• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    堿土金屬對ZrO2-Al2O3及其負載Pd-Rh密偶催化劑的影響

    2011-11-30 10:50:32何勝楠崔亞娟姚艷玲方瑞梅史忠華龔茂初陳耀強
    物理化學學報 2011年5期
    關鍵詞:教育部學報催化劑

    何勝楠 崔亞娟 姚艷玲 方瑞梅 史忠華 龔茂初 陳耀強

    (四川大學化學學院,綠色化學與技術教育部重點實驗室,成都610064)

    堿土金屬對ZrO2-Al2O3及其負載Pd-Rh密偶催化劑的影響

    何勝楠 崔亞娟 姚艷玲 方瑞梅 史忠華*龔茂初 陳耀強*

    (四川大學化學學院,綠色化學與技術教育部重點實驗室,成都610064)

    采用膠溶法制備了一系列堿土金屬改性的ZrO2-Al2O3,并以其為載體采用等體積浸漬法制備了Pd-Rh密偶催化劑.采用低溫N2吸附-脫附、X射線衍射(XRD)、氨氣程序升溫脫附(NH3-TPD)對載體樣品進行了表征.結果表明,堿土金屬的添加增大了ZrO2-Al2O3的比表面積,Sr-Zr-Al樣品經1000°C焙燒5 h后具有最大的比表面積,為164 m2·g-1.對催化劑進行了H2程序升溫還原(H2-TPR)、X射線光電子能譜(XPS)和活性表征,考察了催化劑對C3H8的轉化活性.測試結果表明,添加堿土金屬能有效提高催化劑上丙烷的轉化活性.

    堿土金屬;ZrO2-Al2O3;Pd-Rh;密偶催化劑;丙烷

    1 Introduction

    Automobile exhaust gas is one of the major sources of atmosphere pollution.Since 1970s,the automobile exhaust catalysts have been widely used to purify exhaust gas.1,2Currently catalysts that meet more stringent emission standards generally consist of two parts:three-way catalysts(TWCs)and closecoupled catalysts(CCCs).The CCC is mainly to remove the hydrocarbons(HCs)during the cold start,because the majority (more than 80%)of the HCs is released during the cold start.3Moreover as the CCC is close to the engine,the catalyst support and active washcoat should be kept stable at high temperature when the engine works at high speed.

    Researchers have tried many methods to improve catalytic activity,such as improving noble metal dispersion with high surface area supports,improving thermal stability of supports and so on.4As well known,Al2O3is widely used as catalyst support.Due to long time exposed to high temperature(sometimes even above 1000°C)exhaust gas and the high humidity atmosphere,Al2O3would gradually sinter and translate from γ-phase to α-phase and the surface area and thermal stability are all decreased.In order to stabilize Al2O3,some stabilizers need to be added.Researches showed that introducing alkali metals,alkaline earth metals,and rare earth elements can increase the thermal stability and surface area of alumina.5-9The alkaline earth metals which can stabilize Al2O3are Ba2+,Sr2+,and Ca2+.10Ba2+is the best.In addition,zirconia can stabilize alumina as well. Horiuchi et al.11have reported that the surface area of zirconia stabilized alumina,calcined at 1200°C,kept at 50 m2·g-1.However,using the alkaline earth metals and zirconia co-stabilized Al2O3as support for automotive exhaust catalyst in CCC has not been reported.

    In this study,M-Zr-stabilized(M=Mg,Ca,Sr,Ba)Al2O3were prepared by peptizing method,and used as support to prepare Pd-Rh close-coupled catalysts.The influence of alkaline earth metals on textural properties of ZrO2-Al2O3was studied and catalytic activities of Pd-Rh close-coupled catalysts on C3H8conversion were investigated.

    2 Experimental

    2.1 Modified alumina preparation

    A series of alumina stabilized by alkaline earth metals and zirconia(AR)were prepared by peptizing method,12using boehmite as precursor and nitric acid as peptizer.The mass fraction(w)of alkaline earth metal was 4%and that of zirconia was 6%.The products were dried at 105°C overnight and calcined at 600°C for 3 h in muffle furnace.In order to compare their thermal stabilities,the samples were calcined at 1000°C for 5 h.The products are referred as Zr-Al,Mg-Zr-Al,Ca-Zr-Al,Sr-Zr-Al,and Ba-Zr-Al.

    2.2 Catalyst preparation

    Catalysts were prepared by the impregnation method.13Different supports calcined at 1000°C were impregnated with the desired amounts of Pd(NO3)2and Rh(NO3)3aqueous solutions. And then some deionized water was added to the catalyst powders which were prepared above,the mixture was ground to form slurry.The resulting slurry was spread to a honeycomb cordierite(2.5 cm3,Corning,China),and then excessive slurry was blown away with compression air.Fresh catalysts were obtained by calcining at 550°C for 3 h in muffle furnace,and the aged catalysts were obtained by calcining at 1000°C for 5 h. The catalysts were denoted respectively as Pd-Rh/Zr-Al,Pd-Rh/ Mg-Zr-Al,Pd-Rh/Ca-Zr-Al,Pd-Rh/Sr-Zr-Al,and Pd-Rh/Ba-Zr-Al.The precious metal content was 2 g·L-1(nPd:nRh=19:1).

    2.3 Characterization of supports and catalysts

    2.3.1 Support characterization

    The BET specific surface area and pore volume measurement were performed on a ZXF-5 automatic surface analyzer (Xibei Chemical Institute,China).The BET specific surface areas and pore volumes of samples were determined by using a N2adsorption technique at liquid nitrogen temperature.In order to desorb surface impurities,samples were degassed at 350°C for 1 h before the measurement.

    The crystal structures of the samples were determined by a powder X-ray diffraction(XRD)(Rigaku International Corp., Japan)on a D/MaX-rA rotary diffractometer using Cu Kαradiation(λ=0.154 nm)and operated at 40 kV and 25 mA.The XRD data were tested for 2θ values between 10°and 90°with a rate of 0.03(°)·s-1.The crystalline phases were compared with the reference data from the International Center for Diffraction Data(ICDD).The particle size calculations were performed using peak-broadening analysis.

