• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    采用連續(xù)電位階躍方法研究聚吡咯在電解質(zhì)水溶液中的氧化還原穩(wěn)定性

    2011-11-30 10:42:08王晶日楊鳳林
    物理化學(xué)學(xué)報 2011年5期
    關(guān)鍵詞:遼寧大連大連理工大學(xué)吡咯

    田 穎 王晶日 劉 明 史 錕 楊鳳林

    (1大連交通大學(xué)環(huán)境與化學(xué)工程學(xué)院,遼寧大連116028;2大連晟世環(huán)境工程有限公司,遼寧大連116600; 3大連理工大學(xué)環(huán)境科學(xué)與工程系,遼寧大連116024)

    采用連續(xù)電位階躍方法研究聚吡咯在電解質(zhì)水溶液中的氧化還原穩(wěn)定性

    田 穎1,*王晶日2劉 明1史 錕1楊鳳林3

    (1大連交通大學(xué)環(huán)境與化學(xué)工程學(xué)院,遼寧大連116028;2大連晟世環(huán)境工程有限公司,遼寧大連116600;3大連理工大學(xué)環(huán)境科學(xué)與工程系,遼寧大連116024)

    連續(xù)電位階躍方法是一種研究氧化還原穩(wěn)定性的有效方法.本文采用連續(xù)電位階躍方法研究了以對甲苯磺酸鈉為摻雜劑的聚吡咯(ppy)膜的電化學(xué)氧化還原穩(wěn)定性,通過計算聚吡咯在階躍電位下的還原電量(Qred),還原和氧化電量的比值(Qred/Qox)考察聚吡咯在H2SO4、Na2SO4和NaOH溶液中在不同電位下的氧化還原可逆性.結(jié)果發(fā)現(xiàn)聚吡咯過氧化的發(fā)生強烈依賴支持電解質(zhì)的pH值和階躍電位.在H2SO4溶液中,過氧化的起始電位為0.8 V,而在Na2SO4溶液中,過氧化的起始電位為0.5 V.在NaOH溶液中,過氧化在任何電位均可發(fā)生,表明溶液中OH-的存在是過氧化發(fā)生的直接原因.

    聚吡咯;過氧化;氧化還原穩(wěn)定性;連續(xù)電位階躍

    1 Introduction

    Redox stability of polypyrrole(ppy)is one of the most important factors in practical applications,such as secondary batteries,capacitors,electromagnetic shutters,and electrochromic devices.1-3It also influences the effect of electrocatalyst,ion exchange,and drug release when ppy is applied in these fields.In order to keep the reversibility property,overoxidation caused by irreversible oxidation at higher potentials must be avoided. It is generally accepted that the nucleophiles,such as OH-,O2, and H2O,could lead to the formation of quinone moieties that disrupt the conjugated double-bond system of ppy.4-10

    It is well known that ppy is relatively stable in air.11However,the electrochemical redox stability of ppy in aqueous solutions is completely different,strongly depends on the counterions,supporting electrolytes,and the applied potentials.Many researchers have reported the redox properties and irreversible oxidation of ppy films.12-18Rodriguez et al.19discovered that irreversible oxidation of ppy/NO3occurred at potentials more positive than 0.4 V vs saturated calomel electrode(SCE)in solutions of KNO3,KCl,KBr,and KF by in situ FTIR spectroscopy.Raman spectroscopy was found to be more sensitive tool to monitor the overoxidation reaction and it was found that ppy/ Cl degraded at potentials as low as 0.5 V(vs SCE).20Resistometry,UV-Vis,and Raman spectrometry have been employed by Lewis et al.21for the determination of the overoxidation potential of ppy/NO3.These techniques have indicated that the onset of overoxidation is at potential as low as 0.70-0.75 V(vs SCE).In these studies,in situ UV-Vis,FTIR,and Raman spectrometry are frequently employed techniques.However,the conclusions obtained from these techniques seem inconsistent. Sometimes,it is very difficult to explain the complicated spectra obtained under different conditions.In addition,these stability studies were limited to relatively short-term effects within a high potential regime.Few long-term redox stability studies of ppy within normorlly reversible potential window have been reported.22Pyo et al.23reported the long-term electrochemical switching behavior of ppy films by recurrent potential pulse (RPP)technique cyclied in various organic medias.Travas-Sejdic et al.24have characterized the long-term stability of ppy in aqueous NaPF6electrolyte by RPP experiment.

    In order to provide the systematic studies of ppy films,we adopt the RPP technique to detect the long-term redox stability in different electrolyte solutions.The objective of our study is to determine stable potential scopes where ppy processes the property of reversibility in electrolyte solutions of H2SO4, Na2SO4,and NaOH.

    2 Experimental

    Polypyrrole films were prepared at room temperature in aqueous solution containing 0.2 mol·L-1sodium p-toluenesulfonate(Tianjin Bodi Chemical Engineering Co.Ltd.,China) and 0.14 mol·L-1pyrrole(Shanghai Lihua Chemical Reagent Co.Ltd.,China)under nitrogen atmosphere.The polymerization was performed under a constant potential of 0.8 V with a total charge of 5 C.A Φ 13 mm stainless steel sheet,a Φ 20 mm stainless steel sheet,and saturated calomel electrode (SCE)were employed as working,counter,and reference electrodes,respectively.The working electrode was polished with water-proof sand paper and rinsed in acid solution and distilled water prior to each experiment.

    Recurrent potential pulse for redox stability measurement was carried out with potentials subsequently stepped between V1and V2specially stated in the text below and held for 50 s at each potential in H2SO4,Na2SO4,and NaOH solutions,respectively.A Potentiostat/Galvanostat Model 263A(Princeton Applied Research,USA)was used for electropolymerization and recurrent potential pulse measurements.

