一侧抽搐| 欧美日韩成人在线一区二区| 午夜福利影视在线免费观看| 欧美日本中文国产一区发布| 9色porny在线观看| 国产又色又爽无遮挡免费看| x7x7x7水蜜桃| 国产亚洲av高清不卡| 精品免费久久久久久久清纯 | 久久久久久久午夜电影 | netflix在线观看网站| 亚洲,欧美精品.| 国产成人啪精品午夜网站| 搡老岳熟女国产| 很黄的视频免费| www.自偷自拍.com| 在线观看免费午夜福利视频| 在线观看www视频免费| 丝袜美腿诱惑在线| 欧美日韩乱码在线| 啦啦啦在线免费观看视频4| 亚洲精品一二三| 欧美国产精品一级二级三级| 欧美av亚洲av综合av国产av| 国产精品偷伦视频观看了| 一本综合久久免费| 免费高清在线观看日韩| 在线观看舔阴道视频| 午夜福利在线免费观看网站| 久久 成人 亚洲| www.999成人在线观看| 久久久国产一区二区| 国产亚洲精品第一综合不卡| 日本撒尿小便嘘嘘汇集6| 免费在线观看视频国产中文字幕亚洲| 欧美黄色片欧美黄色片| 久久影院123| 久久久精品免费免费高清| 国产成人影院久久av| 国产精品秋霞免费鲁丝片| 亚洲五月色婷婷综合| 啪啪无遮挡十八禁网站| 日韩免费高清中文字幕av| 国产成人精品在线电影| 日韩欧美在线二视频 | 久久青草综合色| 自线自在国产av| 免费观看a级毛片全部| 日韩免费av在线播放| 国产极品粉嫩免费观看在线| 91字幕亚洲| 久久这里只有精品19| 国产在线一区二区三区精| 欧美亚洲 丝袜 人妻 在线| 我的亚洲天堂| 人妻一区二区av| 久久青草综合色| 岛国毛片在线播放| 精品高清国产在线一区| 国产免费现黄频在线看| 色播在线永久视频| 精品国产乱码久久久久久男人| 欧美乱色亚洲激情| 欧美激情高清一区二区三区| 久久精品亚洲精品国产色婷小说| 天堂中文最新版在线下载| 两性午夜刺激爽爽歪歪视频在线观看 | 9191精品国产免费久久| 91成年电影在线观看| 黄色毛片三级朝国网站| 国产午夜精品久久久久久| 男男h啪啪无遮挡| 午夜福利在线免费观看网站| 好看av亚洲va欧美ⅴa在| 欧美日韩乱码在线| 又黄又爽又免费观看的视频| 电影成人av| 久久香蕉精品热| 欧美精品一区二区免费开放| 国产高清视频在线播放一区| 久9热在线精品视频| 少妇粗大呻吟视频| 18禁黄网站禁片午夜丰满| 国产在线一区二区三区精| 老司机午夜十八禁免费视频| 国产日韩欧美亚洲二区| 女人被狂操c到高潮| 在线观看一区二区三区激情| 色综合欧美亚洲国产小说| 日本欧美视频一区| 国产精品免费大片| av欧美777| 最新美女视频免费是黄的| 国产一卡二卡三卡精品| 亚洲情色 制服丝袜| 99re6热这里在线精品视频| 日日夜夜操网爽| 日韩熟女老妇一区二区性免费视频| 色播在线永久视频| 男女之事视频高清在线观看| 亚洲色图av天堂| 超色免费av| 妹子高潮喷水视频| 一级作爱视频免费观看| 老熟女久久久| 久久精品国产99精品国产亚洲性色 | 大香蕉久久网| 91九色精品人成在线观看| 久久99一区二区三区| 变态另类成人亚洲欧美熟女 | 精品人妻在线不人妻| 高清在线国产一区| 两个人免费观看高清视频| 久久人妻av系列| 国产一区在线观看成人免费| 日本wwww免费看| 人人妻,人人澡人人爽秒播| x7x7x7水蜜桃| 999久久久精品免费观看国产| 在线看a的网站| 亚洲一区中文字幕在线| 69av精品久久久久久| 国产乱人伦免费视频| 亚洲精品自拍成人| 国产亚洲精品久久久久久毛片 | 在线观看免费视频日本深夜| 麻豆av在线久日| 国产一区二区三区视频了| 精品国产一区二区久久| 中文字幕制服av| 欧美丝袜亚洲另类 | 国产一区二区三区在线臀色熟女 | 亚洲欧美日韩另类电影网站| 成人黄色视频免费在线看| 韩国精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 精品国产一区二区三区四区第35| 亚洲欧洲精品一区二区精品久久久| 中文字幕人妻丝袜一区二区| 日日爽夜夜爽网站| 久久人妻福利社区极品人妻图片| 免费日韩欧美在线观看| 国产精品 国内视频| 亚洲精品国产区一区二| 国产精品秋霞免费鲁丝片| 亚洲欧美色中文字幕在线| 男女高潮啪啪啪动态图| 深夜精品福利| 中文字幕高清在线视频| 天堂中文最新版在线下载| 一级a爱视频在线免费观看| 国产精品偷伦视频观看了| 成人国产一区最新在线观看| 女人被狂操c到高潮| 两个人免费观看高清视频| 亚洲 欧美一区二区三区| 日韩欧美免费精品| 在线观看66精品国产| 亚洲一卡2卡3卡4卡5卡精品中文| av中文乱码字幕在线| www.精华液| 日本黄色日本黄色录像| 日韩免费高清中文字幕av| 一级,二级,三级黄色视频| ponron亚洲| 成年女人毛片免费观看观看9 | 如日韩欧美国产精品一区二区三区| 亚洲 国产 在线| 亚洲第一欧美日韩一区二区三区| 久久天堂一区二区三区四区| 亚洲精品av麻豆狂野| 性色av乱码一区二区三区2| 黑人巨大精品欧美一区二区mp4|