    The NH3-TPD experiments were performed for supports. The sample(80 mg)was pretreated in a flow of Ar(30 mL· min-1)atatemperaturerangingfromroomtemperatureto400°C and was maintained at 400°C for 60 min.Then samples adsorbed NH3at the flow of 20 mL·min-1for 60 min after they were cooled to room temperature.Excessive NH3was blown off in Ar(30 mL·min-1).At last the temperature of the sample was increased to 500°C at the rate of 8°C·min-1,NH3was measured by a thermal conductivity detector(TCD).

    2.3.2 Catalyst characterization

    The CCC catalytic activity was evaluated in a multiple fixed-bed continuum flow micro-reactor by passing a gas mixture from a gasoline engine,which was similar to that of an exhaust from a gasoline engine.Before entering a blender,the gases were regulated using mass-flow controllers.The simulated exhaust contained a mixture of O2(adjustable),CO(0.86%), C3H8(0.06%),NO(0.12%),CO2(12%),H2O(10%),and N2(remaining).The gas space velocity was 34000 h-1.The concentration of C3H8was analyzed by a five-component analyzer (FGA-4100,Foshan)before and after the stimulated gas passed themicro-reactor.

    The H2-TPR tests were performed for catalysts and detected by TCD-GC(gas chromatography).Each catalyst(100 mg) was put into a U-type quartz reaction tube and covered with quartz sand.After being preheated in N2atmosphere at 400°C for 60 min,it was cooled to room temperature,and then subjected to a flow of mixed gases of 5%H2-95%N2at the rate of 30 mL·min-1.The temperature of the sample was increased to 600°C at the rate of 8°C·min-1.

    The X-ray photoelectron spectroscopy(XPS)experiments were carried out on a spectrometer(XSAM-800,KRATOS Co) with Mg Kαradiation under ultra-high vacuum condition.All samples were pretreated in a stream of 5%H2-95%N2at 400°C for 60 min,and cooled to room temperature.The binding energy was determined by reference to the C 1s binding energy of 284.8 eV.

    3 Results and discussion

    3.1 Textural properties of supports

    The textural properties of alkaline earth modified zirconiaalumina after being calcined at 1000°C for 5 h are shown in

    Table 1.It can be seen from Table 1 that the addition of alkaline earth metals increases the surface area of alumina samples. The surface area can even reach 164 m2·g-1when Sr is added. The surface area of Ba-Zr-Al is almost the same as that of Sr-Zr-Al,only the pore volume is a little smaller,0.45 cm3·g-1. It is to say that the addition of alkaline earth metal plays an important role in stabilizing alumina,especially Sr and Ba.The ionic radii of the alkaline earth metals increase in turn from Mg to Ba(0.065,0.099,0.113,and 0.135 nm,respectively).In a certain amount range,the introduction of doped ions in alumina can prevent the migration of O2-ions and Al3+ions thus stabilize alumina at high temperature.And the larger the ionic radius is,the better the stability effect is.So the surface areas of the samples from Mg to Ba increase in turn.However,introducing alkaline earth metals into Zr-Al has little influence on their pore volumes.

    3.2 XRD analysis

    The powder XRD patterns of the alumina samples are shown in Fig.1.The 2θ angles of 37.5°,45.5°,and 67.2°display the diffraction peaks of γ-Al2O3.The 2θ angles of 25.5°, 43.4°,and 57.5°show the diffraction peaks of α-Al2O3.And the diffraction peaks of ZrO2appear in the 2θ angles of 30.2°, 35.2°,50.3°,60.2°,and 81.8°.Zr-Al samples mainly displayγ-Al2O3and small amount of α-Al2O3and ZrO2.It demonstrates that the Al2O3and ZrO2did not fully form to solid solution,but separate into two phases.ZrO2plays a role in stabilizing Al2O3, which is mainly due to the fact that ZrO2grains disperse in the surface of Al2O3grains,and they prevent particle agglomeration rather than forming solid solution to stabilize the alumina.11After the introduction of alkaline earth metals,none of the diffraction peaks is observed in the XRD patterns of all samples.And this is mainly owe to two reasons,one is that alkaline earth metal oxide grains are too small and scatter better, and can not show a diffraction peak.The other is that the alkaline earth metal ions enter into the alumina grains or the zirconia grains to form alumina or zirconia solid solution.No matter what form they consist,these two factors can all stabilize alumina.They can prevent particle agglomeration sintering and the migration of Al3+ions.So the alumina with a high surface area and pore volume can be maintained at high temperature with the addition of them.It is consistent with the BET results.

    Table 1 Textural properties of alkaline earth metal modified zirconia-alumina after calcination at 1000°C for 5 h

    Fig.1 X-ray diffraction patterns of alkaline earth metal modified zirconia-alumina after calcination at 1000°C for 5 h

    Fig.2 shows the X-ray diffraction patterns of alkaline earth metal modified zirconia-alumina after calcination at 1000°C for 5 h.As shown in Fig.2(a),the peak at 2θ angle of 30.2°is the diffraction peak of zirconia(111).The diffraction peak intensity decreases and peak width increases after the introduction of the alkaline earth metal,but there is no obvious shift.Results indicate that ZrO2grains become smaller with the addition of alkaline earth metals,and the alkaline earth metal ions do not enter into the lattice of zirconia.

    Fig.2 Powder X-ray diffraction patterns of alkaline earth metal modified zirconia-alumina after calcination at 1000°C for 5 h 2θ:(a)25°-35°,(b)60°-70°

    As seen from Fig.2(b),the peak at the 2θ angle of 67.2°is the diffraction peak of γ-Al2O3(440).And the peak shows an apparent shift to small angle when the alkaline earth metal is introduced.Especially,the γ-Al2O3diffraction peak of Mg-Zr-Al offset relatively larger,the 2θ angle deviates nearly 0.5°;besides,the other three samples also have a different degree of deviation.It indicates that the alkaline earth metal ions have entered the lattice of alumina and changed lattice parameters.The ion radii of alkaline earth metals are larger than that of aluminum,as a result,the lattice of alumina will be expand,and the peak moves forward to smaller diffraction angle.The ion radius of Mg and Al is similar to each other.It is easy to form solid solution.So the Mg-Zr-Al has the maximum diffraction angle deviation.