    All potentials were measured and were reported against SCE.All reagents were reagent grade,and deionized water was used.Pyrrole was freshly distilled prior to use.All other chemicals were used as received.

    3 Results and discussion

    3.1 Redox stability in H2SO4solution

    In order to investigate the stability in acid solutions,potentials were subsequently stepped between-0.1 and 0.4 V and held for 50 s for each potential,monitoring the charge passage in the reduction process(Qred),and the ratio of the charges consumed in reduction and oxidation processes(Qred/Qox).Fig.1a shows Qredand Qred/Qoxover cycle number.It can be seen that Qredvalues increase gradually due to the swelling of the polymer film,leading to the current increase over the long periods of time.25Since the reduction and oxidation processes are diffusion-controlled,26the concentration of cations in electrolyte solutions plays an important role in cations diffusion into/out the film during reduction/oxidation process.Therefore,the values of Qredare larger in 1.0 mol·L-1H2SO4due to the high concentration of cations than those in 0.1 mol·L-1H2SO4.

    It can be observed that the ratios of Qred/Qoxare near to one, which indicates that the reduction and oxidation processes in each cycle are reversible.18In diluted acid of 0.1 mol·L-1H2SO4,the ratios of Qred/Qoxare more close to 1 than in 1.0 mol· L-1H2SO4,indicating that the extent of reversibility in 0.1 mol· L-1H2SO4is higher.As mentioned above,the reduction and oxidation processes are diffusion-controlled.Diffusion of cations is easier to enter or leave the polymer in diluted solution than in strong solution.26As a result,the reduction and oxidation processes in 0.1 mol·L-1H2SO4are more reversible than in 1.0 mol·L-1H2SO4.

    Similar results are obtained as shown in Fig.1b with the potentials switched from-0.4 to 0.4 V.The ratios of Qred/Qoxfor both solutions of 0.1 mol·L-1H2SO4and 1.0 mol·L-1H2SO4are still close to one,indicating the reduction and oxidation processes are still reversible at the applied potentials.

    Fig.1c shows the result when potentials are subsequently stepped between-0.8 and 0.4 V.In 1.0 mol·L-1H2SO4,a large amount of gaseous hydrogen was produced at the negative potential of-0.8 V,which consumed large charges.The charges consumed for hydrogen evolution is increased with elapsed time.Because long-time gaseous evolution could accelerate the H+ions diffusion,thus the values of Qredincrease drastically with the cycle number.The ratios of Qred/Qoxincrease signifi-cantly from 1 to 8.As for 0.1 mol·L-1H2SO4,no hydrogen evolution was generated.The values of Qredare assigned to the reduction of ppy film itself and almost remain constant during the whole reduction/oxidation cycles.Since the negative potential is as low as-0.8 V,the positive potential is 0.4 V,therefore,the ratio of Qred/Qoxis slightly bigger than one.

    Fig.1 Qredand Qred/Qoxcalculated from recurrent potential pulse experiments in 0.1 and 1.0 mol·L-1H2SO4solutions held for 50 s at each potentialstepped potentials:(a)-0.1-0.4 V,(b)-0.4-0.4 V,(c)-0.8-0.4 V,(d)-0.4-0.8 V; -△-Qred/Qoxin 0.1 mol·L-1H2SO4,-○-Qred/Qoxin 1.0 mol·L-1H2SO4,-▲-Qredin 0.1 mol·L-1H2SO4,-●-Qredin 1.0 mol·L-1H2SO4

    When potentials are subsequently stepped between-0.4 and 0.8 V,the results obtained from the experiments are shown in Fig.1d.As we known,overoxidation occurs through C=O functional groups in the polymer backbone at sufficiently positive potential.Formation of these species disrupts the conjugated structure of ppy and leads to the loss of electroactivity capacity.12,19,20It can be seen from Fig.1d that the responses of Qredboth in 0.1 and 1.0 mol·L-1acid solutions decrease significantly assigned to overoxidation at positive potential of 0.8 V.As Qoxat 0.8 V declines more quickly than the response of Qredat-0.4 V,therefore,the ratio of Qred/Qoxincreases and closes to one in the latter cycles.However,the reversibility of ppy has been disrupted which can be deduced from the ratios of Qred/Qoxmuch lower than 1 in the initial period of potential cycles.

    From the results mentioned above,we find that when negative potential is lower enough to produce hydrogen,the response of Qredwill increase with the cycle number and the ratio of Qred/Qoxis much higher than 1,which means that the redox reactions on ppy films are irreversible.It can be observed hydrogen evolutions generated at-0.8 V for 1.0 mol·L-1H2SO4and-1.2 V for 0.1 mol·L-1H2SO4have made ppy films swell significantly and even peel off the substrate.When positive potential is up to 0.8 V,overoxidation occurs for ppy film in 0.1 and 1.0 mol·L-1H2SO4solutions,which leads to the rapid drop of Qredand Qoxdue to the irreversible loss of electroactivity.

    3.2 Redox stability in Na2SO4solution

    Fig.2a shows Qredand Qred/Qoxcalculated from the reduction and oxidation processes obtained by the potential switches stepped from-0.4 to 0.4 V in Na2SO4solution.It can be seen that the response of Qredreaches to a constant after equilibrium was established at the first forty cycles.The ratios of Qred/Qoxare close to 1,indicating the redox reactions are reversible at the applied potentials.Similar to that in acid solutions,the values of Qredin 1.0 mol·L-1Na2SO4are larger than that in 0.1 mol·L-1Na2SO4indicates that ppy is more reversible in 0.1 mol·L-1Na2SO4than in 1.0 mol·L-1Na2SO4,since the ratios of Qred/Qoxin 0.1 mol·L-1Na2SO4are much closer to 1.

