• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Eu離子價態(tài)對Sr2MgSi2O7:Eu發(fā)光特性的影響

    2011-11-30 10:50:34吳浩怡胡義華王小涓
    物理化學學報 2011年5期
    關鍵詞:價態(tài)大學物理陷阱

    吳浩怡 胡義華 陳 麗 王小涓

    (廣東工業(yè)大學物理與光電工程學院,廣州510006)

    Eu離子價態(tài)對Sr2MgSi2O7:Eu發(fā)光特性的影響

    吳浩怡 胡義華*陳 麗 王小涓

    (廣東工業(yè)大學物理與光電工程學院,廣州510006)

    分別在空氣、還原氣體、再空氣、最后再在還原氣體等氣氛中通過四個步驟合成了Sr1.99MgSi2O7:Eu0.01.在空氣中合成的樣品呈現(xiàn)出Eu2+和Eu3+兩種價態(tài)的發(fā)光特征峰,而在還原氣體中合成的樣品,只呈現(xiàn)出Eu2+一種價態(tài)的特征發(fā)光峰,并且有長余輝和兩個熱致發(fā)光帶.但若樣品直接在還原氣氛下合成,則只呈現(xiàn)一個熱致發(fā)光帶.樣品在空氣中合成產(chǎn)生空穴陷阱,此陷阱在還原合成氣氛下仍被保留,并與還原氣體合成條件下產(chǎn)生的電子陷阱有所區(qū)別,最終導致兩個熱致發(fā)光帶.

    長余輝;晶體缺陷;價態(tài)變化

    1 Introduction

    Afterglow refers to the light emission that persists with duration at room temperature after excitation.Because of the great commercial applications in many fields,such as traffic signs, emergency signages,textile printing,and decorations,1,2phosphors with long afterglow are drawing more and more attentions.It is reported that the afterglow phenomenon dated from the 17th century,but during last 400 years the study on the afterglow phenomenon developed slowly.The conventional long afterglow phosphors are zinc sulfides with copper and cobalt co-doping.However,there are many drawbacks of these phosphors,like the short duration of the afterglow,which limits their applications.In order to extend the afterglow duration, some radioisotopes,which are bad for human′s health,are added in the materials.In addition,the luminescent intensity of these phosphors is low,and the compound degrades in the moisture easily.In recent years,rare earth(RE)doped materials are studied widely due to the excellent optical properties of the RE ions and their potential application in solid state lighting,such as light-emitting dioxide(LED).3-6Some RE doped phosphors are found to show long afterglow,such as MAl2O4: (Eu2+,Dy3+)7,8and M2MgSi2O7:(Eu2+,Dy3+)(M=Ca,Sr).9,10The afterglow duration and the emission intensity of these phosphors are much superior to the sulfides.In addition,these phosphors are characteristic with chemical and physical stability.11Therefore,they are regarded as a new generation of the long afterglow materials.

    The long afterglow phenomenon arises from the thermal detrapping of carriers,which are generated by excitation and trapped by certain defect sites.12Generally,in the Eu2+and Dy3+co-doped phosphors,Eu2+ions are considered as luminescent centers which generate the carriers while Dy3+ions induce the lattice defects.In the early studies of the long afterglow mechanism,Dy3+ions were assumed to act as hole traps in MAl2O4: (Eu2+,Dy3+)materials.13However,it involves a highly doubtful process,Eu2+to Eu+and Dy3+to Dy4+.The reduction of Eu2+and the oxidization of Dy3+are impossible under the near ultraviolet(UV)and visible excitation because of the lack of sufficient energy.14Moreover,the presence of the either Eu+or Dy4+has not been observed.More recently,Dy3+ions were proposed to act as electron traps.Autoionization creates electrons which are trapped by Dy3+to form the Dy2+,and then Eu3+is left behind.The afterglow is caused by the electrons released with thermally activated from Dy2+back to conduction band with subsequent recombination with Eu3+,accompanied by the 5d-4f emission.15If this is the case,there is no afterglow phenomenon in the Eu2+single doped phosphors.On the contrary,afterglow of Sr2MgSi2O7:Eu2+could be observed in our previous work.16This implies the existence of some defects which trap the carriers and then delay the emission,in addition to Dy3+ions.In the previous researches,the existence of hole traps and electron traps is considered in the Eu2+single doped phosphors.17,18According to the work of Aitasalo et al.,19cation vacancies and oxygen vacancies exist in the phosphors and they act as hole traps and electron traps,respectively.Consequently, they may play an important role in the generation of the afterglow in Eu2+single doped phosphors.Influence of the alterative valence of europium on the luminescent properties of Sr2MgSi2O7:(Eu2+,Dy3+)has been investigated in our group previous work.20Since Eu2+single doped phosphors also show the afterglow,the influence of the alterative valence of europium on Sr2MgSi2O7:Eu2+is studied in present work,avoiding the effect from Dy3+ions.The present work may assist to clarify the lattice defects that are responsible for the generation of afterglow in Eu2+single doped materials.

    2 Experimental

    2.1 Synthesis

    Sr1.99MgSi2O7:Eu2+0.01sample was synthesized via high temperature solid state reaction with four steps.The powder SrCO3(99%),MgO(99%),SiO2(99%),and Eu2O3(99.99%),with 8% (molar fraction)excess H3BO3(99%),were employed in the experiment.All the starting raw materials were analytical pure. After an appropriate weighing of each component according to nominal composition of Sr1.99MgSi2O7:Eu2+0.01,the powder mixture was milled thoroughly for 2 h,followed by a sintering process at 1250°C for 2 h in the air(step 1).Then a sample denoted as S1 was obtained.Subsequently,S1 was milled into powder and sintered at 1250°C for 2 h at reducing atmosphere(5%(volume fraction)H2+95%N2,step 2).Then a sample denoted as S2 was obtained.After that,S2 was milled into powder and sintered at 1250°C for 2 h in the air again(step 3)and then a sample denoted as S3 was obtained.At last,S3 was milled into powder and sintered at 1250°C for 2 h at reducing atmosphere again(step 4)and then a sample denoted S4 was obtained.