    3.3 NH3-TPD analysis

    Fig.3 shows the NH3-TPD of the alumina samples caclined at 1000°C for 5 h.The desorption peak of the Zr-Al samples not only has the most wide temperature range from 130 to 450°C,but also has the largest peak area.When alkaline earth metal is introduced,both the peak temperature and the peak area all decrease from Mg to Ba,and their highest peak temperatures are 180,175,149,and 147°C,respectively. Looking at the peak from another view,the desorption peak is asymmetric.It indicates that the desorption peak is formed by two overlapping peaks,while both the Sr-Zr-Al and Ba-Zr-Al show two separate peaks.All of these indicate that the surface of alumina samples have two acidic sites.One is a weak acid place;another is a middle strong acid site.

    Alkaline earth metal oxides are basic compounds,and the alkaline increases gradually with the atomic number increasing.In addition,the surface acid sites of alumina are mainly determined by the number of hydroxyl groups on the surface of aluminum and the aluminum atoms,the more hydroxyl groups and aluminum atoms,the more H+and empty electron orbital. Besides,the surface acidity of alumina will be enhanced with the acidic oxide ZrO2accession.The addition of alkaline earth metal oxides will first neutralize some strong and middle strong acid sites on the surface,and then neutralize the weak acid sites,resulting in a decline in the surface acidity.What is more,with the atomic number of alkaline additive enhancing the middle strong acid sites of alumina decrease,and the weak acid peak shifts to low temperature range.

    3.4 Catalytic performance

    The close-coupled catalytic performances for the C3H8oxidation are shown in Fig.4 and Fig.5.The catalytic properties of the C3H8conversion temperature are presented in Table 2.The order of the fresh catalytic activity is Pd-Rh/Ba-Zr-Al> Pd-Rh/Sr-Zr-Al>Pd-Rh/Ca-Zr-Al>Pd-Rh/Mg-Zr-Al>Pd-Rh/Zr-Al.It indicates that the catalytic activity will increase with the addition of alkaline earth metal.Obviously,the complete conversion temperature(T90)of catalysts with alkaline earth element is nearly 20°C lower than that of the Pd-Rh/Zr-Al catalyst.And the corresponding light-off temperature(T50)and T90of the Pd-Rh/M-Zr-Al catalysts were around 275 and 313°C, respectively;the ΔT(ΔT=T90-T50)is nearly 35°C.The activity increases rapidly with the temperature increasing and it can quickly reach conversion of the C3H8.That is,the Pd-Rh/MZr-Al catalysts have excellent temperature characteristics.It can also conclude from Fig.5 that the Pd-Rh/M-Zr-Al catalysts have better activity than the Pd-Rh/Zr-Al catalyst after they are all aged.Unfortunately,the temperature characteristics of aged catalysts declined a little with respect to the fresh catalysts. The catalysts were prepared with the same conditions except for the use of different supports.It is obviously that the supports led to the difference in activity.

    Fig.4 Conversion of C3H8on fresh catalysts

    Fig.5 Conversion of C3H8on aged catalysts

    Fig.3 NH3-temperature programmed desorption profiles of alkaline earth metal modified zirconia-alumina after calcination at 1000°C for 5 h

    Table 2 T50and T90for the conversion of C3H8on different catalysts

    The catalysts with the addition of alkaline earth metal have higher activity and thermal stability than the Pd-Rh/Zr-Al catalyst.The reasons are as follows:(1)the textural property plays an important role in the performance of catalyst,and the large surface area and pore volume are in favor for the better dispersion of noble metal,in addition,they are also in favor for mass and heat transfer.According to the textural property results,the Zr-Al with the alkaline earth metal has larger surface area,pore volume and better thermal stability than pure Zr-Al support after calcination at 1000°C.(2)The alkaline earth metal changes the support surface acid centers,resulting in a decline in the surface acidity and an increase in the basicity,thus, affecting the distribution of Pd,Rh active component.And the TPR results in the following text show that the introduction of alkaline earth metal increases the distribution of Pd,Rh,so that the number of catalyst active sites and catalytic activity increase.

    Although the support alumina is calcined at the high temperature of 1000°C,the catalytic activity declined a little after being aged at 1000°C.Aging progress leaded to accumulating and sintering of precious metal.The introduction of Rh is easy to generate RhAlO3.14,15These results would give rise to the decline of the dispersion of precious metals.Therefore,the effective area of active component contacting with reactant molecules is reduced.As a result,the activity declines.

    3.5 H2-TPR analysis

    The reducibility of support Pd-Rh catalyst plays an important role in its catalytic property.It is generally acknowledged that the reduction temperature of precious metals is lower and the reduction peak area is larger(peak area corresponding to the adsorbed hydrogen consumption;and when the peak area is larger,the adsorbed hydrogen is more),thus the catalysts have better activity for catalytic reaction.13

    Fig.6 TPR profiles of the catalysts calcined at 550°C(a)Pd-Rh/Zr-Al,(b)Pd-Rh/Mg-Zr-Al,(c)Pd-Rh/Ca-Zr-Al,(d)Pd-Rh/Sr-Zr-Al, (e)Pd-Rh/Ba-Zr-Al

    For α peak of catalysts,it is commonly attributed to reduction of PdO due to the interaction of Pd and ZrO2.16,17It can be seen from Fig.6 that the addition of alkaline earth metals makes the α peak shift to lower temperature,indicating that the addition of alkaline earths increases the reducibility of PdO species,and the peak area is larger than that in Pd-Rh/Zr-Al catalyst,that is,the amount of active component distribution in Pd-Rh/M-Zr-Al catalyst is larger than that of Pd-Rh/Zr-Al catalyst.So the Pd-Rh/M-Zr-Al catalyst has better catalytic activity than Pd-Rh/Zr-Al catalyst.In addition,the peak temperature decreases and peak area increases all from Mg to Ba in turn, that is,the order of Pd-Rh/M-Zr-Al catalytic activity is Pd-Rh/ Ba-Zr-Al>Pd-Rh/Sr-Zr-Al>Pd-Rh/Ca-Zr-Al>Pd-Rh/Mg-Zr-Al. For the β peak,the reduction temperature of Rh of all the catalysts is almost at the same temperature of 301°C.But the peak area increases with the addition of alkaline earths.