    Fig.2b is the variation of Qredand Qred/Qoxwith cycle number, for which potentials stepped subsequently between-0.8 and 0.4 V.No hydrogen evolution was observed at negative potential of-0.8 V in both electrolyte solutions.The values of Qreddecrease slightly with increasing cycle numbers after the first twenty cycles,but the ratios of Qred/Qoxare still close to 1,indicates that overoxidation is very subtle under this condition.Ob-vious overoxidation could be observed at positive potential of 0.5 V for 0.1 and 1.0 mol·L-1Na2SO4solutions(Figure is omitted).

    Fig.2 Qredand Qred/Qoxcalculated from recurrent potential pulse experiments in 0.1 and 1.0 mol·L-1Na2SO4solutions held for 50 s at each potentialstepped potentials:(a)-0.4-0.4 V,(b)-0.8-0.4 V,(c)-0.4-0.8 V; -△-Qred/Qoxin 0.1 mol·L-1Na2SO4,-○-Qred/Qoxin 1.0 mol·L-1Na2SO4, -▲-Qredin 0.1 mol·L-1Na2SO4,-●-Qredin 1.0 mol·L-1Na2SO4

    Fig.2c shows Qredand Qred/Qoxover cycle number with potentials stepping subsequently from-0.4 to 0.8 V.It can be noted that the values of Qreddecrease rapidly in the two neutral electrolyte solutions.This response is associated to the strong overoxidation,irreversible structural change within the polymer chains at sufficient positive potential of 0.8 V.This can be further verified by the ratio of Qred/Qoxmuch less than 1 at the initial stage.At latter stage,the ratios of Qred/Qoxincrease and reach to 1,which can be explained that the values of Qoxdecline more drastically than that of Qred.In this case,it can be concluded that overoxidation of the polymer becomes more serious over the cycle number.

    It can be observed that when negative potential is lower than-1.5 V for Na2SO4(The difference of hydryogen evolution potentials for 0.1 mol·L-1Na2SO4and 1.0 mol·L-1Na2SO4is very slight),hydrogen evolution will occur.Through the experiments mentioned above,it is noted that negative potentials selected to avoid hydrogen release could not affect the reversible characteristics of ppy film.But sufficient positive potential higher than 0.5 V for 0.1 and 1.0 mol·L-1Na2SO4will lead to an irreversible structural change in the polymer as a result of overoxidation.

    Compared the results of RPP experiments conducted in H2SO4and Na2SO4solutions,it can be revealed that the onset of overoxidation is at 0.8 V in H2SO4(The difference of initial overoxidation potential for 0.1 and 1.0 mol·L-1H2SO4is very slight),while it is about 0.5 V in Na2SO4(The difference of initial overoxidation potential for 0.1 and 1.0 mol·L-1Na2SO4is also very slight).This indicates that overoxidation is strongly related to the pH value of the electrolytes.The initial overoxidation potential is higher in solutions with lower pH.As we all know,in neutral or acid solutions,the redox potential(?)for water electrolysis reaction:

    can be expressed by

    The atomic oxygen was produced at higher potential in the solutions with lower pH value.Oxygen reacting directly with ppy chains could result in the overoxidation,which is also verified by Li and Qian.27

    3.3 Redox stability in NaOH solution

    Fig.3a presents the change of Qredand Qred/Qoxfor ppy films with potentials stepped subsequently between-0.4 and 0.4 V in NaOH solutions.The values of Qreddecrease significantly with cycle numbers and the ratios of Qred/Qoxare much lower than 1.These results indicate that ppy undergoes strong overoxidation,leading to the interruption of the conjugation and degradation of electroactivity.It has been accepted that overoxidation is closely related to the attack of hydroxide yielding carbonyl groups,which can be demonstrated as follows:

    Fig.3 Qredand Qred/Qoxcalculated from recurrent potential pulse experiments in 0.1 and 1.0 mol·L-1NaOH solutions held for 50 s at each potentialstepped potentials:(a)-0.4-0.4 V;(b)-0.8-0.4 V;(c)-0.4-0.8 V; -△-Qred/Qoxin 0.1 mol·L-1NaOH,-○-Qred/Qoxin 1.0 mol·L-1NaOH,-▲-Qredin 0.1 mol·L-1NaOH,-●-Qredin 1.0 mol·L-1NaOH

    Similar results are shown in Fig.3b obtained with potentials stepped subsequently between-0.8 and 0.4 V.Since the selected negative potential is lower than the negative potential in the experiment shown in Fig.3a,the values of Qredand Qred/Qoxare higher under this condition.From both results of the Fig.3a and Fig.3b,we can find that the values of Qredare lower in 1.0 mol·L-1NaOH than that in 0.1 mol·L-1NaOH due to the strong overoxidation occurred in high NaOH concentration. This result proves that the strong nucleophile of OH-is the direct reagent for the attack on the conjugated double bonds of the polymer.When the concentration of OH-is higher,the extent of overoxidation is more serious.

    When potentials stepped subsequently between-0.4 to 0.8 V,ppy film could be disrupted and even broken out due to the oxygen evolution and strong overoxidation at positive potential of 0.8 V in 1.0 mol·L-1NaOH solution.The RPP experiment could not be carried out in this electrolyte solution.Therefore,

    Fig.3c only presents the variation of Qredand Qred/Qoxin 0.1 mol·L-1NaOH solution.It can be seen that the values of Qreddecrease rapidly from 0.27 to 0.05 C,the ratios of Qred/Qoxare much less than 1,reach to only 0.01 at the latter stage of potential switches.The result indicates that overoxidation is remarkable pronounced under this condition.Compared the results of Fig.3a and Fig.3c with the same negative potential of-0.4 V,it can be concluded that the extent of overoxidation is stronger at higher potential.

    From the experiments conducted in NaOH solutions,it could be noted that irreversible overoxidation would occur at any potentials,leading to the drastical decline of Qoxand Qred. Higher positive potential and higher OH-concentration lead to more serious overoxidation on ppy film.

