• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Statistical Model for Intensities in the Rotational Spectra of Linear and Non-Linear Molecules

    2011-12-12 02:43:30SAIZAndr
    物理化學(xué)學(xué)報(bào) 2011年5期

    SAIZ Andrés

    (Departamento de Matemática Aplicada,Universidad Politécnica de Valencia,Escuela ETSGE,Camino de Vera s/n, Valencia 46022,Spain)

    1 Introduction

    Spectral lines of molecules in infrared and microwaves are produced by rotation and vibration,and they represent the lowest quantized energy modes of molecular motion.The analysis of the rotational spectrum is an accurate way to determine the structure of a molecule in the gas phase.Non-linear molecules can be recognized by their related values of the three principal moments of inertia,IA,IB,IC.In the asymmetric top molecule cases,the three principal moments of inertia are unequal.Because of that,the rotational motion produces a very complex rotational spectrum.A good introduction to molecular spectroscopy can be found in several books.1-3

    Some different ways are explored when a statistical description of the spectrum is desired:

    (1)The study of the distribution of the spacing between eigenvalues of the energy operator.These spacings are often extracted from experimental data and the statistical measurements commonly used are spectral distribution(probability of finding an energy level in the vicinity of an interval related to an existing energy level)and level spacing probability distribution(probability of finding two consecutive energy levels at a certain distance).Fluctuation properties of complex spectra are described according to Wigner′s random matrix theory(RMT). These fluctuations appear in spectra of many physical systems and seem to be highly universal.

    (2)The study of the spectral phenomenon from the dimensional point of view.The studied measurements have been the intensity4and the distribution of the measure in the wavelength domain5.

    (3)The study of intensities in transitions of molecules6-10or intensities as molecular descriptors11.

    In this paper we look for similarities among different spectra.With this aim,we propose the study of spectral lines according to the density of probability of finding intensities in a range of intensities,as it was previously studied in literature.12

    2 Analyzed spectra from non-linear molecules

    The spectral lines of organic and inorganic molecules have been obtained from the Jet Propulsion Laboratory(JPL)Molecular Spectroscopy Team.13These lines are mainly rotational lines,but it is not warranted that these spectra are purely rotational.Also,incompleteness of spectra should be taken in consideration,because intensities of vibrational states in general are not in the JPL catalogue.

    The non-linear molecules studied are the following:acrylonitrile(C2H3CN),75697 lines;dimethyl ether(CH3OCH3),21735 lines;hydrogen peroxide(H2O2),38357 lines;peroxynitric acid (HOONO2),50775 lines;butyronitrile(C3H7CN),131349 lines; nitrogen dioxide (NO2), 16444 lines; ethyl formate (C2H5OOCH),60671 lines;nitric acid(HNO3),36551 lines; ethyl cyanide(C2H5CN),52883 lines;nitrosylhydride(HNO), 10293 lines.For each line we have the frequency in MHz,and the integrated intensity in nm2·MHz at 300 K from theoretical arguments based on Boltzmann and Bose-Einstein statistics. The range of frequencies of the lines of each molecule is different in each case,but all of them between 102and 10-1MHz.

    In this section we analyze the behavior of P(I),the probability density function(PDF)of finding one intensity.With this aim we are going to utilize histograms,which are the classic tool to estimate P(I)from experimental data.They provide a consistent estimate of the true underlying PDF,but this is only achieved when the choice of the number of bins is adequate.It has been shown in literature14that an optimal bin size histogram,which provides an unbiased estimation of the PDF,is reached when

    where W is the width of each bin,σ is the standard deviation and N is the number of available samples.For practical purposes we use the estimated standard deviation.

    Each set of intensity data from a molecule has a maximum intensity,I,and a minimum intensity,I,where j is the number of molecules,j=1,2,…,10.Thus,the optimal number of bins for each molecule is:

    where Int stands for the integer part.This allows us to create the set BNLgiving by:

    Hence,the probability that an intensity lies in a bin i(i=1, 2,...,bj)from a molecule j(j=1,2,…,10)is pij(I)=nij(I)/Nj, where nij(I)is the number of intensities lying in a bin i from a specific molecule j,and Njis the total number of intensities in the spectrum of this molecule.

    We choose<I>,the average of intensities in each bin,as a close representative of the internal distribution of intensities in each bin.If other election is made,graphical representation is not correct due to the log-log representation.In Fig.1 we represent P(<I>)vs<I>for all molecules.As we can see in Fig.1, P(<I>)curves are very similar.They could be fitted by power laws with exponential tails such as P(I)=αI-βexp(-γI).

    Fig.2 Log-log plots of the linear interpolated data for the intensity(PDF vs In)This picture shows all 10 molecular spectra studied.The curve ρ(In)=0.11In-0.99exp(-2.4In)(thick line)is a nonlinear least-squares approximation to the data.

    Since data from molecules lead to similar curves,we propose two convenient variables,Inand Ic,in order to group them around a general curve that will be given in Section 4.The aim of this is to study relations between them.Specifically,we look for a process able to explain the dispersion of such curves respect to the general one.

    Firstly,as an approximation,we define the variablewhere its PDFs are denoted byIn Fig.2 we see how this variable groups the curves.

    Secondly,we define another convenient variable,Ic=<I>/W, where its PDFs are denoted bydoes not depend on any specific scale.Notice that its integer part plus one is the number of the bin to which Icbelongs.In Fig.3 we represent the curves for the new variable Ic.