    2.2 Characterization

    The phase identification of the samples was carried out by powderX-ray diffraction (XRD)using a diffractometer (PGENERAL China)with Cu Kαirradiation(λ=0.15406 nm). The tube voltage and the tube current were 36 kV and 20 mA, respectively.The range of 2θ was from 10°to 70°.The excitation and emission spectra were measured by a F-7000 fluorescence spectrophotometer(Hitachi Japan).The decay curves and the thermoluminescence(TL)curves of all samples were recorded using a FJ-427A1 thermoluminescence dosimeter (CNNC Beijing Nuclear Instrument Factory China).Prior to the decay curve detection,each sample was excited by a fluorescence lamp for 1 min.Decay within 400 s after excitation was recorded.The temperature was maintained at 30°C during the whole detection.Before the measurement of TL,each sample was also excited by a fluorescence lamp for 1 min and then the measurement started after 15 min.The heating rate for each sample was 1 K·s-1and the range of the measurement was from room temperature to 200°C.

    3 Results and discussion

    3.1 Phase identification

    XRD patterns of each sample was measured and the results are shown in Fig.1.As shown in the Fig.1,the phases of S1 to S4 can be indexed to the tetragonal Sr2MgSi2O7phase in the space group P421m(No.113)according to the JCPDS standard card No.75-1736.The cell parameters are a=b=0.7995 nm and c=0.5152 nm.No other structure is observed.A few of the Eu2+/ Eu3+doping has not a significant influence on the Sr2MgSi2O7phase.The oxidizing or reducing atmosphere does not affect the phase neither.

    Fig.1 XRD patterns of the samples

    3.2 Photoluminescence

    Fig.2 is the emission and excitation spectra of the samples. As shown in Fig.2,the emission spectra of S1 and S3 consist of one emission band centering around 460 nm and several sharp lines peaking at about 580,592,and 615 nm.As we known,the Eu2+shows a broad emission band peaking at 460-470 nm under 360 nm excitation in the Sr2MgSi2O7,due to the 4f65d1to 4f7transition of the Eu2+(8S7/2-7FJ)(J=0,1,2,3, 4).10,21Therefore,it is possible that some Eu2+ions exist in the matrix,leading to the emission at 460 nm.The sharp lines in the spectra should be ascribed to the transitions within the 4f6configuration of Eu3+.The lines 580,592,and 615 nm correspond to the5D0-7F0,5D0

    -7F1and5D0

    -7F2transitions,respectively.The5D0-7F1is caused by the magnetic dipole transition which is sensitive to site symmetry,while the5D0-7F2is due to the electron dipole transition which is induced by the lack of the inversion symmetry at the Eu3+sites.22Therefore,emission of both Eu2+and Eu3+can be observed.Compared with S1,S3 shows stronger emission intensity,especially for the peak at 460 nm.Hence,more Eu2+may exist in S3.The excitation spectra were also measured by monitoring 460 and 615 nm emission,respectively.As can be seen,the shapes of these spectra are quite different.The emission at 460 nm exhibits an absorption band at about 360 nm,corresponding to Eu2+absorption. On the other hand,the emission at 615 nm shows a series of sharp lines,due to Eu3+absorption.

    The emission and excitation spectra of S2 and S4 are shown in Fig.3.After reduction,a broad emission band peaking at about 465 nm is shown for each sample.In addition,a weak emission band at 410 nm is exhibited(Fig.3(b)).Two absorption bands at about 275 and 360 nm are observed.These are due to the transition between 4f65d1and 4f7configurations of Eu2+ions.No other emission is observed,indicating that most Eu3+ions in S1 and S3 are reduced to Eu2+.The emission of S2 and S4 peaks at an identical location with different intensities. S4 shows stronger emission intensity than S2.

    Fig.2 Excitation spectra and emission spectra of S1 and S3 prepared in air

    Fig.3 (a)Excitation spectra and emission spectra of S2 and S4 prepared in the reducing atmosphere,(b)emission spectra of S2 and S4 within the range from 400 to 425 nm

    Generally,if the concentration does not reach the critical quenching point,the stronger concentration of Eu2+results in the greater emission intensity.Hence the amount of Eu2+can be estimated by calculating the emisison.The integral of the emisison band of Eu2+(425-500 nm)is calculated in present work. Suppose the Eu3+is reduced to Eu2+almost in S4.Then the concentration of Eu2+in S4 can be regarded as 100%.The relative concentrations of Eu2+in S1,S2,and S3 are 1.04%,70.01%, and 2.02%,respectively.It indicates that only around 1%Eu3+is reduced to Eu2+after step 1,and around 70%Eu3+is reduced to Eu2+after step 2.After step 3,2%Eu2+can be preserved.In other word,most of Eu3+is reduced to Eu2+in reducing atmosphere and small amount of Eu2+is preserved in the oxidation synthesized atmosphere.

    3.3 Decay characteristics

    Fig.4 (a)Decay curves of S1 and S3 prepared in the air,(b) decay curves of S2 and S4 prepared in the reducing atmosphere

    In general,phosphors with only Eu3+doping do not show afterglow,whereas when Eu3+is reduced to Eu2+in some materials,the obvious afterglow can be observed.In the present work,we recorded the decay curve of the afterglow for each sample.The curves are exhibited in Fig.4.As shown in the Fig.4,S1 does not exhibit an obvious afterglow.When Eu3+is reduced to Eu2+via step 2,a long afterglow with high bright-ness can be obtained in S2.These results conform our prediction that phosphors with Eu3+do not show afterglow but with Eu2+show afterglow.When S2 is sintered in the air,Eu2+is oxidized to Eu3+again via step 3.However,a decay process is observed although the afterglow is neither long nor bright.As Eu3+is reduced to Eu2+again via step 4,a long afterglow is observed in S4.Compared with S2,the afterglow of S4 is stronger and the duration seems to be longer.

    Since the decay process contains a rapid-decaying process and a slow-decaying process,double exponential equation which reflects the trend of the decay is used to fit the decay curvesof S2andS4.Theformof theequationisas following.23,24

    where I represents the phosphorescent intensity,I01and I02are constants,τ1and τ2are decay constants,deciding rates for the rapid and the slow exponential decay components,respectively.The fitting results of parameters of τ1and τ2are 14.2,150.1 s for S2 and 21.7,163.1 s for S4,respectively.The value of τ2for S4 is a little greater than the one for S2.It confirms longer afterglow duration of S4.