    4 Conclusions

    The redox stability of ppy deposited on stainless steel doped with sodium p-toluenesulfonate in aqueous solutions with different pH values was studied systematically by RPP technique. Qredand Qred/Qoxwere calculated from the experiments.It is found that when negative potential is sufficient low to generate gaseous hydrogen,the values of Qredincrease drastically with the cycle numbers,the ratios of Qred/Qoxare much higher than 1,indicates that the redox reaction at applied potential is irreversible.When positive potential is sufficient high to cause overoxidation,the values of Qredand Qoxwill decrease rapidly, the ratios of Qred/Qoxare lower than 1.In this case,ppy undergoes the irreversible loss of conjugation and electroactivity decay.When potential window exerted on ppy is propriate to avoid hydrogen evolution in negative potential and to avoid generating overoxidation in positive potential,the values of Qredand Qoxalmost keep constant and the ratios of Qred/Qoxare close to 1,which indicates that the redox reactions are reversible for numerous potential cycles.In this way,the potential windows where ppy films possess reversibility property have been determined,it is within-0.8-0.8 V for 1.0 mol·L-1H2SO4,-1.2-0.8 V for 0.1 mol·L-1H2SO4,and-1.5-0.5 V for 1.0 and 0.1 mol·L-1Na2SO4solution.However,in NaOH solution,overoxidation arises at any potential,indicating that the existence of OH-ions is the direct reason for overoxidaton. The results demonstrate that pH value of solutions and switching potentials have profound influences on the oxidation and reduction reactions on ppy films.From our work,it can be proved that RPP is an alternative effective technique for measurement of redox stability for ppy-modified electrode in aqueous electrolyte solutions.

    (1) Kotz,R.;Carlen,M.Electrochim.Acta 2000,45,2483.

    (2) Sarangapani,S.;Tilak,B.V.;Chen,C.P.J.Electrochem.Soc. 1996,143,3791.

    (3) Svirskis,D.;Wright,B.E.;Travas-Sejdic,J.;Rodgers,A.; Sanjay,G.Sensor.Actuat.B-Chem.2010,15,97.

    (4)Debiemme-Chouvy,C.;Tran,T.T.M.Electrochem.Commun. 2008,10,947.

    (5) Palmisano,F.;Malitesta,C.;Centonze,D.;Zambonin,P.G. Anal.Chem.1995,67,2207.

    (6) Jaramillo,A.;Spurlock,L.D.;Young,V.;Brajter-Toth,A. Analyst 1999,124,1215.

    (7) Otero,T.F.;Marquez,M.;Suarez,I.J.Phys.Chem.B 2004, 108,15429.

    (8)Lim,V.W.L.;Kang,E.T.;Neoh,K.G.Macromol.Chem.Phys. 2001,202,2824.

    (9) Forsyth,M.;Truong,V.T.Polymer 1995,36,725.

    (10) Gao,M.;Zi,B.;Chen,B.J.Electroanal.Chem.1994,373,141.

    (11) Brie,M.;Turca,R.;Mihut,A.Mater.Chem.Phys.1997,49,174.

    (12) Fernández,I.;Trueba,M.;Núnez,C.A.R.J.Surf.Coat.Tech. 2005,191,134.

    (13) Mostany,J.;Scharifker,B.R.Synth.Met.1997,87,179.

    (14) Fermín,D.J.;Teruel,H.;Scharifker,B.R.J.Electroanal. Chem.1996,401,207.

    (15) Uyar,T.;Toppare,L.;Hacaloglu,J.Synth.Met.2001,123,335.

    (16) Zou,X.Q.;Shen,Y.;Peng,Z.Q.;Zhang,L.;Bi,L.H.;Wang,Y. L.J.Electroanal.Chem.2004,566,63.

    (17)Arrigan,D.W.M.;Gray,D.S.Anal.Chim.Acta 1999,402,159.

    (18) Visy,C.;Kriván,E.;Peintler,G.J.Electroanal.Chem.1999, 462,1.

    (19) Rodriguez,I.;Scharifker,B.R.;Mostany,J.J.Electroanal. Chem.2000,491,117.

    (20) Ghosh,S.;Bowmaker,G.A.;Cooney,P.P.;Seakins,J.M. Synth.Met.1998,95,63.

    (21)Lewis,T.W.;Wallace,G.G.;Kim,C.Y.;Kim,D.Y.Synth.Met. 1997,84,403.

    (22) Hyodo,K.Electrochim.Acta 1994,39,265.

    (23) Pyo,M.;Reynolds,J.R.;Warren,L.F.;Marcy,H.O.Synth. Met.1994,68,71.

    (24) Chu,S.Y.;Kilmartin,P.A.;Travas-Sejdic,J.Synth.Met.2009, 159,2286.

    (25)Yoon,C.O.;Sung,H.K.;Kim,J.H.;Barsonkow,E.;Kim,J. H.;Lee,H.Synth.Met.1999,99,201.

    (26) Tian,Y.;Yang,F.L.;Yang,W.S.Synth.Met.2006,156,1052.

    (27) Li,Y.;Qian,R.Electrochim.Acta 2000,45,1727.

    December 1,2010;Revised:March 7,2011;Published on Web:April 1,2011.

