• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of SPES/Nano-TiO2 Composite Ultrafiltration Membrane and Its Anti-fouling Mechanism*

    2011-05-15 08:33:00LUOMingliang羅明良WENQingzhi溫慶志LIUJialin劉佳林LIUHongjian劉洪見andJIAZilong賈自龍
    關鍵詞:劉洪

    LUO Mingliang (羅明良), WEN Qingzhi (溫慶志), LIU Jialin (劉佳林), LIU Hongjian (劉洪見) and JIA Zilong (賈自龍)

    ?

    Fabrication of SPES/Nano-TiO2Composite Ultrafiltration Membrane and Its Anti-fouling Mechanism*

    LUO Mingliang (羅明良)**, WEN Qingzhi (溫慶志), LIU Jialin (劉佳林), LIU Hongjian (劉洪見) and JIA Zilong (賈自龍)

    College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266555, China

    Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration (UF) process. In this study, a sulfonated-polyethersulfone (SPES)/nano-TiO2composite UF membrane with good anti-fouling performance was fabricated by phase inversion and self-assembly methods. The TiO2nanoparticle self-assembly on the SPES membrane surface was confirmed by X-ray photoelectron spectroscopy (XPS) and FT-IR spectrometer. The morphology and hydrophilicity were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle goniometer, respectively. The anti-fouling mechanism of composite UF membrane was discussed through the analysis of the micro-structure and component of UF membrane surface. The results showed that the TiO2content and the micro-structure of the composite UF membrane surface had great influence on the separation and anti-fouling performance.

    anti-fouling, ultrafiltration membrane, sulfonated-polyethersulfone, TiO2nanoparticle, phase inversion, self-assembly

    1 INTRODUCTION

    In recent years, more and more attention in ultrafiltration (UF) membrane has been attracted for a variety of applications in wastewater treatment, substance separation, solute concentration, and so on. The major drawback in the extensive use of membranes includes membrane fouling, which results in flux decline during operation [1]. Polyethersulfone (PES) is a special engineering plastics. It possesses many good characteristics such as high mechanical property and heat distortion temperature, good heat-aging resistance, environmental endurance as well as easy processing. It has become an important membrane material, but its hydrophobicity controlled by PES molecular structure leads to low membrane flux and poor anti-fouling performance [2]. Recently, modification methods of UF membrane involve ultraviolet irradiation [3], graft polymerization [4, 5], glow discharge [6], ozone [7, 8], and so on in order to improve PES hydrophilicity. Among these methods, blending with inorganic materials, especially nanoparticles, has attracted much interest due to their convenient operation and mild conditions.

    Nanoparticles used to modify organic membranes include SiO2, TiO2, Al2O3, and so on [9], among which TiO2receives most attention because of its stability, availability, and hydrophilicity [10]. Molinari. prepared TiO2/polymer composite membranes in order to develop photocatalytic membrane reactors for wastewater treatment [11-13]. Kwak and coworkers studied the ability of a TiO2/polymer thin film composite (TFC) reverse osmosis membrane under ultraviolet (UV) radiation to mitigate biofouling by a photobactericidal effect [14, 15], focusing on the photocatalytic or photobactericidal effects of TiO2nanoparticles under UV radiation. Recently, Luo. [16] and Yang. [17] prepared PES/nano-TiO2and polysulfone(PSF)/nano- TiO2composite UF membrane, respectively. The hydrophilicity, mechanistic performance and thermal stability of the composite UF membrane were improved greatly, but in the UF operation, the low washing resistance of nanoparticles on the membrane surface affects the anti-fouling period and service performance due to the weak interaction between PES (or PSF) and nano-TiO2resulted from the less active groups.

    In this study, sulfonated-polyethersulfone (SPES) is used as the membrane material due to its good performance as well as PES, the active site and functional group in SPES. The SPES/nano-TiO2composite UF membrane is prepared by phase inversion and self-assembly methods, which is expected to present good anti-fouling and washing resistance performance. The morphology and hydrophilicity of UF membrane are characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle goniometer, respectively. X-ray photoelectron spectroscopy (XPS) and FT-IR spectrometer are employed to analyze the mechanism of nano-TiO2self-assembly on the SPES membrane surface. To examine the fouling mitigation ability of membranes, a filtration experiment is carried out and the anti-fouling mechanism is discussed through the analysis of the micro-structure and composition of UF membrane surface.

    2 EXPERIMENTAL

    2.1 Materials

    The SPES powder was obtained from Jilin University, China. The inherent viscosity (inh) of the polymer in-methyl pyrrolidone solvent and the equilibrium moisture uptake under ambient condition (relative humidity of 82% and 26°C) were 1.27 dl·g-1and 2.07%, respectively. The solvent,-dimethyl acetamide (DMAc) was in AR grade, and TiO2colloidal suspension was prepared by the sol-gel method in our laboratory [2].