    3.4 Thermoluminescence

    As mentioned above,both S2 and S4 with Eu2+doping show an obvious afterglow.With Eu3+doping,S1 does not show an afterglow,whereas S3 which is oxidized from S2,exhibits a weak afterglow phenomenon.The afterglow is induced by the traps which trap the carriers and release them thermally,giving rise to the delayed luminescence after excitation.Consequently,the investigation on the traps of the phosphors may provide an appropriate explanation for the experimental phenomena. Since the afterglow is caused by the thermal detrapping of trapped carriers,temperature-dependence luminescent intensity can provide some information of traps.Consequently,TL which is physically governed by this mechanism,is introduced to investigate the traps of the samples.As shown in Fig.5(a), S1 does not show an emission significantly with the increase of temperature,indicating that this sample does not store the carriers.Hence no afterglow can be observed.Compared with S1,S3 shows a very weak TL band centering around 80°C.A few of carriers may be trapped in the traps of this sample.Then the detrapped carriers lead to a weak afterglow at room temperature.The TL curves of S2 and S4 are shown in Fig.5(b).As can be seen,two adjacent TL bands are obtained in both S2 and S4.The locations of the glow peaks are around 70 and 120°C,respectively.Because S2 and S4 are reduced from Sr1.99MgSi2O7:,their trap states may be different from those of Sr1.99MgSi2O7:1which is synthesized in the reducing atmosphere directly.In order to make a comparison,the TL curve of the direct-synthesized Sr1.99MgSi2O7:(denoted as DSSE) has been provided in Fig.5(c).This sample exhibits only one TL band peaking at about 75°C,approaching to the low temperature peaks of S2 and S4.However,the peaks at 120°C can not be observed in this sample.Moreover,compared with S2, the intensity of the peak of S4 at 70°C is stronger while the other one at 120°C is weaker,indicating the difference between S2 and S4.

    Fig.5 (a)TLcurves of S1 and S3 prepared in the air,(b)TL curves of S2 and S4 prepared in the reducing atmosphere,(c)TL curves of DSSE prepared in the reducing atmosphere directly

    The trap depth of S2,S4 and the DSSE sample can be estimated according to the TL curves.Since two TL bands are overlapping in one curve,the estimating methods based on the total half width of the band are not available.Trap depths corresponding to the band at about 70°C can be estimated by a method based on the low temperature at half width of the band. The form of the equation is as following.25,26

    3.5 Discussion

    The emission of Eu2+can be observed in the emission spectra of S1 and S3.As we known,the Eu3+can be easily reduced to Eu2+in most matrices if materials are prepared in the reducing atmospheres.However,no reducing atmosphere is involved during the preparation of S1 and S3.When the compounds are prepared in air condition at a high temperature,theabnormal reduction of Eu3+to Eu2+has been reported in early researches.27-30Four conditions seem to be necessary for the reduction of Eu3+to Eu2+in solid state compounds when compounds prepared at high temperature in the air have been proposed.They are:(1)no oxidizing ion present in the host,(2) the trivalent Eu3+ions replace the divalent cations in the matrix,(3)the substituted cation has similar radius to that of the divalent Eu2+ion(0.127 nm),and(4)an appropriate structure, which is composed of the tetrahedral anion groups in the matrix.31Generally,three sites available for the incorporating Eu3+in the Sr2MgSi2O7matrix are Sr2+site,Mg2+site,and Si4+site. The ionic radii of Mg2+(0.072 nm)and Si4+(0.026 nm)are small.But for Sr2+(0.126 nm),it is comparable in size to Eu3+(0.109 nm).So the Eu3+ions probably occupy the Sr2+sites.According to above,the first three conditions are fulfilled in S1 and S3.According to the work of Ochi,32the Sr2MgSi2O7contains a Si2O7double pyramid composed by two tetrahedral structures(SiO4tetrahedron).Therefore,the condition(4)is also confirmed.It is possible that Eu2+exists in the Sr2MgSi2O7matrix even prepared in the air.The mechanism of the reduction of Eu3+to Eu2+in the air has also been proposed.In order to keep charge balance,two Eu3+ions occupy two Sr2+sites and then one Sr2+vacancy is created by charge compensation in vicinity.Then the Sr2+vacancy acts as a donor of electrons and two Eu3+ions at the Sr2+sites become acceptors.Consequently, two electrons in each vacancy will transfer to two adjacent Eu3+ions and then Eu2+ions are formed.22,23If this is the case,Sr2+vacancies play an important role in the reduction of the Eu3+to Eu2+in air.The integral calculation of emission indicates that the concentration of Eu2+in S3 is about twice as in S1.It is possible that more Eu2+ions are preserved during step 3 because the tetrahedral anion groups can not be destroyed completely.

    Table 1 Estimated results of the trap depths

    As shown in Fig.3(b),a weak emission band is observed in both S2 and S4.The similar phenomenon appears in SrAl2O4: (Eu2+,Dy3+).Clabau et al.12proposed a model to explain persistent luminescence,refering this emission.According to the model,a small amount of Eu3+exists in the matrices of S2 and S4 because it is impossible to reduce all Eu2+to Eu3+.Moreover,the oxidization process(steps 1 and 3)raises the probability of the existence of Eu3+.Fig.6 is drawn according to the mechanism proposed by Clabau et al.12As shown in the figure, under UV excitation,electrons of Eu2+are promoted from the occupied 4f level to the empty 5d level,and from valence band (VB)to the top of unoccupied 4f levels of residual Eu3+via charge transfer(CT).The electrons promoted to 5d levels can be trapped by oxygen vacancies,which are created due to the reducing atmosphere in the synthesis process.Meanwhile, holes created in VB can be trapped at hole traps.Because of these trapping process,Eu2+is oxidized to Eu3+while the residual Eu3+is reduced to Eu2+.The thermal energy at ambient temperature causes the detrapping of the trapped electrons.The detrapped electrons transfer to the 5d levels of Eu3+,leading to the 4f65d1→4f7blue afterglow.In the present work,the TL band in S2,S4,and DSSE at 70°C may be caused by this electron-detrapping process since the samples are prepared in the reducing atmosphere and then have oxygen vacancies.The TL band at 120°C appears in S2 and S4 but not DSSE.Owing to S2 and S4 are originated from the oxidized S1 and S3,the trap corresponding to 120°C TL band may be caused by oxidizing process of S1 and S3 and the effect is preserved to S2 and S4, respectively.Sr2+vacancy is the possible defect in S1 and S3 because two Eu3+ions occupy two Sr2+sites,one Sr2+vacancy is created for charge compensation.33However,trap depth of Sr2+vacancy is reported to be 0.15 eV above the VB top in SrAl2O4.12Owing to the similar trap depth of Eu2+doped SrAl2O4and Sr2MgSi2O7(about 0.6-0.7 eV for electron trap), Sr2+vacancy is shallower than oxygen vacancy in Sr2MgSi2O7. So the 120°C TL band should not attribute to the Sr2+vacancy. Since S1 and S3 are synthesized in the air,some O2-may exist in the matrices as Frenkel defects.Similarity is performed in CaWO4.34After UV excitation,electrons are transferred from the matrix to the residual Eu3+,then the preserved holes migrate in VB.Subsequently they may be attracted by traps induced by O2-,the detrapping of holes leads to the CT of Eu2+→Eu3+(410 nm emission).This is the possible reason for the generation of 120°C TL band.However,these hole traps may not have a significant contribution to the afterglow because the probability of CT is low,and the necessary energy for the detrapping is high.Compared with S2,this TL band of in S4 is weaker.Since S4 undergoes reduction twice(steps 2 and 4), more Eu3+ions are reduced to Eu2+ions.This on one hand,declines the possibility of the CT,on the other hand,disfavors the existence of O2-,resulting in the low concentration of hole traps.That is why S4 shows a weaker 120°C TL band.From the analysis of TL we find that the trap depth corresponding to 70°C TL band is around 0.65-0.67 eV.Hence the decay processes of S2 and S4 should be similar.However,the decay curves shows that S4 possesses a longer afterglow duration than S2,contrary to the presumption.Since hole traps exsit in the matrix,they trap holes then reduce the recombination of electrons and holes.If the 120°C TL band is responsible for hole traps,more holes are captured in S2,reducing the recombination probability.This may be the reason for the shorter afterglow duration of S2 although it possesses a deeper trap than S4.