    Fig.1 Log-log plots of the linear interpolated data for the mean intensity P()vsThis picture shows all 10 molecular spectra studied.

    Fig.3 Log-log plots of the linear interpolated data of the studied molecules(PDF vs Ic)This picture is Fig.1 transformed after using Ic.

    In order to analyze the existence of a process able to explain the dispersion of the curves in Fig.3,we estimate the standard deviation,σI,and the average,μi,of the different PDFs′,in the same bin i,for all possible j(less than or equal to 10). The points,(μ,σ(μ)),that representμiand σifor all bin i,can be fitted by σ=0.55μ,see Fig.4,that is a behavior consistent with a lognormal distribution,as we will see in the following.

    There are 10 or less samples per bin.Thus,in order to have more samples we will rebuild the statistical process considering that all the bins are equally distributed,but with σ depending onμ.In this case,we can construct a kind of typified variablewhere 1≤j≤10,and i=1,2,…,bj,is the number of bin.We can compare distributions using this variable.In each bin i the mean and the standard deviation behave as<M>i= 1 and σ(M)i?0.55 respectively,except for the less populated bins.In these conditions,assuming the same distribution inside bins,we can group all data.In this way,we create a sort of bin in which all the samples join together.Hence,we can rename the variable Mijjust as M,where M∈[0.0895,3.3].

    We create a histogram in M following the equation(1).The width of each bin is 0.16,hence,the number of bins is 20.We show the PDF of the process in the Fig.5.This PDF is consistent with a lognormal process,as:

    where the parameters of the lognormal distribution σlnxand μlnxare:

    In our case σ(M)=σx=0.55 and<M>=μx=1,so σlnx=0.5141 and μlnx=-0.1321.

    As shown in Fig.5,the variable M has a distribution consistent with a lognormal process.This behavior is directly suggested by σxandμx.

    Fig.4 Typical deviation σ vs average of PDF in each bin(μ)of the same process for all 10 moleculesDotted line is σ=0.55μ.

    Fig.5 Histogram of the variable PDF(M)vs M and lognormal curve when=1 and σ(M)=0.55

    The variable M helps us to superpose distributions which,if significantly different in each bin,do not show a lognormal distribution.Therefore,it seems reasonable to consider a common process as the origin of the dispersion in curves ρc(Ic).As an approach to the general curve,we can create an‘a(chǎn)verage curve’with the average values of ρcand Icin each bin.This shows a good agreement with a power law with exponential tail,as ρc(Ic)=aIc-bexp(-cIc)where a=0.11,b=0.99,and c=0.02,see Fig.6.

    Since the curves seem related we proceed to study the dispersion and the mean.The variables Icand Inhelp us to identify the origin of the dispersion.Its densities are related according to:

    where j=1,2,…,10,represents the molecules and i=1,2,…,bjthe number of bin.Therefore,the standard deviation and the averages are expressed by:

    Fig.6 Log-log plot for the average data Icand ρc(Ic)in each bin(crosses)Fitted curve is ρc(Ic)=0.11Ic-0.99exp(0.02Ic).

    Let us consider that the behavior ofis,where k stands for the constant behavior for all the molecules and v stands for the variable behavior.Let us consider too thatis smaller thanand it can be ignored compared with it.In that case we have:andIn this way we have a first approximation to the contribution of this factor to the dispersion.Therefore,

    it is close to the experimental fit,whereandare computed from the inverse of the elements of the set BNL(3).In the considered case,the most important part of the dispersion comes from the different number of bins considered in each spectrum.

    The above results are coherent with the idea that a general law may exist and the curves ρc(Ic)and ρn(In)derive from it following the suggested dispersive process.

    3 Analyzed spectra from linear molecules

    Spectral lines from linear molecules have been obtained from the JPL Molecular Spectroscopy Team,13as in Section 2. They are the following:Br-79-O,1892 lines;PS,2340 lines; AlCl,11525 lines;ClO,2585,NS,2402,PNv=0-4,1637 lines; NO,1909 lines;O-17-O,10787 lines;SiC-13,2417 lines; NS-34,2362 lines;Cl-37-O,2624 lines;AlCl-37,11326 lines.

    Using same procedures as in Section 2.1,the optimal number of bins for each molecule allows us to generate the set BL:

    When we make representations of spectra of linear molecules we find different behaviors.In Fig.7 we can observe different shapes of these spectra.They are grouped,after adequate shifting of P(I),in order to achieve collapse of curves.In that case the fit to a common behavior can not be made.

    In some cases similarities could be attributed to isotopes,but Fig.7(b,d)shows non isotopic molecules also.

    4 Boltzmann distribution

    So far we have used power laws with exponential tails in order to approximate a curve to the behavior of the PDF of the intensity of spectra.These kinds of curves,with an explicit expression,are convenient in order to approach the functional behavior of curves.Nevertheless,power laws with exponential tails have basic problems.For that kind of curves a maximum in intensity is not allowed.This seems to be a serious limitation for a realistic description of a physical phenomenon as the spectrum is.Other disadvantage is scaling.These kinds of curves do not show scaling in the variable intensity.

    In Fig.7 we observe different behaviors for linear molecules. These intensities of spectra,after adequate shifting,collapse into common behaviors.This fact suggest a spectrum model in which each molecule should be associated to a parameter which corresponds to a spectrum.

    A first approach to the shape of P(I)is a model based on the Boltzmann distribution.15This distribution is the classical distribution function for an amount of energy which distributes among identical but distinguishable particles,and arises in statistical mechanics,specifically in equilibrium systems(see literature16for a revision of this item).Atomic,ionic or molecular levels obey that distribution.