    On the basis of the above results,the reduction temperature and peak area of the precious species in the catalysts decreases in the following order:Pd-Rh/Ba-Zr-Al>Pd-Rh/Sr-Zr-Al>Pd-Rh/Ca-Zr-Al>Pd-Rh/Mg-Zr-Al>Pd-Rh/Zr-Al.This order is also in accordance with that of their catalytic activity.

    3.6 XPS analysis

    In order to investigate the changes in the chemical states of Pd ions and Rh ions,the fresh catalysts were studied by XPS.

    Fig.7 presents the Pd 3d photoelectron peaks of the catalysts. No Rh peaks are detected on the catalyst surface due to its low content.

    We got the values of Pd 3d5/2level in an attempt to identify the chemical state of Pd.By comparing to the reference18where the Pd 3d binding energies have been measured both for metallic Pd,PdO,PdO2,and PdxO(x>1),the binding energy is about 336.2 eV for the impregnation catalyst.19It can be seen from Fig.7 that,on one hand,the Pd has different binding energies in different catalysts.That is,Pd has different oxidation states.The Pd 3d5/2has the highest oxidation state in Pd-Rh/ Zr-Al catalyst among all the catalysts,its Pd 3d5/2is 336.60 eV which is assigned to PdO(336.6 eV).20The Pd 3d5/2of the remaining four catalysts are 336.39,336.40,336.35,and 336.30 eV,which are between Pd0(335.0 eV)21and PdO(336.6 eV) and are more near to PdO.It indicates that the Pd is at lower oxidation states in those catalysts which include alkaline earth metal.As we all know,the lower the Pd binding energy,the higher the catalytic properties,22so the activity of the Pd-Rh catalyst with alkaline earth metal is higher than that of Pd-Rh/ Zr-Al catalyst.This is also consistent with catalytic activity test results.On the other hand,there is a decrease in the Pd 3d intensity of Pd-Rh/Zr-Al catalyst in comparison to the other four catalysts.It may be accounted for the possible PdO diffusion to the washcoat,sintering of Pd particles,and the structural changes inAl2O3support.

    Fig.7 XPS profiles of Pd 3d of the catalysts calcined at 550°C (a)Pd-Rh/Zr-Al,(b)Pd-Rh/Mg-Zr-Al,(c)Pd-Rh/Ca-Zr-Al,(d)Pd-Rh/Sr-Zr-Al, (e)Pd-Rh/Ba-Zr-Al

    4 Conclusions

    Addition of alkaline earth metal plays an important role in stabilizing ZrO2-Al2O3.The surface area of support containing Sr or Ba reaches 160 m2·g-1after being calcined at 1000°C. XRD results indicate that the alkaline earth metal ions have entered into the lattice of alumina.They prevent the migration and diffusion of O2-ions and Al3+ions,so the γ phase of alumina is maintained.In addition,the Pd-Rh close-coupled catalysts doping with alkaline earth metal have better catalytic activity than the catalyst prepared with ZrO2-Al2O3as a support.

    (1) Heck,R.M.;Farrauto,R.J.Appl.Catal.2001,221,443.

    (2) Ka?par,J.;Fornasiero,P.;Hickey,N.Catal.Today 2003,77, 419.

    (3) Farrauto,R.J.;Heck,R.M.Catal.Today 2000,55,179.

    (4) Shinjoh,H.;Hatanaka,M.;Nagai,Y.;Tanabe,T.;Takahashi,N.; Yoshida,T.;Miyake,Y.Top.Catal.2009,52,1967.

    (5) Wilcox,L.;Burnside,G.;Kiranga,B.;Shekhawat,R.; Mazumder,M.K.;Hawk,R.M.;Lindquist,D.A.Chem.Mater. 2003,15,51.

    (6)Wu,X.D.;Yang,B.;Weng,D.J.Alloy.Compd.2004,376,241.

    (7)Yue,B.H.;Zhou,R.X.;Zheng,X.M.Chin.J.Inorg.Chem. 2007,23,533.[岳寶華,周仁賢,鄭小明.無機化學學報, 2007,23,533.]

    (8) Liotta,L.F.;Macaluso,A.;Arena,G.E.;Livi,M.;Centi,G.; Deganello,G.Catal.Today 2002,75,439.

    (9) Gong,M.C.;Wen,M.;Zhang,J.;Lin,Z.E.;Yang,Y.H.;Chen, Y.Q.Chin.J.Inorg.Chem.2001,17,50.[龔茂初,文 梅,章 潔,林之恩,羊彥衡,陳耀強.無機化學學報,2001,17, 50.]

    (10) Church,J.S.;Cant,N.W.;Trimm,D.L.Appl.Catal.1993,101, 105.

    (11) Horiuchi,T.;Teshima,Y.;Osaki,T.;Sugiyama,T.;Suzuki,K.; Mori,T.Catal.Lett.1999,62,107.

    (12) Zhang,L.J.;Dong,W.P.;Guo,J.X.;Yuan,S.H.;Zhang,L.; Gong,M.C.;Chen,Y.Q.Acta Phys.-Chim.Sin.2007,23, 1738.[張麗娟,董文萍,郭家秀,袁書華,張 磊,龔茂初,陳耀強.物理化學學報,2007,23,1738.]

    (13)Guo,J.X.;Gong,M.C.;Yuan,S.H.;Chen,Y.Q.J.Rare Earths 2006,24,554.[郭家秀,龔茂初,袁書華,陳耀強.稀土學報,2006,24,554.]

    (14) Lassi,U.;Polvinen,R.;Suhonen,S.;Kallinen,K.;Savim?ki,A.; H?rk?nen,M.;Valden,M.;Keiski,R.L.Appl.Catal.2004,263, 241.

    (15) Zimowska,M.;Wagner,J.B.;Dziedzic,J.;Camra,J.; Borzecka-Prokop,B.;Najbar,M.Chem.Phys.Lett.2006,417, 137.

    (16)Asakura,K.;Iwasawa,Y.J.Phys.Chem.1992,96,73.