    Fig.6 Mechanism model proposed based on the work of Clabau et al.12

    In addition,the weak TL band illustrates that some oxygen vacancies are preserved in S3 even it is prepared in the air. That is why S3 exhibits a weak decay.However,some phenomena are still unclear and the problems are needed to be addressed:(1)A hole trap is proposed in the present work and they trap hole of Eu3+after CT of S2 and S4.S1 and S3,in which Eu3+should have a high concentration,do not show an obvious TL band that is responsible for this hole trapping process.(2)In order to explain the 120°C TL band,Frenkel O2-defects are proposed.More experiments should be carried out to further confirm its existence.(3)As we known,Dy3+can enhance the afterglow of Eu2+doped phosphors.Since some Eu3+ions still exist in the matrices of S2 and S4,their role and influence on the afterglow should be established in future work.

    4 Conclusions

    The redox process of the europium ions in Sr2MgSi2O7matrix indicates that samples prepared in the air show both Eu2+and Eu3+emission while samples prepared in the reducing atmosphere only show Eu2+emission.The more redox process enhances emission intensity of the samples no matter with oxidation or reduction.The samples reduced from oxidization show long afterglow and two TL bands(at about 70 and 120 °C),while only one TL band(at about 70°C)is observed if the sample is prepared in the reducing atmosphere directly.This is due to the existence of Eu3+.The 70°C band is responsible for electron traps for Eu2+while the other at 120°C is responsible for hole traps for the residual Eu3+.The afterglow mechanism of the phosphors with single Eu2+doping may be that the electrons from Sr2+vacancies transfer to Eu3+ions and then form the Eu2+ions even without reducing atmosphere.Oxygen vacancies and O2-act as electron and hole traps,respectively.

    (1) Chen,Y.;Cheng,X.;Liu,M.;Qi,Z.;Shi,C.J.Lumin.2009, 129,531.

    (2)Teng,X.;Liu,Y.;Liu,Y.;Hu,Y.;He,H.;Zhuang,W.J.Lumin. 2010,130,851.

    (3)Yao,G.Q.;Feng,Y.E.;Duan,J.F.;Lin,J.H.Acta Phys.-Chim. Sin.2003,19,226.[姚光慶,馮艷娥,段潔菲,林建華.物理化學學報,2003,19,226.]

    (4) Cao,F.B.;Tian,Y.W.;Chen,Y.J.;Xiao,L.J.;Liu,Y.Y.Acta Phys.-Chim.Sin.2009,25,299. [曹發(fā)斌,田彥文,陳永杰,肖林久,劉云義.物理化學學報,2009,25,299.]

    (5) Luo,X.X.;Cao,W.H.;Sun,F.Chin.Sci.Bull.2008,53, 1010.[羅昔賢,曹望和,孫 菲.科學通報,2008,53,1010.]

    (6) Zeng,Q.H.;Zhang,X.G.;Liang,H.B.;Gong,M.L.J.Chin. Rare Earth Soc.2011,29,8.[曾琦華,張信果,梁宏斌,龔孟濂.中國稀土學報,2011,29,8.]

    (7)Murayama,Y.;Takeuchi,N.;Aoki,Y.;Matsuzawa,T. Phosphorescent Phosphor.US Patent 5424006,1995-6-13.

    (8) Lü,X.;Sun,M.;Zhang,J.;Wang,T.J.Rare Earth 2010,28, 150.

    (9) Xiao,Z.;Xiao,Z.LongAfterglow Silicate Luminescent Materials and Its Manufacturing Method.US Patent 6093346, 2000-7-25.

    (10) Fei,Q.;Chang,C.;Mao,D.J.Alloy.Compd.2005,390,133.

    (11) Xu,Y.;Chen,D.Ceram.Int.2008,34,2117.

    (12) Clabau,F.;Rocquefelte,X.;Jobic,S.;Deniard,P.;Whangbo,M. H.;Garcia,A.;Mercier,T.L.Chem.Mater.2005,17,3904.

    (13)Matsuzawa,T.;Aoki,Y.;Takeuchi,N.;Murayama,Y. J.Electrochem.Soc.1996,143,2670.

    (14)Aitasalo,T.;H?ls?,J.;Jungner,H.;Lastusaari,M.;Niittykoski, J.J.Lumin.2001,94-95,59.

    (15) Dorenbos,P.Phys.Stat.Sol.B 2005,242,R7.

    (16)Wu,H.;Hu,Y.;Wang,Y.;Zeng,B.;Mou,Z.;Deng,L.;Xie,W. J.Alloy.Compd.2009,486,549.