    Fig.7 Log-log plots of P(I)vs I of spectra of linear molecules(a)molecules O-17-O,NO,and SiC-13;(b)molecules Br-79-O,AlCl,PNv=0-4andAlCl-37;(c)molecules NS and NS-34;(d)molecules PS,ClO,and Cl-37-O

    The Boltzmann distribution for continuous systems is described by f(E)=exp(-βE),where β=1/kBT,kBis the Boltzmann′s constant,T is the temperature(T=300 K in this paper),and E is the energy level.Thus,ρ(E)=Ng(E)f(E),where N is a positive constant and g(E)≥0 is the multiplicity of level E,describes the density of states of the system.

    In order to give a description of spectra of linear and non-linear molecules,let us consider the following approach to the problem.

    4.1 Relevance of multiplicity g(E):statistical arguments

    If we assume that in molecules at room temperature all degrees of freedom are decoupled then,summing over all molecular states is equivalent to summing over all possible translational,rotational,vibrational and electronic states.Thus,the molecular partition function,qmol,assuming continuum,is:

    where g(E)is the multiplicity and qtrans,qrot,qvib,and qelecare partition functions related to translational,rotational,vibrational, and electronic states,respectively.

    Partition function is temperature dependent.It is in such a way that at low temperature not all degrees of freedom contribute significatively to its corresponding partition function.For example,at room temperature,qtrans~1026-1028,qrot~19,qvib~1, and qelec~1.

    Also,partition function is useful in the study of thermodynamic functions,as molecular energy Emol=NkBT2(?ln(qmol)/?T)N,V. At room temperature qtransand qrotare the most contributing partition functions to qmol,but qtransdoes not take part in spectra generation.They scale with temperature as:qtrans∝T1/2and qrot∝T1/2for each degree of freedom.Thus,in this paper we suppose that qmolscales as qmol∝Tw/2,where w is the number of active degrees of freedom,and includes participation of rotational levels to spectra,but without translational contributions.Multiplicity in equation(10)must be coherent with this fact.

    In order to reproduce the scaling behavior of qmol,we propose the following multiplicity:

    where Im(maximun intensity),b>0 and s>1.In that case,equation(10)becomes:

    where Γ is the standard gamma function.If we indentify w=s+ 2 we can observe that the dominant part of qmolscales as Tw/2when Imis sufficiently small.The election of equation(11)is the simplest election we can reproduce the expected behavior for qmol.The term Imis needed in order to have a maximum intensity.In Section 5 we will study the behavior of more elaborated g(E)that finally leads to a similar behavior.

    4.2 Building a P(I)

    In the present case we assume that intensities I(E)are approximately proportional to ρ(E).This is a good approximation because transitions have specific rules with constant probabilities.Thus:

    whereA is a constant.We will considerA=1 for computing.

    Let us consider dp(I),as the probability of finding an intensity in[I,I+dI].In a general way dp(I)is:

    where m represents the number of intervals that contribute to dp.

    P(I),the PDF associated to dp(I)is:

    where g′(E)/g(E)-β≠0 and g(E)≥0 for all E.

    A parametric representation of P(I),(I,P(I)),with parameter E,may be easily found in some cases.15

    As a first approach to the shape of spectra of non-linear molecules one can consider g(E)=Enwith n=-1.15In that case the shape of these spectra is correctly reproduced,see Fig.8.Nevertheless,a multiplicity as g(E)=Encannot reproduce shapes of spectra of linear molecules.Also,in experimental spectra,a cutoff in intensities due to the non existence of arbitrarily large intensities is observed.Intensities above certain Imare not detected.

    In the next section,in order to give an explanation to shapes of spectra of linear and non-linear molecules,we will use the multiplicity introduced in equation(11).

    5 Theory and experiment data

    In order to have a more compact and clear description of properties derived from multiplicity of equation(11)we consider the following change of notation on that multiplicity:

    Fig.8 Log-log plot of P(I)vs I thin line:g(E)=En,n=-1,and β=3×106;dashed line:P(I)=3.5×10-7I-1; dotted line:P(I)=1.1I-2

    where ξ=b/Im,Im>0,E≥0,ands∈Z+.I=Imwill be the maximum observed intensity when I(E)is a decreasing function.In that case I′(E)<0,that is,g′(E)-βg(E)<0.Notice that g′(E)-βg(E)≠0 in this paper.Near to Ei,such as I′(Ei)=0,P(I)grows significatively.Experimentally,this grows will be limited because E is quantized.Another feature related to equation(16)is the behavior when I→0.In that case,P(I)behaves as I-1.15

    Let us study the functional form of P(I)generated from the multiplicity of equation(16)when β=0.3,Im=90 and s=5 are used.Different curves with various ξ have been computed, some of those curves appear in Fig.9.

    ξc=2.415/90,is the numerically computed critical value of ξ, such as when ξ=ξc,a double real root of I′(E)=0 appear.When ξ≥ξc,two real roots appear,then,local Imaxand Iminfor I(E)exists,and P(I)diverges at these points.In those cases we compute random values of E using an inverse transform sampling, and compute P(I)from simulated values of I.In Fig.10(a)we show P(I)when ξ is close to the critical value,ξc.In Fig.10(b) we show a simulation of 106samples of E when ξ=10/90.Thus, the same number of samples of I is obtained,and then,the shape of P(I)is generated.Notice that the two peaks of P(I)on Fig.10(b)correspond to the two local extremes of I(E).