    (17) Narui,K.;Furuta,K.;Yata,H.;Nishida,A.;Kohtoku,Y.; Matsuzaki,T.Catal.Today 1998,45,173.

    (18) Qin,D.;Lapszewicz,J.;Jiang,X.J.Catal.1996,159,140.

    (19)Huang,W.;Zuo,Z.J.;Han,P.D.;Li,Z.H.;Zhao,T.D. J.Electr.Spectrosco.Relat.Phenom.2009,173,88.

    (20) Benkhaled,M.;Morin,S.;Pichon,C.;Thomazeau,C.;Verdon, C.;Uzio,D.Appl.Catal.2006,312,1.

    (21) Fujimoto,K.I.;Ribeiro,F.H.;Avalos-Borja,M.;Iglesia,E. J.Catal.1998,179,431.

    (22) Li,X.;Meng,M.;Liu,Y.;Luo,J.Y.Chin.J.Catal.2007,28, 835.[李 想,孟 明,劉 詠,羅金勇.催化學報,2007,28, 835.]

    January 10,2011;Revised:March 10,2011;Published on Web:March 30,2011.

    Effects of Alkaline Earth Metal on Performance of ZrO2-Al2O3Support and Pd-Rh Close-Coupled Catalyst

    HE Sheng-Nan CUI Ya-Juan YAO Yan-Ling FANG Rui-Mei SHI Zhong-Hua*GONG Mao-Chu CHEN Yao-Qiang*
    (Key Laboratory of Green Chemistry&Technology of the Ministry of Education,College of Chemistry,Sichuan University, Chengdu 610064,P.R.China)

    A series of alumina supports stabilized by alkaline earth metals and zirconia were prepared by the peptizing method.Pd-Rh close-coupled catalysts supported on modified alumina were prepared by the impregnation method.The supports were characterized by low temperature nitrogen adsorption-desorption method,X-ray diffraction(XRD),and NH3-temperature programmed desorption(NH3-TPD).For the catalysts,H2-temperature programmed reduction(H2-TPR)and X-ray photoelectron spectroscopy(XPS) were carried out.We also carried out catalytic activity tests for C3H8conversion.Results show that the addition of alkaline earth metals increases the surface area of the supports and the surface area of Sr-Zr-Al reaches 164 m2·g-1after calcination at 1000°C for 5 h.The introduction of alkaline earth metals into the ZrO2-Al2O3supports also improves their catalytic activity toward propane oxidation and the activities of the Pd-Rh catalysts containing alkaline earth metals are higher than that of the catalyst prepared with a ZrO2-Al2O3support.

    Alkaline earth metal;ZrO2-Al2O3;Pd-Rh;Close-coupled catalyst;Propane

    O643

    *Corresponding authors.CHEN Yao-Qiang,Email:nic7501@scu.edu.cn;Tel/Fax:+86-28-85418451.SHI Zhong-Hua,Email:shizh96@scu.edu.cn. The project was supported by the National Natural Science Foundation of China(20773090,20803049)and Specialized Research Fund for the

    Doctoral Program of Higher Education,China(20070610026).