    (17)Meng,X.;Wang,Y.;Jin,H.;Sun,L.J.Lumin.2007,122-123, 385.

    (18) Sun,J.;Liu,Z.;Du,H.J.Rare Earth 2011,29,101.

    (19) Aitasalo,T.;H?ls?,J.;Jungner,H.;Lastusaari,M.;Niittykoski, J.J.Phys.Chem.B 2006,110,4589.

    (20) Chen,X.;Hu,Y.;Wang,Y.J.Nanosci.Nanotechnol.2010,10, 1.

    (21) Chen,Y.;Liu,B.;Kirm,M.;Qi,Z.;Shi,C.;True,M.;Vielhauer, S.;Zimmerer,G.J.Lumin.2006,118,70.

    (22) Shi,Q.;Zhang,J.;Cai,C.;Cong,L.;Wang,T.Mater.Sci.Eng. B 2008,149,82.

    (23)Kubo,H.;Aizawa,H.;Katsumata,T.;Komuro,S.;Morikawa,T. J.Cryst.Growth 2005,275,e1767.

    (24)Zhu,Y.;Zheng,M.;Zeng,J.;Xiao,Y.;Liu,Y.Mater.Chem. Phys.2009,113,721.

    (25) Grossweiner,L.I.J.Appl.Phys.1953,24,1306.

    (26) Chen,R.J.Mater.Sci.1976,11,1521.

    (27) Peng,M.;Pei,Z.;Hong,G.;Su,Q.Chem.Phys.Lett.2003, 371,1.

    (28) Peng,M.;Qiu,J.;Ynag,L.;Zhao,C.Opt.Mater.2004,27,591.

    (29) Peng,M.;Hong,G.J.Lumin.2007,127,735.

    (30) Pei,Z.;Zeng,Q.;Su,Q.J.Phys.Chem.Solids 2000,61,9.

    (31) Pei,Z.;Su,Q.;Zhang,J.J.Alloy.Compd.1993,198,51.

    (32) Ochi,Y.Mater.Res.Bull.2006,41,1825.

    (33)Wang,Y.;Wang,L.J.Appl.Phys.2007,101,053108.

    (34) Shao,Z.;Zhang,Q.;Liu,T.;Chen,J.Nucl.Instrum.Meth.B 2008,266,797.

    November 19,2010;Revised:March 25,2011;Published on Web:April 11,2011.

    Effect of Europium Valence on the Luminescent Properties of Sr2MgSi2O7:Eu

    WU Hao-Yi HU Yi-Hua*CHEN Li WANG Xiao-Juan
    (School of Physics and Optoelectronic Engineering,Guangdong University of Technology,Guangzhou 510006,P.R.China)

    Sr1.99MgSi2O7:Eu0.01samples were prepared in four steps under air,a reducing atmosphere,air again,and a reducing atmosphere again.The samples prepared in air showed both Eu2+and Eu3+emission while the samples prepared in a reducing atmosphere showed Eu2+emission with a long afterglow and two thermoluminescence(TL)bands.However,only one TL band was observed for the sample prepared directly in the reducing atmosphere.Hole traps were created during the synthesis in air and were preserved during the reducing synthesis.These hole traps are different from the electron traps created by a reducing atmosphere.The hole traps and the electron traps result in two TL bands.

    Long afterglow;Lattice defect;Valence change

    O644

    *Corresponding author.Email:huyh@gdut.edu.cn;Tel:+86-20-39322262;Fax:+86-20-39322265.

    The project was supported by the National Natural Science Foundation of China(21071034,20871033).