    The power s in equation(16)is also an important parameter. In Fig.11 we represent two different P(I)curves for values s=5 and s=6.Notice how tiles of such a curves increase with s.

    For a specific s a family of P(I)depending on parameter ξ have been obtained.Now,we need to fit obtained curves to experimental spectra of linear and non-linear molecules.Let us consider β=0.3,s=5 and Im=90,for other values of s curves of similar shape were obtained.With these values we compute some curves with various ξ.After this,we shift curves adequately in order to reach coincidences in log-log plots.Obtained results are shown in Fig.12.One can see a good agreement among experimental and theoretical curves in spectra from linear and non-linear molecules.In Fig.12(c),linear molecules of Fig.7(d)has been represented vs its theoretical prediction.Species from down left panel of Fig.7 could be easily reproduced in the same way changing ξ.

    Fig.9 Log-log plots of P(I)vs I depending on ξIn insets we show I(E)=g(E)exp(-βE)where g(E)=Im(1+ξE5/2).In all the cases Im=90 and β=0.3.(a)ξ=0.4/90;(b)ξ=1/90;(c)ξ=1.4/90;(d)ξ=2/90

    Fig.10 Log-log plots of P(I)vs I when g(E)=Im(1+ξE5/2)(a)ξ=2.41/90,near ξc,Inset:I(E)=g(E)exp(-βE);(b)simulation of 106values of I,where ξ=10/90,far from ξc;In both cases β=0.3 and Im=90.

    Fig.11 Log-log plots of P(I)vs I when g(E)=Im(1+ξEs/2)thin line:s=5 and ξ=1/90;thick line:s=6 and ξ=0.22/90; In both cases Im=90 and β=0.3.

    So far we used s=5,w=7 active degrees of freedom,as an adequate value in order to reproduce shapes of spectra,and in order to reproduce the dominant contributions to spectra in qmol. Nevertheless,in order to have a more rich behavior in P(I),we can suppose the existence of more non dominant terms in g(E):

    where s>1 and s∈Z+.

    Let us consider s=4,w=6,and the following multiplicity:

    Fig.12 Theoretical behavior of P(I)vs experimental behavior(a)non-linear molecules,adjusted with ξ=0.5/90;(b)linear molecules of Fig.7(a),adjusted with ξ=1/90;(c)linear molecules of Fig.7(d),adjusted with ξ=25/90; (d)linear molecules of Fig.7(b),adjusted with ξ=2/90.In all the cases β=0.3 and g(E)=90(1+ξE5/2).Thick lines and dashed line represent theoretical behavior. It has been adequately shifted in order to reach coincidences over log-log plots.Different colors represent different molecules.

    Fig.13 Log-log plots of P(I)vs I when g(E)includes the existence of more terms in E(a)g(E)=Im(1+2E2-2E);(b)g(E)=Im(1+15E2-2E);in both cases Im=90 and β=2.Also,in both cases insets are:I(E)=g(E)exp(-βE).

    In that case roots E1and E2of I′(E)=0 could be computed alge-braically.If we seek for a double root E1=E2discriminant,Δ,of I′(E)=0 must be zero.

    Thus,

    In Fig.13 ξ3=-2 and β=2 have been used,and two possible elections of g(E)are represented.In Fig.13(a)ξ1=2,Δ=0,in order to have a double real root.In Fig.13(b)ξ1=15 has been used,Δ>0,in order to show the shape of spectra when two different real roots appear.Those cases show a similar behavior as for s=5, in Fig.10.

    6 Conclusions

    Analyzed spectra come from a semi synthetic catalogue in which completeness are not warranted and intensities are computed using theoretical models.Nevertheless,this catalogue is a good tool in order to test statistical models of spectra of linear and non-linear molecules.

    One of the keys to the problem of finding P(I)is the multiplicity g(E).We obtain full PDF spectra when using the adequate multiplicity.In that case g(E)=Im(1+ξEs/2),is the simplest multiplicity derived from statistical arguments related to the partition function qmol.

    The distribution of intensities in spectra depends on two parameters that arise in previous multiplicity:Imand ξ.Imgives the maximum intensity when I(E)is a decreasing function.ξ is the responsible of divergence peaks in P(I).When ξ<ξcno real roots for I′(E)=0 exist,when ξ=ξca double real root exist and, when ξ>ξctwo different real roots appear,and then,two divergence peaks appear in P(I).When real roots appear,theoretical prediction is slightly worse around divergence peaks.This seems to be related to the approximation to continuum considered in this paper.

    Behavior of spectra of molecules has been grouped in order to give a common graphical description,but it is not guaranteed that spectra from linear or non-linear molecules behave always as shown in this paper.Shape of spectra in intensities only depends on specifics values of parameters Im,β and ξ.

    An important consequence is the fact that all systems ruled by a Boltzmann distribution,satisfying similar conditions to that one described in this paper,will have a similar behavior.

    Acknowledgment:To the memory of Lorenzo Ferrer.

    (1) Gordy,W.;Cook,R.L.Microwave Molecular Spectra;Wiley: New York,1984.

    (2) Kroto,H.W.Molecular Rotation Spectra;Dover:New Yrok, 1992.

    (3) Bernath,P.F.Spectra of Atoms and Molecules;Oxford UP:New York,1995.

    (4) Shalev,E.;Klafter,J.;Plusquellic,D.F.;Pratt,D.W.Physica A 1992,191,186.

    (5) Saiz,A.;Martínez,V.J.Phys.Rev.E 1996,54,2431.