    國家自然科學基金(20773090,20803049)和教育部博士點新教師基金(20070610026)資助項目

    猜你喜歡
    教育部學報催化劑
    致敬學報40年
    直接轉化CO2和H2為甲醇的新催化劑
    教育部召開座談會推進一流大學和一流學科建設
    新課程研究(2016年1期)2016-12-01 05:52:14
    新型釩基催化劑催化降解氣相二噁英
    掌握情欲催化劑
    Coco薇(2016年2期)2016-03-22 02:45:06
    V2O5-WO3/TiO2脫硝催化劑回收研究進展
    教育部:高考地方性加分項目2018年減至35個
    學報簡介
    學報簡介
    我校兩教育部重大課題攻關項目開題
    亚洲av综合色区一区| 亚洲伊人久久精品综合| 亚洲成色77777| 亚洲国产毛片av蜜桃av| 干丝袜人妻中文字幕| 欧美日韩国产mv在线观看视频 | 免费av中文字幕在线| 亚洲经典国产精华液单| 国产伦理片在线播放av一区| 在线观看一区二区三区激情| 久热久热在线精品观看| 国产精品熟女久久久久浪| 成人影院久久| 久久久久视频综合| 欧美精品一区二区免费开放| 欧美最新免费一区二区三区| 久久鲁丝午夜福利片| 97超碰精品成人国产| 99热这里只有是精品50| 中国美白少妇内射xxxbb| 99久久精品一区二区三区| 蜜桃久久精品国产亚洲av| 亚洲欧美一区二区三区国产| 亚洲va在线va天堂va国产| 成人影院久久| 欧美另类一区| 中文精品一卡2卡3卡4更新| 国产一区二区三区av在线| 亚洲精品久久久久久婷婷小说| 亚洲一区二区三区欧美精品| 内射极品少妇av片p| 国产淫语在线视频| 亚洲成人一二三区av| 国产精品久久久久久av不卡| 国产综合精华液| 黄色怎么调成土黄色| 青春草亚洲视频在线观看| 色吧在线观看| 中国三级夫妇交换| 日韩av不卡免费在线播放| 精品熟女少妇av免费看| 夫妻性生交免费视频一级片| 成年av动漫网址| 久久精品国产鲁丝片午夜精品| 内地一区二区视频在线| 国产视频内射| 少妇 在线观看| 国产人妻一区二区三区在| 高清欧美精品videossex| 亚洲精品国产av成人精品| 亚洲欧美清纯卡通| 欧美日韩国产mv在线观看视频 | 黄色欧美视频在线观看| 80岁老熟妇乱子伦牲交| 亚洲国产毛片av蜜桃av| 尤物成人国产欧美一区二区三区| 如何舔出高潮| 晚上一个人看的免费电影| 熟妇人妻不卡中文字幕| 亚洲图色成人| 亚洲不卡免费看| 国产深夜福利视频在线观看| 狠狠精品人妻久久久久久综合| 干丝袜人妻中文字幕| 亚洲av综合色区一区| 国产视频内射| 国语对白做爰xxxⅹ性视频网站| 王馨瑶露胸无遮挡在线观看| 欧美成人一区二区免费高清观看| 91在线精品国自产拍蜜月| 国产视频首页在线观看| 久久人人爽人人爽人人片va| 久久久久久久久大av| 亚洲一级一片aⅴ在线观看| www.色视频.com| 免费观看a级毛片全部| 国产精品国产三级专区第一集| 中文天堂在线官网| 久久鲁丝午夜福利片| 中文资源天堂在线| 少妇的逼水好多| 内地一区二区视频在线| videos熟女内射| 国产成人精品一,二区| 亚洲第一av免费看| 老师上课跳d突然被开到最大视频| 免费看日本二区| 国产精品一二三区在线看| 中文精品一卡2卡3卡4更新| 日韩国内少妇激情av| 青春草视频在线免费观看| 精品亚洲成国产av| 国产深夜福利视频在线观看| 日日啪夜夜爽| 日韩视频在线欧美| 中国美白少妇内射xxxbb| 不卡视频在线观看欧美| 中文资源天堂在线| 亚洲性久久影院| 亚洲精华国产精华液的使用体验| 国产伦精品一区二区三区四那| 日韩视频在线欧美| 80岁老熟妇乱子伦牲交| 日日摸夜夜添夜夜添av毛片| 久久亚洲国产成人精品v| 伦精品一区二区三区| 亚洲久久久国产精品| 欧美日本视频| 亚洲av二区三区四区| 久久久亚洲精品成人影院| 国产黄频视频在线观看| 欧美bdsm另类| 日本vs欧美在线观看视频 | 欧美日韩一区二区视频在线观看视频在线| 成人亚洲欧美一区二区av| 九九在线视频观看精品| 国产有黄有色有爽视频| 九九在线视频观看精品| 久久热精品热| 欧美精品一区二区免费开放| 亚洲一级一片aⅴ在线观看| 成人影院久久| 亚洲精品久久午夜乱码| 91久久精品国产一区二区成人| 免费观看性生交大片5| 视频中文字幕在线观看| 亚洲婷婷狠狠爱综合网| 国产人妻一区二区三区在| 日本黄色片子视频| 超碰97精品在线观看| 男人狂女人下面高潮的视频| 91精品国产九色| 亚洲精品乱码久久久v下载方式| 亚洲精品中文字幕在线视频 | 97超视频在线观看视频| 丰满人妻一区二区三区视频av| 一本色道久久久久久精品综合| 有码 亚洲区| 国产高清有码在线观看视频| 免费观看无遮挡的男女| 日日摸夜夜添夜夜爱| 久久韩国三级中文字幕| 国产高清有码在线观看视频| 欧美zozozo另类| 最后的刺客免费高清国语| 日韩欧美精品免费久久| 国产精品一区www在线观看| 少妇 在线观看| a级毛色黄片| 亚洲av在线观看美女高潮| 一级爰片在线观看| 97超碰精品成人国产| www.av在线官网国产| 国产在线免费精品| 永久网站在线| 亚洲一区二区三区欧美精品| 国产 一区精品| 国产一区二区在线观看日韩| 国产成人精品婷婷| 国产精品三级大全| 亚洲av电影在线观看一区二区三区| 欧美zozozo另类| 亚洲欧美日韩卡通动漫| 久久久久久久精品精品| 丰满少妇做爰视频| 亚洲欧美一区二区三区国产| 免费黄网站久久成人精品| 久久国产精品男人的天堂亚洲 | 国产免费又黄又爽又色| 赤兔流量卡办理| 国产在线视频一区二区| 亚洲中文av在线| 人妻夜夜爽99麻豆av| 男人舔奶头视频| 黄片wwwwww| 国产精品人妻久久久影院| 亚洲欧美日韩卡通动漫| 亚洲四区av| 国产成人aa在线观看| 久久精品国产亚洲av天美| a级一级毛片免费在线观看| 色网站视频免费| av网站免费在线观看视频| 亚洲欧洲国产日韩| 精品一区二区免费观看| 