    國家自然科學基金(21071034,20871033)資助項目

    猜你喜歡
    價態(tài)大學物理陷阱
    Sn在鋯合金氧化膜中穩(wěn)定價態(tài)的第一性原理研究
    上海金屬(2022年5期)2022-09-26 02:07:28
    超聲提取—三氯化鈦還原一原子熒光光譜法對土壤樣品中不同價態(tài)碲的測定
    中國測試(2018年4期)2018-05-14 15:33:30
    陷阱
    陷阱2
    陷阱1
    現(xiàn)代信息技術在大學物理教學中的應用探討
    大學物理與高中物理銜接教育的探討
    物理與工程(2012年1期)2012-03-25 10:04:59
    大學物理實驗教學創(chuàng)新模式的探索與實踐
    物理與工程(2012年1期)2012-03-25 10:04:51
    不同價態(tài)外源硒對小白菜生長及養(yǎng)分吸收的影響
    大學物理教學中需要做到十個“一定”
    物理與工程(2011年4期)2011-03-25 10:03:15
    久久精品国产亚洲av涩爱| 视频区图区小说| 午夜激情久久久久久久| 在线观看三级黄色| 亚洲色图 男人天堂 中文字幕| 日韩一区二区视频免费看| 国产野战对白在线观看| 久久精品国产a三级三级三级| 秋霞伦理黄片| 男女无遮挡免费网站观看| 高清在线视频一区二区三区| 999久久久国产精品视频| 如何舔出高潮| 涩涩av久久男人的天堂| 久久狼人影院| 国产在线视频一区二区| 欧美日韩综合久久久久久| 天天操日日干夜夜撸| 超色免费av| 精品国产一区二区久久| 色综合欧美亚洲国产小说| 亚洲情色 制服丝袜| 好男人视频免费观看在线| 女人爽到高潮嗷嗷叫在线视频| 秋霞在线观看毛片| 韩国精品一区二区三区| 人妻一区二区av| 国产极品天堂在线| xxxhd国产人妻xxx| av线在线观看网站| 成年美女黄网站色视频大全免费| 777米奇影视久久| 亚洲综合精品二区| 美女中出高潮动态图| 亚洲欧美一区二区三区黑人| 夫妻午夜视频| 欧美成人午夜精品| 欧美日本中文国产一区发布| 一区二区av电影网| 中文字幕精品免费在线观看视频| 天天影视国产精品| 日韩人妻精品一区2区三区| 性少妇av在线| 五月天丁香电影| 亚洲伊人色综图| 人人妻人人澡人人爽人人夜夜| 日本一区二区免费在线视频| 日韩免费高清中文字幕av| 亚洲精品一区蜜桃| 最近最新中文字幕大全免费视频 | 纵有疾风起免费观看全集完整版| 成人三级做爰电影| 韩国av在线不卡| 两个人免费观看高清视频| 精品福利永久在线观看| 亚洲精品国产色婷婷电影| 少妇人妻精品综合一区二区| 日韩一区二区视频免费看| a级毛片在线看网站| 国产精品免费大片| 少妇 在线观看| 赤兔流量卡办理| 日韩人妻精品一区2区三区| 黑人猛操日本美女一级片| 97人妻天天添夜夜摸| 一区福利在线观看| 在线天堂中文资源库| 久久久久精品人妻al黑| 丝袜脚勾引网站| 2021少妇久久久久久久久久久| 18禁动态无遮挡网站| 亚洲第一av免费看| 午夜免费观看性视频| 亚洲中文av在线| 午夜福利视频精品| 2021少妇久久久久久久久久久| 国产无遮挡羞羞视频在线观看| 国产成人系列免费观看| 99re6热这里在线精品视频| 纵有疾风起免费观看全集完整版| 久久久久精品久久久久真实原创| 欧美另类一区| 2021少妇久久久久久久久久久| 国产欧美日韩一区二区三区在线| 男人添女人高潮全过程视频| 欧美亚洲 丝袜 人妻 在线| 丰满迷人的少妇在线观看| 蜜桃在线观看..| 日日爽夜夜爽网站| 日本欧美国产在线视频| 一级a爱视频在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 一区福利在线观看| 精品酒店卫生间| 国产成人精品无人区| 免费观看a级毛片全部| 高清av免费在线| netflix在线观看网站| 性色av一级| 国产xxxxx性猛交| 成人亚洲欧美一区二区av| 国产一区二区三区av在线| 黄色怎么调成土黄色| 女人被躁到高潮嗷嗷叫费观| 黄频高清免费视频| 国产男女内射视频| 麻豆乱淫一区二区| 亚洲人成77777在线视频| e午夜精品久久久久久久| av不卡在线播放| 精品视频人人做人人爽| 日本午夜av视频| 热re99久久国产66热| 一个人免费看片子| 欧美精品一区二区大全| 久久精品久久精品一区二区三区| 久久国产精品男人的天堂亚洲| 交换朋友夫妻互换小说| 久久久久精品国产欧美久久久 | 国产成人91sexporn| 又黄又粗又硬又大视频| kizo精华| 又大又黄又爽视频免费| 高清欧美精品videossex| 精品国产一区二区三区四区第35| 亚洲精品,欧美精品| 久久 成人 亚洲| 亚洲国产精品国产精品| 满18在线观看网站| 成人影院久久| av线在线观看网站| 最新的欧美精品一区二区| 亚洲精品久久午夜乱码| 国产乱人偷精品视频| 久久精品国产亚洲av高清一级| 欧美少妇被猛烈插入视频| 热re99久久精品国产66热6| 国产免费现黄频在线看| 一级毛片电影观看| 在线亚洲精品国产二区图片欧美| 国产有黄有色有爽视频| 国产精品 欧美亚洲| 激情视频va一区二区三区| 19禁男女啪啪无遮挡网站| 少妇人妻久久综合中文| 亚洲欧美激情在线| 国产男女超爽视频在线观看| 亚洲av电影在线观看一区二区三区| 国产精品久久久久久久久免| 国产精品久久久久久人妻精品电影 | 国产在视频线精品| 国产午夜精品一二区理论片| 色婷婷av一区二区三区视频| 国产精品国产三级国产专区5o| 亚洲中文av在线| 在线观看三级黄色| 亚洲欧美精品综合一区二区三区| 欧美 日韩 精品 国产| 亚洲精品av麻豆狂野| 亚洲自偷自拍图片 自拍| 久久久久久人妻| 亚洲久久久国产精品| 欧美精品一区二区大全| 亚洲一级一片aⅴ在线观看| 久久青草综合色| 亚洲五月色婷婷综合| 国产野战对白在线观看| 亚洲中文av在线| 亚洲av成人精品一二三区| 极品少妇高潮喷水抽搐| 久久久久久免费高清国产稀缺| 午夜影院在线不卡| 久久久久久久久久久免费av| a级毛片在线看网站| 爱豆传媒免费全集在线观看| av国产久精品久网站免费入址| 国产无遮挡羞羞视频在线观看| 