    (6) Schlapp,R.Phys.Rev.1932,39,806.

    (7) Watson,J.K.G.Can.J.Phys.1968,46,1637.

    (8)Morioka,Y.;Hara,S.;Nakamura,M.Phys.Rev.A 1980,22, 177.

    (9) Zemtsov,Y.K.;Starostin,A.N.JETP 1993,76,186.

    (10) Finsterh?lzl,H.;Hochenbleicher,J.G.;Strey,G.J.Raman Spect.2007,6,13.

    (11) Bielinska,D.;Waz,P.;Basak,S.Eur.Phys.J.B.2006,50,333.

    (12) Saiz,A.Revista Internacional de Sistemas 2003,13,64.

    (13) Pickett,H.M.;Poynter,R.L.;Cohen,E.A.;Delitsky,M.L.; Pearson,J.C.;Muller,H.S.P.J.Quant.Spectrosc.Rad. Transfer.1998,60,883.

    (14) Scott,D.W.Biometrika 1979,66,605.

    (15) Saiz,A.Physica A 2010,389,225.

    (16) Sears,F.W.;Salinger,G.L.Thermodynamics,Kinetic Theory, and Statistical Thermodynamics;Addison-Wesley Pub.Co.: Massachusetts,1975.

    欧美又色又爽又黄视频| 亚洲一级一片aⅴ在线观看| 亚洲电影在线观看av| 亚洲成a人片在线一区二区| 99久国产av精品国产电影| 亚洲精品粉嫩美女一区| 91aial.com中文字幕在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 乱系列少妇在线播放| 青青草视频在线视频观看| 精华霜和精华液先用哪个| 永久网站在线| 欧美激情国产日韩精品一区| 亚洲国产精品国产精品| 国产精品一及| 91久久精品电影网| 国产精品一区二区三区四区免费观看| 观看免费一级毛片| 女人十人毛片免费观看3o分钟| 波多野结衣高清无吗| 亚洲经典国产精华液单| 又黄又爽又刺激的免费视频.| 午夜激情欧美在线| 亚洲五月天丁香| 国产av不卡久久| 日韩av不卡免费在线播放| 国内精品美女久久久久久| 99热精品在线国产| 人妻少妇偷人精品九色| 免费观看人在逋| 男女做爰动态图高潮gif福利片| 免费无遮挡裸体视频| 欧美最黄视频在线播放免费| 干丝袜人妻中文字幕| 日韩欧美精品免费久久| 久久久精品94久久精品| 看非洲黑人一级黄片| 身体一侧抽搐| 麻豆成人av视频| 国产av一区在线观看免费| 国产片特级美女逼逼视频| 超碰av人人做人人爽久久| 自拍偷自拍亚洲精品老妇| 亚洲欧美日韩高清在线视频| 麻豆乱淫一区二区| 国产黄色视频一区二区在线观看 | 成熟少妇高潮喷水视频| 亚洲av第一区精品v没综合| 国产私拍福利视频在线观看| 欧美日本亚洲视频在线播放| 国产女主播在线喷水免费视频网站 | 日本欧美国产在线视频| 亚洲av熟女| av在线蜜桃| 亚洲av成人精品一区久久| 久久久久网色| 69人妻影院| 成人午夜高清在线视频| 舔av片在线| 91av网一区二区| 我的老师免费观看完整版| 欧美最新免费一区二区三区| 免费观看精品视频网站| 99热精品在线国产| 日韩欧美在线乱码| 欧美高清成人免费视频www| 国产日本99.免费观看| 国产精品嫩草影院av在线观看| 校园人妻丝袜中文字幕| 亚洲国产欧洲综合997久久,| 久久久久久久久大av| www日本黄色视频网| 免费av不卡在线播放| 一本精品99久久精品77| 国产精品精品国产色婷婷| 中文欧美无线码| 国产精品综合久久久久久久免费| 亚洲一区二区三区色噜噜| 国产精品人妻久久久久久| 非洲黑人性xxxx精品又粗又长| 国产精华一区二区三区| 色播亚洲综合网| 一级二级三级毛片免费看| av又黄又爽大尺度在线免费看 | 亚洲一区高清亚洲精品| 欧美色欧美亚洲另类二区| 日本爱情动作片www.在线观看| 最新中文字幕久久久久| 2022亚洲国产成人精品| 日本-黄色视频高清免费观看| 国产精品乱码一区二三区的特点| 看片在线看免费视频| 国产高清三级在线| 欧美另类亚洲清纯唯美| 99热全是精品| 精品一区二区三区视频在线| 亚洲高清免费不卡视频| 日本av手机在线免费观看| 国产一区二区亚洲精品在线观看| 久久这里只有精品中国| 国产精品福利在线免费观看| 两个人的视频大全免费| 亚洲色图av天堂| 国产伦在线观看视频一区| av专区在线播放| 丝袜喷水一区| 午夜久久久久精精品| 久久久久九九精品影院| 国产精品女同一区二区软件| 中国国产av一级| 中文精品一卡2卡3卡4更新| 岛国毛片在线播放| 免费看日本二区| 久久99热6这里只有精品| 国产精品伦人一区二区| 亚洲人成网站在线播| 欧美色欧美亚洲另类二区| 99热6这里只有精品| 三级毛片av免费| 国产日本99.