日本猛色少妇xxxxx猛交久久| 美女xxoo啪啪120秒动态图| 插阴视频在线观看视频| 亚洲精品456在线播放app| 老熟女久久久| 久久av网站| 男女免费视频国产| 最新中文字幕久久久久| av免费在线看不卡| 免费大片18禁| videossex国产| 狂野欧美白嫩少妇大欣赏| 国产深夜福利视频在线观看| 精品一区二区三卡| 不卡视频在线观看欧美| 两个人的视频大全免费| 亚洲国产精品专区欧美| 我要看日韩黄色一级片| 久久国产亚洲av麻豆专区| 亚洲国产精品成人久久小说| 欧美高清性xxxxhd video| av在线老鸭窝| 十八禁网站网址无遮挡 | 夫妻性生交免费视频一级片| 国产女主播在线喷水免费视频网站| 在线观看一区二区三区| 亚洲国产欧美在线一区| 国产精品女同一区二区软件| 亚洲欧美清纯卡通| 亚洲成人一二三区av| h视频一区二区三区| 国产在线免费精品| 国产黄色免费在线视频| 七月丁香在线播放| 91在线精品国自产拍蜜月| 高清欧美精品videossex| 一级av片app| 国产成人精品一,二区| 日本黄色日本黄色录像| 国产爱豆传媒在线观看| 日韩制服骚丝袜av| 久久久精品94久久精品| 欧美成人一区二区免费高清观看| 亚洲欧美日韩另类电影网站 | av在线老鸭窝| 国产伦理片在线播放av一区| 欧美xxⅹ黑人| 一级毛片 在线播放| 青春草亚洲视频在线观看| 插阴视频在线观看视频| 中文字幕制服av| 亚洲在久久综合| 成人毛片60女人毛片免费| av免费在线看不卡| 女人十人毛片免费观看3o分钟| 人妻系列 视频| 日日啪夜夜爽| 伊人久久精品亚洲午夜| 亚洲精品aⅴ在线观看| 国产精品av视频在线免费观看| 久久人人爽人人爽人人片va| 嫩草影院新地址| 一级黄片播放器| 联通29元200g的流量卡| 亚洲欧美日韩东京热| 亚洲美女黄色视频免费看| 国产亚洲欧美精品永久| 18禁在线无遮挡免费观看视频| 国产精品国产三级国产专区5o| 国产日韩欧美在线精品| 精品熟女少妇av免费看| 亚洲国产av新网站| 观看美女的网站| 亚洲欧美清纯卡通| 蜜桃久久精品国产亚洲av| 久久精品国产亚洲av涩爱| 免费观看在线日韩| 日韩精品有码人妻一区| 成人漫画全彩无遮挡| 日本欧美国产在线视频| 久久精品国产亚洲av天美| 99re6热这里在线精品视频| 国产黄色免费在线视频| 伦理电影免费视频| 男人爽女人下面视频在线观看| 亚洲精品一区蜜桃| 日本黄色日本黄色录像| 亚洲精品视频女| 国产熟女欧美一区二区| 免费高清在线观看视频在线观看| 色婷婷av一区二区三区视频| 一区二区三区四区激情视频| 国产人妻一区二区三区在| 久久精品国产亚洲av天美| 欧美最新免费一区二区三区| 日韩伦理黄色片| 丰满迷人的少妇在线观看| a 毛片基地| 女的被弄到高潮叫床怎么办| 国产伦精品一区二区三区四那| 成年美女黄网站色视频大全免费 | 免费看日本二区| 99re6热这里在线精品视频| 蜜臀久久99精品久久宅男| 久久久精品94久久精品| 人妻少妇偷人精品九色| 亚洲av成人精品一区久久| 国产精品久久久久久久电影| 久久久久久久久大av| 亚洲国产最新在线播放| 亚洲精品一区蜜桃| 大陆偷拍与自拍| 亚洲欧美精品专区久久| 大码成人一级视频| 狂野欧美白嫩少妇大欣赏| 在线播放无遮挡| 蜜臀久久99精品久久宅男| 高清不卡的av网站| av黄色大香蕉| 亚洲丝袜综合中文字幕| 一个人看视频在线观看www免费| av福利片在线观看| 日韩中字成人| 深爱激情五月婷婷| 99久久综合免费| 最近2019中文字幕mv第一页| 亚洲美女搞黄在线观看| 国产日韩欧美在线精品| 一级毛片黄色毛片免费观看视频| 日韩伦理黄色片| 国产在视频线精品| 精品亚洲成国产av| 亚洲国产高清在线一区二区三| 五月玫瑰六月丁香| 成年人午夜在线观看视频| 久久婷婷青草| 在线看a的网站| 中国三级夫妇交换| 高清欧美精品videossex| 伊人久久国产一区二区| 欧美最新免费一区二区三区| www.色视频.com| 国产精品久久久久成人av| 99久久人妻综合| 亚洲av欧美aⅴ国产| 国国产精品蜜臀av免费| 午夜激情福利司机影院| 国产精品不卡视频一区二区| 亚洲精品视频女| 欧美zozozo另类| av黄色大香蕉| 亚洲成色77777| 爱豆传媒免费全集在线观看| 日本欧美国产在线视频| 联通29元200g的流量卡| 边亲边吃奶的免费视频| 色哟哟·www| 久久人人爽人人片av| 高清视频免费观看一区二区| 亚洲成人中文字幕在线播放| 日日摸夜夜添夜夜爱| 久久久久久久大尺度免费视频| 伦精品一区二区三区| 最黄视频免费看| 国模一区二区三区四区视频| 又爽又黄a免费视频| 日本免费在线观看一区| 又粗又硬又长又爽又黄的视频| 亚洲四区av| 午夜免费男女啪啪视频观看| 在线观看免费日韩欧美大片 | 男人添女人高潮全过程视频| 三级国产精品欧美在线观看| 爱豆传媒免费全集在线观看| 久久久久国产精品人妻一区二区| 中国美白少妇内射xxxbb| 美女主播在线视频| 亚洲欧美日韩卡通动漫| 国产 一区 欧美 日韩| 交换朋友夫妻互换小说| 丰满迷人的少妇在线观看| 婷婷色av中文字幕| 女人久久www免费人成看片| 亚洲综合色惰| 日韩 亚洲 欧美在线| 在线播放无遮挡| 99久久精品热视频| 久久久色成人| 久久婷婷青草| 日韩人妻高清精品专区| 久久综合国产亚洲精品| 中文字幕亚洲精品专区| 五月开心婷婷网| 18禁裸乳无遮挡动漫免费视频| 亚洲精品日本国产第一区| 欧美高清成人免费视频www| 亚洲精品日韩av片在线观看| 国产精品久久久久久av不卡| 中文在线观看免费www的网站| 久久久久久九九精品二区国产| 伦理电影免费视频| 中文字幕亚洲精品专区| 国产男女超爽视频在线观看| 久久久久视频综合| 久久精品夜色国产| 在线播放无遮挡| 日韩制服骚丝袜av| 国产精品一区www在线观看| 欧美+日韩+精品| 日本wwww免费看| 18禁裸乳无遮挡免费网站照片| 国产av一区二区精品久久 | 精品久久国产蜜桃| 