国产一卡二卡三卡精品 | 青草久久国产| 日本猛色少妇xxxxx猛交久久| 婷婷色综合www| 999久久久国产精品视频| 日韩,欧美,国产一区二区三区| 1024视频免费在线观看| 欧美日韩亚洲国产一区二区在线观看 | 一二三四中文在线观看免费高清| 亚洲色图综合在线观看| 我要看黄色一级片免费的| 国产一级毛片在线| 国产在线免费精品| 中文字幕人妻熟女乱码| 日本vs欧美在线观看视频| 精品国产乱码久久久久久男人| 一级片免费观看大全| 欧美日韩亚洲国产一区二区在线观看 | 久久久久久久大尺度免费视频| 亚洲男人天堂网一区| 亚洲人成电影观看| 黄色怎么调成土黄色| 中文字幕亚洲精品专区| 成人免费观看视频高清| 国产成人91sexporn| 免费日韩欧美在线观看| 欧美变态另类bdsm刘玥| 岛国毛片在线播放| 美女脱内裤让男人舔精品视频| 色吧在线观看| 免费观看性生交大片5| 老司机亚洲免费影院| 啦啦啦啦在线视频资源| 伦理电影大哥的女人| av片东京热男人的天堂| 中文字幕精品免费在线观看视频| 国产av一区二区精品久久| 一区二区三区精品91| 欧美日韩视频高清一区二区三区二| 韩国高清视频一区二区三区| 亚洲人成网站在线观看播放| 欧美日韩成人在线一区二区| 我的亚洲天堂| 建设人人有责人人尽责人人享有的| 午夜免费男女啪啪视频观看| 久久久久久久久久久久大奶| 国产精品三级大全| 欧美日韩精品网址| 巨乳人妻的诱惑在线观看| 满18在线观看网站| 国产亚洲欧美精品永久| 9热在线视频观看99| 亚洲在久久综合| 七月丁香在线播放| 狂野欧美激情性bbbbbb| 99国产精品免费福利视频| 女人精品久久久久毛片| 一级黄片播放器| 岛国毛片在线播放| 中文精品一卡2卡3卡4更新| 亚洲三区欧美一区| 美女脱内裤让男人舔精品视频| 成人影院久久| 亚洲图色成人| 亚洲一码二码三码区别大吗| 在线观看国产h片| 丝瓜视频免费看黄片| 国产成人精品在线电影| 日本猛色少妇xxxxx猛交久久| 欧美 日韩 精品 国产| 亚洲欧美一区二区三区黑人| 国产成人av激情在线播放| 97在线人人人人妻| 丝袜人妻中文字幕| 国产日韩一区二区三区精品不卡| 免费看av在线观看网站| 国产一区二区激情短视频 | 久久精品aⅴ一区二区三区四区| 精品福利永久在线观看| 精品一区二区三区av网在线观看 | 99久久人妻综合| 国产免费现黄频在线看| 久久久久视频综合| a级毛片黄视频| 免费在线观看完整版高清| 亚洲美女视频黄频| 一本大道久久a久久精品| 亚洲美女搞黄在线观看| 美女高潮到喷水免费观看| 国产成人91sexporn| 韩国av在线不卡| 大话2 男鬼变身卡| 午夜福利影视在线免费观看| 国产高清不卡午夜福利| 久久国产亚洲av麻豆专区| 国产不卡av网站在线观看| 亚洲成国产人片在线观看| 亚洲精品国产av蜜桃| 日韩大码丰满熟妇| 侵犯人妻中文字幕一二三四区| 黄频高清免费视频| 精品久久久精品久久久| 天天添夜夜摸| 最近中文字幕高清免费大全6| 成人午夜精彩视频在线观看| 美女扒开内裤让男人捅视频| 国产成人系列免费观看| 一本色道久久久久久精品综合| 久久久久久久大尺度免费视频| 最新的欧美精品一区二区| 在线 av 中文字幕| 亚洲av电影在线进入| 精品一区在线观看国产| 午夜免费观看性视频| 各种免费的搞黄视频| 九九爱精品视频在线观看| 国产黄频视频在线观看| 久久精品久久久久久久性| 日韩av不卡免费在线播放| 日韩免费高清中文字幕av| 黄色视频不卡| 啦啦啦视频在线资源免费观看| 亚洲男人天堂网一区| 男女高潮啪啪啪动态图| 国产av一区二区精品久久| 国产男人的电影天堂91| 国产日韩欧美亚洲二区| 又大又黄又爽视频免费| 熟妇人妻不卡中文字幕| 免费观看a级毛片全部| 亚洲三区欧美一区| 久久精品亚洲av国产电影网| 韩国高清视频一区二区三区| 91国产中文字幕| 少妇 在线观看| 亚洲一码二码三码区别大吗| 一边摸一边抽搐一进一出视频| 一级毛片黄色毛片免费观看视频| 午夜91福利影院| 日韩,欧美,国产一区二区三区| 丰满迷人的少妇在线观看| 久久久精品免费免费高清| av又黄又爽大尺度在线免费看| 新久久久久国产一级毛片| 亚洲美女视频黄频| 999精品在线视频| 国产熟女欧美一区二区| 2018国产大陆天天弄谢| 一边摸一边做爽爽视频免费| 欧美人与善性xxx| 亚洲色图综合在线观看| 一二三四在线观看免费中文在| avwww免费| 成人手机av| 91精品伊人久久大香线蕉| 午夜免费男女啪啪视频观看| 亚洲免费av在线视频| 丝袜在线中文字幕| 免费观看av网站的网址| 伦理电影免费视频| www.自偷自拍.com| 欧美日韩成人在线一区二区| 欧美乱码精品一区二区三区| 亚洲成人国产一区在线观看 | 视频在线观看一区二区三区| 国产av国产精品国产| 少妇精品久久久久久久| 美女主播在线视频| 卡戴珊不雅视频在线播放| 亚洲专区中文字幕在线 | 免费观看性生交大片5| 日本91视频免费播放| 亚洲av中文av极速乱| 丁香六月欧美| 国产乱人偷精品视频| 制服丝袜香蕉在线| 国产片内射在线| 中文字幕亚洲精品专区| 国产熟女午夜一区二区三区| 国产精品蜜桃在线观看| 亚洲av成人精品一二三区| 自线自在国产av| 日本一区二区免费在线视频| 韩国精品一区二区三区| 亚洲免费av在线视频| 精品亚洲成国产av| 又粗又硬又长又爽又黄的视频| 国产精品麻豆人妻色哟哟久久| 一级毛片 在线播放| 男女午夜视频在线观看| 亚洲av福利一区| 国产一区有黄有色的免费视频| 少妇的丰满在线观看| 一级爰片在线观看| 男女边吃奶边做爰视频| 熟女av电影| 丰满乱子伦码专区| 免费看不卡的av| 激情五月婷婷亚洲| 欧美人与善性xxx| 精品少妇久久久久久888优播| 欧美日本中文国产一区发布| av卡一久久| 老司机影院毛片| 精品久久久精品久久久| 亚洲一码二码三码区别大吗| 久久久久国产精品人妻一区二区| 十八禁人妻一区二区| 亚洲熟女毛片儿| 91aial.com中文字幕在线观看| 久久精品久久久久久久性| 如日韩欧美国产精品一区二区三区| 老汉色∧v一级毛片| 99香蕉大伊视频| 久久久久久久大尺度免费视频| 精品国产乱码久久久久久小说| 自线自在国产av| 国产成人91sexporn| 