免费观看| 中出人妻视频一区二区| 夜夜爽天天搞| 91av网一区二区| 日日啪夜夜撸| 亚洲国产精品sss在线观看| 婷婷六月久久综合丁香| 国产精品,欧美在线| 久久99热6这里只有精品| 亚洲va在线va天堂va国产| 99热全是精品| 亚洲人成网站在线播| av黄色大香蕉| 亚洲丝袜综合中文字幕| 熟妇人妻久久中文字幕3abv| 国产精品99久久久久久久久| 午夜精品一区二区三区免费看| 国产成人精品一,二区 | 欧美激情久久久久久爽电影| 国产成人午夜福利电影在线观看| 看免费成人av毛片| 国产精品一区二区在线观看99 | 男女那种视频在线观看| 亚洲久久久久久中文字幕| 精品99又大又爽又粗少妇毛片| 一边摸一边抽搐一进一小说| 精品免费久久久久久久清纯| 校园人妻丝袜中文字幕| av在线播放精品| 日日干狠狠操夜夜爽| 色播亚洲综合网| 欧美激情在线99| 中文字幕熟女人妻在线| 免费电影在线观看免费观看| 少妇人妻一区二区三区视频| 亚洲精品自拍成人| ponron亚洲| 欧美精品一区二区大全| 国产一级毛片七仙女欲春2| 日本黄色视频三级网站网址| 波野结衣二区三区在线| 岛国毛片在线播放| 久久久久久久久久久免费av| 老熟妇乱子伦视频在线观看| 成年版毛片免费区| www.av在线官网国产| 白带黄色成豆腐渣| 一个人看视频在线观看www免费| 亚洲在久久综合| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品国产亚洲av涩爱 | 亚州av有码| 国产国拍精品亚洲av在线观看| 我要看日韩黄色一级片| 久久中文看片网| 国产精品一及| 97在线视频观看| av卡一久久| 我的女老师完整版在线观看| 国产真实伦视频高清在线观看| 日韩欧美 国产精品| 国产精品福利在线免费观看| 九九久久精品国产亚洲av麻豆| 久久精品影院6| 国产精品爽爽va在线观看网站| 淫秽高清视频在线观看| 69av精品久久久久久| 国产成人aa在线观看| 高清在线视频一区二区三区 | 国产av在哪里看| 大型黄色视频在线免费观看| 中文欧美无线码| 99久久精品热视频| 亚州av有码| 成人特级av手机在线观看| 国产成人91sexporn| 久久精品综合一区二区三区| 深爱激情五月婷婷| 国产精品美女特级片免费视频播放器| 成人av在线播放网站| 国产精品一二三区在线看| 尤物成人国产欧美一区二区三区| 国产日韩欧美在线精品| 亚洲人成网站高清观看| 成人美女网站在线观看视频| 97超碰精品成人国产| 人妻制服诱惑在线中文字幕| 日韩成人伦理影院| 国产熟女欧美一区二区| 国产午夜精品久久久久久一区二区三区| 国产高清激情床上av| 男人舔女人下体高潮全视频| 久久精品久久久久久噜噜老黄 | 国内精品美女久久久久久| 中文欧美无线码| 人人妻人人澡欧美一区二区| 只有这里有精品99| avwww免费| 精品久久国产蜜桃| 成人午夜高清在线视频| videossex国产| 在线免费十八禁| 午夜爱爱视频在线播放| 性欧美人与动物交配| 中文字幕久久专区| 国产三级中文精品| 丰满乱子伦码专区| 久久久久九九精品影院| 99热这里只有是精品在线观看| 一级av片app| 99久久人妻综合| 免费观看精品视频网站| 欧美+日韩+精品| 人体艺术视频欧美日本| 日本免费一区二区三区高清不卡| 日韩欧美精品v在线| 爱豆传媒免费全集在线观看| av又黄又爽大尺度在线免费看 | 亚洲无线观看免费| 国产爱豆传媒在线观看| 久久久午夜欧美精品| 国产av在哪里看| 天堂√8在线中文| 欧美xxxx黑人xx丫x性爽| 极品教师在线视频| 欧美+日韩+精品| 午夜福利在线在线| 美女国产视频在线观看| 亚洲国产欧洲综合997久久,| 亚洲av熟女| 国产单亲对白刺激| 国产av麻豆久久久久久久| 久久久久国产网址| 人妻制服诱惑在线中文字幕| 天天一区二区日本电影三级| 伦理电影大哥的女人| 麻豆久久精品国产亚洲av| 亚洲精品成人久久久久久| 国产一区二区激情短视频| 美女cb高潮喷水在线观看| 秋霞在线观看毛片| 亚洲人成网站高清观看| 少妇高潮的动态图| 男女啪啪激烈高潮av片| 色吧在线观看| 中国国产av一级| 精品无人区乱码1区二区| 国产成人午夜福利电影在线观看| 久久精品91蜜桃| 免费看a级黄色片| 国产精品三级大全| 91在线精品国自产拍蜜月| 欧美xxxx黑人xx丫x性爽| 一个人观看的视频www高清免费观看| 日韩欧美精品免费久久| 18禁裸乳无遮挡免费网站照片| 