    Redox Stability of Polypyrrole in Aqueous Electrolyte Solutions by a Recurrent Potential Pulse Technique

    TIAN Ying1,*WANG Jing-Ri2LIU Ming1SHI Kun1YANG Feng-Lin3
    (1College of Environmental and Chemical Engineering,Dalian Jiaotong University,Dalian 116028,Liaoning Province,P.R.China;2Dalian Shengshi Environmental Co.Ltd.,Dalian 116600,Liaoning Province,P.R.China;3Department of Environmental Science and Technology,Dalian University of Technology,Dalian 116024,Liaoning Province,P.R.China)

    The recurrent potential pulse(RPP)technique is an alternative and effective technique for redox stability measurement.We investigated the electrochemical redox stability of polypyrrole(ppy)films doped with sodium p-toluenesulfonate by RPP technique in this study.The reduction charge(Qred)and the ratio of reduction and oxidation charges(Qred/Qox)obtained from the switching potentials in aqueous solutions of H2SO4,Na2SO4,and NaOH were calculated to describe the reversibility of ppy at the applied potential windows.We found that the irreversible overoxidation strongly depended on the pH value of the supporting electrolytes and on the switching potentials.The onset of the overoxidation potential is 0.8 V in H2SO4solution while it is only 0.5 V in Na2SO4solution.In NaOH solution,overoxidation occurs at any potential indicating that the existence of OH-ions is directly responsible for overoxidation.

    Polypyrrole;Overoxidation;Redox stability;Recurrent potential pulse

    O646

    ?Corresponding author.Email:greenhusk@126.com;Tel:+86-411-84106746.

    The project was supported by the National Natural Science Foundation of China(51078050).國家自然科學(xué)基金(51078050)資助項目