无遮挡黄片免费观看| 中文精品一卡2卡3卡4更新| 国产淫语在线视频| 亚洲精品国产色婷婷电影| 尾随美女入室| 一二三四中文在线观看免费高清| 叶爱在线成人免费视频播放| 中文乱码字字幕精品一区二区三区| 欧美精品人与动牲交sv欧美| 久久久精品区二区三区| bbb黄色大片| 国产日韩欧美亚洲二区| 2018国产大陆天天弄谢| 黄片小视频在线播放| 看免费av毛片| 欧美日韩综合久久久久久| 我要看黄色一级片免费的| 国产女主播在线喷水免费视频网站| 国产精品99久久99久久久不卡 | 狠狠精品人妻久久久久久综合| 少妇人妻 视频| 国产野战对白在线观看| 国产精品三级大全| 中文字幕人妻丝袜一区二区 | 制服丝袜香蕉在线| 一级黄片播放器| 国产 一区精品| 成年av动漫网址| 桃花免费在线播放| 一区福利在线观看| 精品一区二区三区av网在线观看 | 校园人妻丝袜中文字幕| 日韩熟女老妇一区二区性免费视频| 亚洲国产最新在线播放| 亚洲av欧美aⅴ国产| 免费黄色在线免费观看| av福利片在线| 九九爱精品视频在线观看| 免费观看a级毛片全部| 秋霞在线观看毛片| 国产成人精品在线电影| 日韩av不卡免费在线播放| 日本av免费视频播放| 九色亚洲精品在线播放| 老鸭窝网址在线观看| 亚洲国产精品成人久久小说| 亚洲七黄色美女视频| 婷婷色综合www| 中文字幕另类日韩欧美亚洲嫩草| av电影中文网址| 亚洲av电影在线进入| 久久青草综合色| 亚洲精华国产精华液的使用体验| 男女边吃奶边做爰视频| 国产野战对白在线观看| 日韩av在线免费看完整版不卡| av不卡在线播放| 欧美最新免费一区二区三区| 久久精品久久精品一区二区三区| 人妻一区二区av| 搡老乐熟女国产| 亚洲国产看品久久| 狂野欧美激情性xxxx| 女人高潮潮喷娇喘18禁视频| 一区在线观看完整版| 一边摸一边做爽爽视频免费| 国产精品 国内视频| 老司机影院成人| 你懂的网址亚洲精品在线观看| 91精品国产国语对白视频| 日本黄色日本黄色录像| 久久午夜综合久久蜜桃| 赤兔流量卡办理| 欧美少妇被猛烈插入视频| 欧美黑人精品巨大| 午夜激情久久久久久久| 欧美在线黄色| 国产97色在线日韩免费| 亚洲少妇的诱惑av| 国产精品秋霞免费鲁丝片| 丰满饥渴人妻一区二区三| 亚洲精品视频女| 美女福利国产在线| 女性被躁到高潮视频| 欧美最新免费一区二区三区| 久久97久久精品| 熟女av电影| 91国产中文字幕| 国产精品免费视频内射| 天天操日日干夜夜撸| 高清欧美精品videossex| 岛国毛片在线播放| 久久精品久久精品一区二区三区| 亚洲男人天堂网一区| 国产精品一区二区在线不卡| 久久人人爽av亚洲精品天堂| 久久天堂一区二区三区四区| 男女高潮啪啪啪动态图| 亚洲精品久久成人aⅴ小说| 精品久久蜜臀av无| 国产精品久久久av美女十八| 操美女的视频在线观看| 韩国精品一区二区三区| 精品国产一区二区久久| www.自偷自拍.com| 精品一区二区三区四区五区乱码 | 久久青草综合色| 捣出白浆h1v1| 一二三四中文在线观看免费高清| 国产在线免费精品| 天美传媒精品一区二区| 国产在线视频一区二区| 91精品国产国语对白视频| 成人毛片60女人毛片免费| 婷婷色av中文字幕| av又黄又爽大尺度在线免费看| 久久av网站| 午夜福利影视在线免费观看| 久久精品亚洲av国产电影网| 久久久国产欧美日韩av| 青青草视频在线视频观看| 在线天堂最新版资源| 青春草国产在线视频| 国产麻豆69| 午夜福利一区二区在线看| 国精品久久久久久国模美| 午夜福利网站1000一区二区三区| 女的被弄到高潮叫床怎么办| 美女扒开内裤让男人捅视频| 女人久久www免费人成看片| 曰老女人黄片| 久久精品久久久久久噜噜老黄| 日韩精品免费视频一区二区三区| 一二三四中文在线观看免费高清| 伊人亚洲综合成人网| 天天躁夜夜躁狠狠躁躁| 男女高潮啪啪啪动态图| 大陆偷拍与自拍| 亚洲熟女毛片儿| 最新在线观看一区二区三区 | 亚洲成色77777| 97精品久久久久久久久久精品| 精品国产一区二区久久| 国产不卡av网站在线观看| 日韩欧美精品免费久久| 大香蕉久久成人网| 国产精品久久久av美女十八| 免费观看性生交大片5| 永久免费av网站大全| 在线亚洲精品国产二区图片欧美| √禁漫天堂资源中文www| 成人亚洲精品一区在线观看| 久热爱精品视频在线9| 午夜老司机福利片| 亚洲精华国产精华液的使用体验| 亚洲综合精品二区| 91aial.com中文字幕在线观看| 亚洲第一av免费看| av国产精品久久久久影院| 亚洲av日韩在线播放| 久久久久久久大尺度免费视频| 国产精品免费大片| 午夜福利在线免费观看网站| 亚洲三区欧美一区| 国产精品人妻久久久影院| 中文字幕人妻丝袜一区二区 | 免费观看a级毛片全部| 亚洲国产看品久久| 嫩草影院入口| 在线观看免费日韩欧美大片| 波多野结衣av一区二区av| 久久久久久久精品精品| 欧美在线一区亚洲| 亚洲av在线观看美女高潮| 丰满迷人的少妇在线观看| 精品免费久久久久久久清纯 | 国产高清不卡午夜福利| 性色av一级| 一级片'在线观看视频| 久久久国产精品麻豆| 青春草国产在线视频| 精品午夜福利在线看| 伦理电影大哥的女人| 一边摸一边做爽爽视频免费| 亚洲成国产人片在线观看| 啦啦啦 在线观看视频| 久久久久国产精品人妻一区二区| 桃花免费在线播放| 国产在线视频一区二区| 最近2019中文字幕mv第一页| 少妇人妻久久综合中文| 亚洲成av片中文字幕在线观看| av女优亚洲男人天堂| 精品一区二区免费观看| 亚洲,欧美,日韩| 在线 av 中文字幕| 日韩制服骚丝袜av| 91精品三级在线观看| 国产精品99久久99久久久不卡 | kizo精华| 老司机亚洲免费影院| 精品国产一区二区久久| 国产成人一区二区在线| 欧美日韩av久久| 一级毛片 在线播放| 在线天堂中文资源库| 精品少妇一区二区三区视频日本电影 | 嫩草影院入口| 亚洲美女黄色视频免费看| 日韩 欧美 亚洲 中文字幕| 毛片一级片免费看久久久久| 91国产中文字幕| 秋霞伦理黄片| 日韩欧美精品免费久久| 99香蕉大伊视频| 熟女av电影| 丝袜脚勾引网站| 一本—道久久a久久精品蜜桃钙片| 精品酒店卫生间| 久久精品久久久久久久性|