毛片一级片免费看久久久久| 麻豆精品久久久久久蜜桃| 国产成人精品一,二区 | 国产不卡一卡二| 精品久久久久久久久亚洲| 久久精品国产自在天天线| 观看美女的网站| 国产精品一二三区在线看| 亚洲国产日韩欧美精品在线观看| 不卡视频在线观看欧美| 国产熟女欧美一区二区| 村上凉子中文字幕在线| 亚洲熟妇中文字幕五十中出| 精品久久久久久久末码| 成人二区视频| 亚洲成av人片在线播放无| 人人妻人人澡人人爽人人夜夜 | 3wmmmm亚洲av在线观看| 久久久久久国产a免费观看| 搡老妇女老女人老熟妇| 国产老妇伦熟女老妇高清| 中文字幕免费在线视频6| 国产在线男女| 亚洲人成网站在线播放欧美日韩| 成人三级黄色视频| 久久久久久久午夜电影| 一本久久中文字幕| 特大巨黑吊av在线直播| 人人妻人人看人人澡| 全区人妻精品视频| 一区福利在线观看| 久久久久久大精品| 国产亚洲av嫩草精品影院| 如何舔出高潮| 在线播放无遮挡| 亚洲第一区二区三区不卡| 男人舔女人下体高潮全视频| 乱人视频在线观看| 国产精品一区www在线观看| 在线播放国产精品三级| 九草在线视频观看| 精品熟女少妇av免费看| 亚洲av中文av极速乱| 免费电影在线观看免费观看| 色播亚洲综合网| 又爽又黄a免费视频| 国产午夜精品一二区理论片| 亚洲经典国产精华液单| 婷婷精品国产亚洲av| 久久99精品国语久久久| 中国国产av一级| 麻豆乱淫一区二区| 国产伦理片在线播放av一区 | av在线观看视频网站免费| 一个人免费在线观看电影| 嘟嘟电影网在线观看| 少妇高潮的动态图| 久久精品国产清高在天天线| 尤物成人国产欧美一区二区三区| 看片在线看免费视频| 夜夜看夜夜爽夜夜摸| 欧美bdsm另类| 岛国在线免费视频观看| 成年av动漫网址| 中文亚洲av片在线观看爽| 久久久久久久久久黄片| 日本欧美国产在线视频| 成人亚洲精品av一区二区| 久久精品国产亚洲av涩爱 | 插阴视频在线观看视频| 十八禁国产超污无遮挡网站| 国产成人精品久久久久久| 哪里可以看免费的av片| 热99re8久久精品国产| 国产亚洲精品av在线| 少妇人妻一区二区三区视频| 狠狠狠狠99中文字幕| 91精品国产九色| 欧美激情国产日韩精品一区| 亚洲欧美成人综合另类久久久 | 久久精品影院6| 乱系列少妇在线播放| 欧美日本视频| 国产精品av视频在线免费观看| 在线观看午夜福利视频| 尤物成人国产欧美一区二区三区| 亚洲在久久综合| 欧美一区二区精品小视频在线| 日日撸夜夜添| 国产真实乱freesex| 久久久欧美国产精品| 精华霜和精华液先用哪个| 黑人高潮一二区| 能在线免费看毛片的网站| 高清在线视频一区二区三区 | 校园春色视频在线观看| 亚洲色图av天堂| 日日撸夜夜添| 国产成人影院久久av| 亚洲人成网站高清观看| 午夜福利在线观看免费完整高清在 | 精品国产三级普通话版| 久久久久九九精品影院| 午夜精品国产一区二区电影 | 国产单亲对白刺激| 欧美潮喷喷水| 国产乱人视频| 激情 狠狠 欧美| 欧美丝袜亚洲另类| 久久久欧美国产精品| 边亲边吃奶的免费视频| 丰满人妻一区二区三区视频av| 亚洲aⅴ乱码一区二区在线播放| 国产成人a区在线观看| 欧美+亚洲+日韩+国产| 91在线精品国自产拍蜜月| 麻豆精品久久久久久蜜桃| 人人妻人人看人人澡| 久久99精品国语久久久| 深爱激情五月婷婷| 亚洲第一电影网av| 日韩av不卡免费在线播放| 精品免费久久久久久久清纯| av在线老鸭窝| 久久精品91蜜桃| 久久人人爽人人爽人人片va| 免费在线观看成人毛片| 变态另类成人亚洲欧美熟女| 男女边吃奶边做爰视频| 久久精品国产99精品国产亚洲性色| 熟女电影av网| 国产成年人精品一区二区| 国产亚洲av嫩草精品影院| 内地一区二区视频在线| 婷婷亚洲欧美| 亚洲18禁久久av| 精品一区二区三区视频在线| 国产成人精品一,二区 | 日韩高清综合在线| 国产在线男女| 亚洲欧洲国产日韩| 亚洲高清免费不卡视频| 丝袜喷水一区| 91久久精品电影网| 亚洲av第一区精品v没综合| 日本三级黄在线观看| 亚洲精品自拍成人| 女人十人毛片免费观看3o分钟| 国产又黄又爽又无遮挡在线| 免费看a级黄色片| videossex国产| 别揉我奶头 嗯啊视频| 中文字幕av成人在线电影| 日本av手机在线免费观看| 婷婷色av中文字幕| 亚洲国产高清在线一区二区三| 欧美一区二区亚洲| 高清毛片免费看| 我的老师免费观看完整版| 欧美一区二区亚洲| 亚洲av成人精品一区久久| 日本色播在线视频| 国产老妇伦熟女老妇高清| 岛国毛片在线播放| 我的女老师完整版在线观看| 久久久久性生活片| 成人永久免费在线观看视频| 亚洲成人精品中文字幕电影| 69av精品久久久久久| 欧美变态另类bdsm刘玥| 九九久久精品国产亚洲av麻豆| 少妇人妻精品综合一区二区 | 婷婷亚洲欧美| 