    猜你喜歡
    遼寧大連大連理工大學(xué)吡咯
    Au/聚吡咯復(fù)合材料吸附與催化性能的研究
    遼寧大連:10年資助4207名農(nóng)民工上大學(xué)
    Research on the Globalization of English in the Internet era
    大東方(2019年1期)2019-09-10 20:30:40
    孫子垚
    偽隨機碼掩蔽的擴頻信息隱藏
    “白草莓”亮相遼寧大連
    超聲波促進(jìn)合成新型吡咯α,β-不飽和酮
    聚吡咯結(jié)構(gòu)與導(dǎo)電性能的研究
    吡咯甲酮基鈷配合物:一種水氧化催化劑
    中泰化學(xué)與大連理工大學(xué)簽署戰(zhàn)略合作框架協(xié)議
    中國氯堿(2014年11期)2014-02-28 01:05:06
    欧美激情极品国产一区二区三区| 亚洲人成电影观看| 97精品久久久久久久久久精品| 久久久久久久久免费视频了| 欧美人与性动交α欧美精品济南到| 亚洲精品美女久久av网站| 亚洲精品中文字幕在线视频| 国产成人免费无遮挡视频| 久久久精品国产亚洲av高清涩受| 国产探花极品一区二区| 亚洲精品一区蜜桃| 久久久久网色| 卡戴珊不雅视频在线播放| 丰满乱子伦码专区| 激情五月婷婷亚洲| 国产精品女同一区二区软件| 91精品国产国语对白视频| 好男人视频免费观看在线| 久久这里只有精品19| 亚洲av中文av极速乱| 国产免费现黄频在线看| 在线精品无人区一区二区三| 午夜免费观看性视频| 亚洲视频免费观看视频| 国产日韩欧美视频二区| 日本欧美国产在线视频| 高清不卡的av网站| 欧美精品av麻豆av| 精品久久久久久电影网| 婷婷色麻豆天堂久久| av有码第一页| 一本大道久久a久久精品| 欧美人与性动交α欧美软件| 少妇 在线观看| 建设人人有责人人尽责人人享有的| 妹子高潮喷水视频| 久久久久久人妻| 精品一区二区三卡| 亚洲精品一二三| 亚洲欧美成人精品一区二区| 精品人妻熟女毛片av久久网站| 人人妻人人澡人人爽人人夜夜| 男女下面插进去视频免费观看| 国产精品国产三级专区第一集| 观看av在线不卡| 久久久久国产一级毛片高清牌| 校园人妻丝袜中文字幕| 久久人人97超碰香蕉20202| 国产成人一区二区在线| 制服诱惑二区| 久久人人爽av亚洲精品天堂| 晚上一个人看的免费电影| 精品少妇黑人巨大在线播放| 美女主播在线视频| 午夜91福利影院| 高清在线视频一区二区三区| 久久99一区二区三区| 国产男人的电影天堂91| 国产精品免费视频内射| 国产毛片在线视频| 一区在线观看完整版| 亚洲 欧美一区二区三区| 国产精品蜜桃在线观看| 国产一区二区三区综合在线观看| 少妇人妻 视频| 丝袜美足系列| 久久精品国产a三级三级三级| 伦理电影大哥的女人| 又大又黄又爽视频免费| 嫩草影院入口| 日本欧美视频一区| 午夜日本视频在线| 久久精品久久精品一区二区三区| 乱人伦中国视频| 波野结衣二区三区在线| 亚洲综合色网址| 男人爽女人下面视频在线观看| 国产免费又黄又爽又色| 日韩大码丰满熟妇| 丁香六月欧美| 欧美av亚洲av综合av国产av | 性少妇av在线| 女性被躁到高潮视频| 男人添女人高潮全过程视频| 亚洲精品日韩在线中文字幕| 最近中文字幕高清免费大全6| 亚洲国产欧美日韩在线播放| 国产精品av久久久久免费| 操美女的视频在线观看| 久久久久精品性色| 在线精品无人区一区二区三| 极品人妻少妇av视频| 精品少妇内射三级| 一区福利在线观看| 两性夫妻黄色片| 国产99久久九九免费精品| 久久久久久久大尺度免费视频| 黄色视频不卡| 七月丁香在线播放| 一本久久精品| 成人午夜精彩视频在线观看| 观看av在线不卡| 丁香六月欧美| 美女午夜性视频免费| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧洲日产国产| 婷婷成人精品国产| 99国产综合亚洲精品| 各种免费的搞黄视频| 国产精品熟女久久久久浪| 成年动漫av网址| 婷婷色麻豆天堂久久| 黑人欧美特级aaaaaa片| 亚洲少妇的诱惑av| 麻豆av在线久日| 精品第一国产精品| 新久久久久国产一级毛片| 欧美xxⅹ黑人| 我的亚洲天堂| 在线观看人妻少妇| 天天操日日干夜夜撸| www.熟女人妻精品国产| 中文字幕亚洲精品专区| 亚洲av日韩在线播放| 男女边吃奶边做爰视频| 久久久久久免费高清国产稀缺| 黄色一级大片看看| 国产精品人妻久久久影院| 在线 av 中文字幕| 亚洲精品美女久久久久99蜜臀 | 看免费av毛片| 欧美av亚洲av综合av国产av | 日韩一区二区三区影片| 亚洲中文av在线| 日日撸夜夜添| 国产精品一区二区精品视频观看| 高清视频免费观看一区二区| 日韩大片免费观看网站| 一边摸一边做爽爽视频免费| 黑丝袜美女国产一区| 中文字幕色久视频| 激情视频va一区二区三区| 老汉色av国产亚洲站长工具| 精品久久蜜臀av无| 免费看av在线观看网站| 在线天堂最新版资源| 国产亚洲午夜精品一区二区久久| 999久久久国产精品视频| 久久国产精品大桥未久av| av网站在线播放免费| 欧美成人午夜精品| 欧美日韩综合久久久久久| 99久久精品国产亚洲精品| 五月天丁香电影| 国产一卡二卡三卡精品 | 亚洲精品第二区| 精品人妻熟女毛片av久久网站| 99久久精品国产亚洲精品| 男人爽女人下面视频在线观看| 欧美黄色片欧美黄色片| 少妇的丰满在线观看| 五月天丁香电影| 人妻一区二区av| 日本wwww免费看| 国产精品熟女久久久久浪| 亚洲第一青青草原| 人体艺术视频欧美日本| 亚洲国产精品一区三区| 在线观看一区二区三区激情| 免费观看a级毛片全部| 久久精品国产综合久久久| 日韩精品免费视频一区二区三区| 日韩精品有码人妻一区| 少妇人妻精品综合一区二区| 国产av精品麻豆| 欧美另类一区| 亚洲精品一区蜜桃| 久久天躁狠狠躁夜夜2o2o | 亚洲专区中文字幕在线 | 国产精品久久久久久精品古装| 免费高清在线观看日韩| 久久久久人妻精品一区果冻| 亚洲伊人色综图| 精品福利永久在线观看| 精品一区二区三区av网在线观看 | 大香蕉久久成人网| 国产精品嫩草影院av在线观看| 欧美97在线视频| 91国产中文字幕| 精品久久久精品久久久| 午夜福利一区二区在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品一区二区精品视频观看| 最近中文字幕2019免费版| 男女边吃奶边做爰视频| 韩国精品一区二区三区| 1024视频免费在线观看| 人妻人人澡人人爽人人| 亚洲国产日韩一区二区| 欧美少妇被猛烈插入视频| 亚洲专区中文字幕在线 | 久久久久久久大尺度免费视频| 制服丝袜香蕉在线| 99久久综合免费| 精品一区二区三卡| 精品国产一区二区久久| 久久精品久久久久久久性| 国产av精品麻豆| 亚洲av电影在线观看一区二区三区| 国产乱人偷精品视频| 亚洲av国产av综合av卡| 国产免费一区二区三区四区乱码| 欧美黄色片欧美黄色片| www.