国产69精品久久久久777片| 免费看光身美女| 美女国产视频在线观看| 久久亚洲国产成人精品v| 男女啪啪激烈高潮av片| 91在线精品国自产拍蜜月| 观看免费一级毛片| 午夜福利高清视频| 免费大片18禁| 老女人水多毛片| 国产乱人视频| 亚洲成人手机| 午夜视频国产福利| 国产精品无大码| 国语对白做爰xxxⅹ性视频网站| 国产在线男女| 免费播放大片免费观看视频在线观看| 最近手机中文字幕大全| 亚洲精品一二三| 草草在线视频免费看| 国产精品久久久久成人av| 中文资源天堂在线| 亚洲综合色惰| 亚洲精品第二区| 日韩,欧美,国产一区二区三区| 日韩大片免费观看网站| 成年免费大片在线观看| 国产在线免费精品| 大片电影免费在线观看免费| 久热久热在线精品观看| 国产成人精品久久久久久| 偷拍熟女少妇极品色| 国产大屁股一区二区在线视频| 亚洲精品视频女| av国产久精品久网站免费入址| 久久婷婷青草| 91午夜精品亚洲一区二区三区| 免费观看性生交大片5| 国产色爽女视频免费观看| 汤姆久久久久久久影院中文字幕| 丰满少妇做爰视频| 国产毛片在线视频| www.色视频.com| 亚洲欧美日韩另类电影网站 | 联通29元200g的流量卡| 欧美亚洲 丝袜 人妻 在线| 国模一区二区三区四区视频| 国产精品国产av在线观看| 日韩三级伦理在线观看| 天堂俺去俺来也www色官网| 久久久久久久久久久免费av| 欧美国产精品一级二级三级 | 免费看日本二区| 免费观看在线日韩| 免费大片18禁| 男人添女人高潮全过程视频| 国产 一区精品| 中文乱码字字幕精品一区二区三区| 色5月婷婷丁香| 七月丁香在线播放| 久久精品久久久久久久性| 亚洲国产高清在线一区二区三| 日本av手机在线免费观看| 成年女人在线观看亚洲视频| 少妇被粗大猛烈的视频| 日韩 亚洲 欧美在线| 网址你懂的国产日韩在线| 精品一区在线观看国产| 99久久人妻综合| 午夜福利在线在线| 亚洲va在线va天堂va国产| 色5月婷婷丁香| 成人国产av品久久久| 日本午夜av视频| 少妇人妻精品综合一区二区| .国产精品久久| 国产高清国产精品国产三级 | 美女主播在线视频| 国产淫片久久久久久久久| 久久女婷五月综合色啪小说| 在线观看国产h片| 成人综合一区亚洲| 精品久久久久久久久亚洲| 日韩 亚洲 欧美在线| 人体艺术视频欧美日本| 深爱激情五月婷婷| 国产成人精品一,二区| 久久精品国产自在天天线| 永久网站在线| 丰满乱子伦码专区| 精品人妻一区二区三区麻豆| 久久99蜜桃精品久久| 男人和女人高潮做爰伦理| av天堂中文字幕网| 伦理电影免费视频| 久久久a久久爽久久v久久| 少妇人妻 视频| 热re99久久精品国产66热6| av网站免费在线观看视频| 好男人视频免费观看在线| 精品少妇黑人巨大在线播放| 久久 成人 亚洲| 国产高清不卡午夜福利| 黑人高潮一二区| 亚洲精品456在线播放app| 亚洲激情五月婷婷啪啪| 国产精品久久久久成人av| 色5月婷婷丁香| 欧美国产精品一级二级三级 | 18禁在线无遮挡免费观看视频| 亚洲在久久综合| 天美传媒精品一区二区| 80岁老熟妇乱子伦牲交| 亚洲国产欧美在线一区| 高清毛片免费看| 在线观看一区二区三区| 狠狠精品人妻久久久久久综合| 视频区图区小说| 中文字幕人妻熟人妻熟丝袜美| 亚洲av.av天堂| 一级爰片在线观看| 亚洲国产av新网站| 精品99又大又爽又粗少妇毛片| freevideosex欧美| 亚洲av免费高清在线观看| 女性生殖器流出的白浆| 综合色丁香网| 色5月婷婷丁香| 国产精品三级大全| 男女无遮挡免费网站观看| 我的女老师完整版在线观看| 免费黄网站久久成人精品| 3wmmmm亚洲av在线观看| 久久精品久久久久久久性| 汤姆久久久久久久影院中文字幕| 97精品久久久久久久久久精品| 亚洲av欧美aⅴ国产| 久久国内精品自在自线图片| 日本免费在线观看一区| 亚洲高清免费不卡视频| 亚洲经典国产精华液单| 高清不卡的av网站| 亚洲国产日韩一区二区| 视频中文字幕在线观看| 麻豆成人av视频| 一级毛片久久久久久久久女| 欧美变态另类bdsm刘玥| 少妇的逼好多水| 国产色爽女视频免费观看| 99久久中文字幕三级久久日本| 蜜桃久久精品国产亚洲av| 亚洲美女视频黄频| 国产在线一区二区三区精| 亚洲av成人精品一二三区| 久久久久久久国产电影| 久久精品国产自在天天线| 成人二区视频| 日韩中字成人| 欧美成人精品欧美一级黄| 亚洲精品,欧美精品| 国产精品一二三区在线看| 男人舔奶头视频| 久久99热6这里只有精品| 汤姆久久久久久久影院中文字幕| 日韩一区二区三区影片| 男的添女的下面高潮视频| 春色校园在线视频观看| 九草在线视频观看| 深爱激情五月婷婷| 久热这里只有精品99| 五月玫瑰六月丁香| 最近最新中文字幕大全电影3| 成人国产麻豆网| 亚洲av不卡在线观看| 中文欧美无线码| 国产中年淑女户外野战色| 午夜福利网站1000一区二区三区| 一级毛片我不卡| 国产在线视频一区二区| 天堂8中文在线网| 日韩欧美一区视频在线观看 | 色网站视频免费| 好男人视频免费观看在线| 欧美激情极品国产一区二区三区 | 在线看a的网站| 最近手机中文字幕大全| 女人久久www免费人成看片| 久久6这里有精品| 人妻制服诱惑在线中文字幕| 超碰av人人做人人爽久久| 日日摸夜夜添夜夜添av毛片| 久久久国产一区二区| 久久精品熟女亚洲av麻豆精品| 亚洲国产欧美在线一区| 在线观看人妻少妇| 国产伦精品一区二区三区视频9| 国产无遮挡羞羞视频在线观看| 国产真实伦视频高清在线观看| 美女高潮的动态| 自拍偷自拍亚洲精品老妇| 免费黄色在线免费观看| 婷婷色麻豆天堂久久| 人妻系列 视频| 亚洲欧美日韩无卡精品| 国产视频内射| 国产精品偷伦视频观看了| 久久精品国产亚洲网站| 久久精品人妻少妇| 久久久久网色| 国内少妇人妻偷人精品xxx网站| 国产精品熟女久久久久浪| 交换朋友夫妻互换小说| 麻豆成人午夜福利视频| 中文天堂在线官网| 久久久久精品性色| 亚洲精品自拍成人| 欧美丝袜亚洲另类|