久久久久久久久久黄片| 成年免费大片在线观看| 99视频精品全部免费 在线| 淫秽高清视频在线观看| 日本三级黄在线观看| 午夜福利高清视频| 久久韩国三级中文字幕| 久久久精品大字幕| 99国产极品粉嫩在线观看| 一级二级三级毛片免费看| 天堂网av新在线| avwww免费| 精品无人区乱码1区二区| a级一级毛片免费在线观看| 国产午夜精品久久久久久一区二区三区| 最近2019中文字幕mv第一页| 欧美高清成人免费视频www| 黄色配什么色好看| 97在线视频观看| 午夜福利成人在线免费观看| 在线观看av片永久免费下载| а√天堂www在线а√下载| 成人美女网站在线观看视频| 亚洲欧美日韩无卡精品| 免费观看的影片在线观看| 欧美+日韩+精品| 色哟哟·www| 国产亚洲av片在线观看秒播厂 | 中文字幕熟女人妻在线| 亚洲国产精品国产精品| 亚洲av中文av极速乱| 国产精华一区二区三区| 黄色一级大片看看| 乱人视频在线观看| 大又大粗又爽又黄少妇毛片口| 五月伊人婷婷丁香| 成人性生交大片免费视频hd| 三级经典国产精品| 久久精品影院6| 久久久国产成人精品二区| 国产熟女欧美一区二区| 免费看美女性在线毛片视频| 国产精品野战在线观看| 97超视频在线观看视频| 中文字幕制服av| 日本与韩国留学比较| 好男人在线观看高清免费视频| 国产精品人妻久久久久久| 亚洲欧洲国产日韩| 韩国av在线不卡| 国产精品一区二区性色av| 夜夜爽天天搞| 久久鲁丝午夜福利片| a级毛片a级免费在线| av在线老鸭窝| 久久久久久伊人网av| 成人亚洲精品av一区二区| 国产亚洲5aaaaa淫片| 国产美女午夜福利| 亚洲国产高清在线一区二区三| 亚洲欧美日韩卡通动漫| 青春草视频在线免费观看| avwww免费| 日韩 亚洲 欧美在线| 免费无遮挡裸体视频| 久久人人爽人人爽人人片va| 亚洲av电影不卡..在线观看| 国产一区二区三区av在线 | 国产精品99久久久久久久久| 亚洲av.av天堂| 精品久久久久久成人av| 免费观看a级毛片全部| 麻豆av噜噜一区二区三区| 午夜福利在线在线| 美女 人体艺术 gogo| 一进一出抽搐gif免费好疼| 亚洲欧美清纯卡通| kizo精华| 久久99热这里只有精品18| 国产v大片淫在线免费观看| 中文字幕av成人在线电影| 亚洲最大成人手机在线| 国产白丝娇喘喷水9色精品| 青春草亚洲视频在线观看| 亚洲av中文字字幕乱码综合| 亚洲av成人av| 精品久久久久久成人av| 国产女主播在线喷水免费视频网站 | 97热精品久久久久久| 国产成人午夜福利电影在线观看| 99热只有精品国产| 人妻久久中文字幕网| 免费看a级黄色片| 免费在线观看成人毛片| 不卡一级毛片| 日日摸夜夜添夜夜爱| 国产伦在线观看视频一区| 亚洲国产欧美在线一区| 国内久久婷婷六月综合欲色啪| 91aial.com中文字幕在线观看| 麻豆国产av国片精品| 国产亚洲精品久久久久久毛片| 亚洲aⅴ乱码一区二区在线播放| 91狼人影院| 综合色av麻豆| 一级毛片aaaaaa免费看小| 日韩欧美三级三区| 精品久久久久久久久久久久久| 在线观看一区二区三区| 国产精品一二三区在线看| 日韩一本色道免费dvd| 久久久国产成人免费| 国产午夜福利久久久久久| 一级毛片我不卡| 国产精品一区二区在线观看99 | 欧美3d第一页| 只有这里有精品99| 非洲黑人性xxxx精品又粗又长| 一区二区三区高清视频在线| 国产成人影院久久av| 免费无遮挡裸体视频| 久久6这里有精品| 一个人看视频在线观看www免费| 中国国产av一级| 欧美高清成人免费视频www| 久久久久久久午夜电影| 可以在线观看毛片的网站| АⅤ资源中文在线天堂| 久久久精品大字幕| 亚洲av.av天堂| 午夜久久久久精精品| 久久久久久久久大av| 最近最新中文字幕大全电影3| 国产精品免费一区二区三区在线| 亚洲天堂国产精品一区在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品久久久久久久久av| 又黄又爽又刺激的免费视频.| 亚洲18禁久久av| 欧美潮喷喷水| 综合色av麻豆| 欧美+日韩+精品| av在线播放精品| 亚洲色图av天堂| 男女视频在线观看网站免费| 欧美激情久久久久久爽电影| 一个人免费在线观看电影| 欧美+日韩+精品| 女人十人毛片免费观看3o分钟| av福利片在线观看| 男人的好看免费观看在线视频| 日本-黄色视频高清免费观看| 亚洲欧美中文字幕日韩二区| 永久网站在线| 成人av在线播放网站| 国产免费一级a男人的天堂| 国产老妇伦熟女老妇高清| 人妻夜夜爽99麻豆av| 国产亚洲精品av在线| 中文字幕熟女人妻在线| 麻豆成人av视频| 99国产精品一区二区蜜桃av| 变态另类成人亚洲欧美熟女| 国产亚洲精品久久久com| 国产精品综合久久久久久久免费| 可以在线观看的亚洲视频| 国产极品天堂在线|