精华液| 伊人久久大香线蕉亚洲五| 亚洲av欧美aⅴ国产| 色视频在线一区二区三区| 欧美av亚洲av综合av国产av | 亚洲精品一区蜜桃| 人人妻人人澡人人爽人人夜夜| 十分钟在线观看高清视频www| 日韩免费高清中文字幕av| 精品亚洲成国产av| 久久人妻熟女aⅴ| 亚洲av福利一区| 亚洲精品日本国产第一区| 亚洲伊人色综图| 国产在线视频一区二区| 日韩精品有码人妻一区| 黄色毛片三级朝国网站| 黑人巨大精品欧美一区二区蜜桃| 久久久久精品人妻al黑| 免费高清在线观看视频在线观看| 制服人妻中文乱码| 欧美成人午夜精品| 欧美黑人欧美精品刺激| 只有这里有精品99| xxxhd国产人妻xxx| 国产精品久久久久久精品古装| 国产欧美亚洲国产| 最黄视频免费看| 日韩欧美精品免费久久| 欧美av亚洲av综合av国产av | 最近手机中文字幕大全| 国产精品.久久久| 夫妻午夜视频| 一个人免费看片子| 日本vs欧美在线观看视频| 麻豆乱淫一区二区| 亚洲精品aⅴ在线观看| av卡一久久| 国产伦理片在线播放av一区| 午夜激情久久久久久久| 久久人人爽人人片av| 中文字幕人妻丝袜一区二区 | 纯流量卡能插随身wifi吗| 岛国毛片在线播放| 久久久精品国产亚洲av高清涩受| 天天躁日日躁夜夜躁夜夜| 丝袜喷水一区| 免费女性裸体啪啪无遮挡网站| 精品久久蜜臀av无| 我要看黄色一级片免费的| 青春草视频在线免费观看| 亚洲av中文av极速乱| 一区二区三区四区激情视频| 免费黄网站久久成人精品| 色网站视频免费| 18禁裸乳无遮挡动漫免费视频| 黄色视频在线播放观看不卡| 中文字幕人妻丝袜一区二区 | 亚洲五月色婷婷综合| 18禁国产床啪视频网站| 国产黄频视频在线观看| 啦啦啦中文免费视频观看日本| 欧美日韩亚洲高清精品| 久久鲁丝午夜福利片| 国产麻豆69| 国产精品久久久久成人av| 美女中出高潮动态图| 婷婷色麻豆天堂久久| av国产精品久久久久影院| av在线app专区| 午夜福利网站1000一区二区三区| 欧美精品av麻豆av| 国产欧美日韩一区二区三区在线| 99国产综合亚洲精品| 人人澡人人妻人| 国产日韩欧美在线精品| 别揉我奶头~嗯~啊~动态视频 | 一区在线观看完整版| 国产精品一区二区精品视频观看| 午夜福利网站1000一区二区三区| 99久国产av精品国产电影| 人人妻人人澡人人爽人人夜夜| 欧美日韩视频高清一区二区三区二| 人妻 亚洲 视频| 国产精品人妻久久久影院| 老熟女久久久| 久久这里只有精品19| 999精品在线视频| 麻豆av在线久日| 2021少妇久久久久久久久久久| 亚洲人成77777在线视频| 校园人妻丝袜中文字幕| 天天影视国产精品| 夫妻性生交免费视频一级片| 免费少妇av软件| 精品久久蜜臀av无| 国产 精品1| 深夜精品福利| 性少妇av在线| 下体分泌物呈黄色| 亚洲精品美女久久久久99蜜臀 | 国产精品国产三级专区第一集| 国产av国产精品国产| 少妇精品久久久久久久| 亚洲欧美一区二区三区黑人| 久久综合国产亚洲精品| 99久久人妻综合| 亚洲激情五月婷婷啪啪| 黄色毛片三级朝国网站| 在线观看免费视频网站a站| 午夜av观看不卡| 麻豆乱淫一区二区| 一区二区三区精品91| 国产精品99久久99久久久不卡 | 国产亚洲一区二区精品| 国产精品 国内视频| 99久国产av精品国产电影| 99国产综合亚洲精品| 嫩草影院入口| 国产精品av久久久久免费| 色播在线永久视频| 亚洲人成77777在线视频| 在线观看免费高清a一片| 久久鲁丝午夜福利片| 成人18禁高潮啪啪吃奶动态图| 精品一品国产午夜福利视频| 免费av中文字幕在线| 日韩 欧美 亚洲 中文字幕| 女人精品久久久久毛片| 欧美精品高潮呻吟av久久| 七月丁香在线播放| 国产精品久久久av美女十八| 亚洲国产欧美在线一区| 国产淫语在线视频| 丰满乱子伦码专区| 欧美激情 高清一区二区三区| 男女高潮啪啪啪动态图| 熟女av电影| 国产视频首页在线观看| 午夜福利,免费看| 亚洲av电影在线观看一区二区三区| 国产成人午夜福利电影在线观看| 青春草亚洲视频在线观看| kizo精华| 黑人欧美特级aaaaaa片| 欧美日本中文国产一区发布| 中文字幕av电影在线播放| 19禁男女啪啪无遮挡网站| 最近中文字幕高清免费大全6| 十八禁网站网址无遮挡| 一二三四中文在线观看免费高清| 成年人免费黄色播放视频| av在线播放精品| www.av在线官网国产| 日日爽夜夜爽网站| 久久女婷五月综合色啪小说| 国语对白做爰xxxⅹ性视频网站| 亚洲成人av在线免费| 精品久久久精品久久久| 男女免费视频国产| 最近2019中文字幕mv第一页| 国产精品国产三级专区第一集| 亚洲熟女毛片儿| 久久99精品国语久久久| 国产成人欧美| 日本wwww免费看| 伊人久久国产一区二区| 中文字幕色久视频| 久久精品aⅴ一区二区三区四区| 夫妻午夜视频| 欧美黄色片欧美黄色片| 日日摸夜夜添夜夜爱| 美女高潮到喷水免费观看| 少妇猛男粗大的猛烈进出视频| 性高湖久久久久久久久免费观看| 国语对白做爰xxxⅹ性视频网站| 免费观看人在逋| 热99国产精品久久久久久7| 久久精品国产亚洲av高清一级| 日本欧美国产在线视频| 男女边摸边吃奶| 一级a爱视频在线免费观看| 亚洲精品视频女| 黄网站色视频无遮挡免费观看| 国产精品偷伦视频观看了| 免费看av在线观看网站| 欧美日韩福利视频一区二区| 男女午夜视频在线观看| 2018国产大陆天天弄谢| 熟女av电影| 黄色怎么调成土黄色| 欧美激情极品国产一区二区三区| 咕卡用的链子| 欧美精品一区二区大全| 国产不卡av网站在线观看| 亚洲色图综合在线观看| 美女中出高潮动态图| 18禁裸乳无遮挡动漫免费视频| 午夜影院在线不卡| 一区二区av电影网| 亚洲精品中文字幕在线视频| 国产极品粉嫩免费观看在线| 在线观看人妻少妇| 国产成人啪精品午夜网站| 精品一品国产午夜福利视频| 国产一区二区 视频在线| 欧美人与善性xxx| av国产精品久久久久影院| 久久久国产精品麻豆| netflix在线观看网站| 欧美日韩一区二区视频在线观看视频在线| 不卡av一区二区三区| av网站免费在线观看视频| 韩国av在线不卡| 制服诱惑二区| 自线自在国产av| 成人国语在线视频| 午夜福利一区二区在线看| 成人漫画全彩无遮挡| 在线天堂中文资源库| 国产免费一区二区三区四区乱码| 成人毛片60女人毛片免费| 在线免费观看不下载黄p国产| 欧美精品一区二区免费开放| 亚洲av在线观看美女高潮| 最近最新中文字幕免费大全7| 亚洲第一av免费看| 男女国产视频网站| 亚洲在久久综合| 色播在线永久视频| 欧美在线一区亚洲| 超碰97精品在线观看| 老司机深夜福利视频在线观看 | 国产一卡二卡三卡精品 | 熟女av电影| 亚洲色图综合在线观看| 欧美激情高清一区二区三区 | 最黄视频免费看| 女人高潮潮喷娇喘18禁视频| 熟女少妇亚洲综合色aaa.| 18禁国产床啪视频网站| 91精品伊人久久大香线蕉| 亚洲第一区二区三区不卡| 久久久久国产精品人妻一区二区| av免费观看日本| 极品少妇高潮喷水抽搐| www.精华液| 日韩av免费高清视频| 婷婷色av中文字幕| 亚洲国产av影院在线观看| 国产精品久久久av美女十八| 中国国产av一级| 亚洲中文av在线| 2021少妇久久久久久久久久久| 超碰成人久久| 亚洲欧美一区二区三区黑人| 国产乱来视频区| 国产极品粉嫩免费观看在线| 国产又爽黄色视频| 9色porny在线观看| 久久女婷五月综合色啪小说| 丝袜脚勾引网站| 如日韩欧美国产精品一区二区三区| 久久久久久人人人人人| 一本色道久久久久久精品综合| 精品一品国产午夜福利视频| 久久久久久久精品精品| 最近中文字幕2019免费版| 777久久人妻少妇嫩草av网站| 国产精品成人在线| videos熟女内射| 夫妻午夜视频| 精品酒店卫生间| 国产精品嫩草影院av在线观看| 欧美亚洲 丝袜 人妻 在线| 18禁观看日本| 亚洲精品国产一区二区精华液| 99re6热这里在线精品视频| 亚洲欧美一区二区三区久久| 1024视频免费在线观看| 久久人人97超碰香蕉20202| 亚洲国产欧美在线一区| 精品少妇黑人巨大在线播放| 免费在线观看视频国产中文字幕亚洲 | 国产精品久久久久成人av| 国产极品天堂在线| 日日啪夜夜爽| 国产人伦9x9x在线观看| 欧美最新免费一区二区三区| 一二三四在线观看免费中文在| 中文字幕人妻熟女乱码| 精品国产一区二区三区四区第35| 精品一区二区三区av网在线观看 | 黄色毛片三级朝国网站| 永久免费av网站大全| 丝袜在线中文字幕| 色综合欧美亚洲国产小说| 99国产精品免费福利视频| 一区二区三区乱码不卡18| a级毛片在线看网站| 999久久久国产精品视频| 欧美日韩亚洲国产一区二区在线观看 | 国产又爽黄色视频| 我的亚洲天堂| 亚洲欧美精品自产自拍| 久久久久久免费高清国产稀缺| 女人精品久久久久毛片| 欧美激情 高清一区二区三区| 99九九在线精品视频| 日韩av在线免费看完整版不卡| 久久久久久人人人人人| 日本猛色少妇xxxxx猛交久久| 成年人免费黄色播放视频| www日本在线高清视频| 青草久久国产| 国产精品久久久av美女十八| 日韩成人av中文字幕在线观看| 国产伦人伦偷精品视频| 亚洲av综合色区一区| 成人国产av品久久久| 美女扒开内裤让男人捅视频| 成年人免费黄色播放视频| 国产片特级美女逼逼视频| 69精品国产乱码久久久| 成年动漫av网址| 啦啦啦视频在线资源免费观看| 男女下面插进去视频免费观看| 晚上一个人看的免费电影| 国产亚洲欧美精品永久| 在线天堂中文资源库| av女优亚洲男人天堂| 在线观看免费午夜福利视频| 精品人妻在线不人妻| 亚洲国产欧美网| 最新的欧美精品一区二区| 精品亚洲成国产av| 天美传媒精品一区二区| 欧美在线一区亚洲| 韩国精品一区二区三区| av天堂久久9| 欧美激情高清一区二区三区 | 18禁裸乳无遮挡动漫免费视频| 高清视频免费观看一区二区| 色婷婷久久久亚洲欧美| 免费在线观看黄色视频的| 久久久精品免费免费高清| 王馨瑶露胸无遮挡在线观看| 欧美亚洲 丝袜 人妻 在线| 午夜福利视频在线观看免费| 国产成人av激情在线播放| 满18在线观看网站| 亚洲精品国产av蜜桃| 亚洲国产中文字幕在线视频| 亚洲av电影在线进入| 建设人人有责人人尽责人人享有的| 一本色道久久久久久精品综合| 久久精品国产亚洲av涩爱| 美女国产高潮福利片在线看| 一区二区av电影网| 久久亚洲国产成人精品v| 老司机深夜福利视频在线观看 | 国产黄频视频在线观看| 一级爰片在线观看| 啦啦啦在线免费观看视频4| 午夜福利网站1000一区二区三区| 麻豆精品久久久久久蜜桃| 如日韩欧美国产精品一区二区三区| 日本91视频免费播放| 免费观看性生交大片5| 欧美xxⅹ黑人| 国产乱来视频区| 国产极品粉嫩免费观看在线| 日韩一区二区视频免费看| 亚洲国产最新在线播放| 波多野结衣一区麻豆| 人妻 亚洲 视频| 一本久久精品| 最黄视频免费看| 免费看不卡的av| 亚洲四区av| 人人妻人人澡人人看| kizo精华| 老司机影院成人| 一区二区av电影网| 人人妻人人爽人人添夜夜欢视频| 女性被躁到高潮视频| 久久这里只有精品19| 深夜精品福利| 水蜜桃什么品种好| 国产成人免费观看mmmm| 捣出白浆h1v1| 777久久人妻少妇嫩草av网站| 国产成人免费观看mmmm| 亚洲精品美女久久av网站| 97精品久久久久久久久久精品| 中国三级夫妇交换| 国产一区二区激情短视频 | 欧美日韩精品网址| 亚洲av男天堂| 黄色视频不卡| 日韩中文字幕欧美一区二区 | 久热爱精品视频在线9|