    2.2 Fabrication of SPES/TiO2 composite ultrafiltration membranes

    The SPES ultrafiltration membrane was fabricated by phase inversion method.,-dimethyl acetamide (DMAc) solvent was used to dissolve the SPES for several hours under continuous agitation for complete dissolution and elimination of bubbles. The uniform transparent solution was then cast on a smooth glass plate with a knife edge. The thickness of the membrane was controlled by varying the thickness of adhesive tapes on the sides of the glass plate. The glassplate was kept in an environment with controlled temperature and humidity during membrane casting. After casting, the glass plate was immediately immersed in a gelling bath, which is generally demineralized water maintained at certain temperature, and the phase inversion started. After a few minutes, the thin polymeric film was taken from the glass. The film was washed repeatedly with demineralized water and stored wetted.

    The wet UF membrane was rinsed in a sodium carbonate solution [0.2% (by mass)] and then washed with demineralized water. The neat SPES membrane with an area of 38.5 cm2was dipped in the transparent TiO2colloidal solution, stirred for 1 min by ultrasonic method and immersed for 1 h, and then washed with demineralized water.

    2.3 Characterization

    2.3.1Characterization of the SPES/TiO composite UF membrane

    The size of TiO2nanoparticles was determined by a JEOL transmission electron microscope (TEM, JEOL JEM-200CX) at 120 kV. The surface morphology, roughness and mean pore size of the neat SPES membrane and the composite membrane were observed with a JSM-5800 scanning electron microscope (SEM) and a DualSopeTMatomic force microscope (AFM). The pore sizes were measured by inspecting line profiles of different low valleys (.. pores) and high peaks (.. nodules) on the AFM images at different locations of a membrane surface. Then the mean pore size of membrane was calculated.

    Figure 1 TEM micrograph of TiO2nanoparticles

    The contact angle of membrane surface was the average value of 10 measurements by Eromag-1 contact angle goniometer and the measurement error was±3°.

    A FT-IR spectrum of the composite was recorded on a Perkin-Elmer RXI over the range of 400-4000 cm-1. The spectral resolution was 4 cm-1. X-ray photoelectron spectroscopy (XPS) was employed to analyze the component of the composite membrane surface with a PHI-5400 spectrometer. The spectra were taken at the takeoff angle (defined as the angle between the detected photoelectron beam and the membrane surfaces) of 45°to give a sampling depth of ca. 2.3 nm.

    2.3.2Separation performance of the SPES/TiO composite UF membrane

    The mass transfer characteristics of UF membrane for 0.02% (by mass) polyethylene glycol (PEG-5000) aqueous solution were determined in an apparatus with a continuous flow at 0.2 MPa and 25°C for 30 min. The water flux was calculated by direct measurement of the mass of the permeate flow:

    whereis the membrane flux (L·m-2·h-1),is the permeate volume (L),is the membrane area (m2), andis ultrafiltration time (h).

    The solute rejection was defined as

    whereis the solute rejection,fis the feed concentration, andpis the permeate concentration.

    3 RESULTS AND DISCUSSION

    3.1 Morphology, roughness and pore size of the composite membrane surface

    The TiO2nanoparticle size assembled on the SPES membrane is determined by TEM, as shown in Fig. 1. The particle size is about 5-42 nm. The SEM graphs of the surface morphology before and after treated by TiO2colloidal solution are shown in Fig. 2. The neat SPES membrane has the typical surface morphology of a ridge-and-valley structure [Fig. 2 (a)], but the structure is not apparent. Fig. 2 (b) displays the surface morphology of the TiO2self-assembled composite membrane, where TiO2nanoparticles appear as nodular shapes on the ridges so that the membrane surface has clear ridge-and-valley structure. Fig. 3 demonstrates the 3D AFM image of membrane surface for the neat SPES membrane and the SPES/TiO2composite membrane at a scan size of 5 μm×5 μm. The brightest area presents the highest point of the membrane surface and the dark regions indicate valley or membrane pores. The surface morphology is greatly changed due to TiO2nanoparticles assembled on SPES membrane and the ridge-and-valley structure on the composite membrane is distinct.

    The average pore size and roughness of membrane surface were obtained from AFM images using Danish Micro Engineering Scanning Probe Microscopes (DME SPM) software. The size of 30 pores in 1 μm×1 μm area of membrane surface was measured from height profile of two-dimensional AFM images using SPM software and the average value was reported. The results are given in Table 1. The mean pore size of the composite membrane surface decreases slightly due to the self-assembly of TiO2nanoparticles on the SPES membrane surface. The surface roughness parameters of the membrane, expressed in terms of the mean roughness (a), the root mean square of thedata (q) and the mean difference between the highest peaks and lowest valleys (z), were calculated by DME SPM software in 10 μm×10 μm scan size and are presented in Table 1. The roughness parameters for the composite membranes increase remarkably. Since the roughness parameters depend on the-value, which is the vertical distance that the piezoelectric scanner moves, this relationship is expected. When the surface includes deep depressions (pores) and high peaks (nodules), the tip moves up and down over a wide range and the roughness parameter of surface is high.

    Table 1 Mean pore size and roughness of the neat SPESand SPES/TiO2 membrane surface

    Figure 2 SEM micrograph of UF membrane surface

    Figure 3 AFM micrographs of UF membrane

    3.2 XPS and FT-IR analyses of the composite membrane surface

    To confirm the self-assembly TiO2nanoparticles on the composite membrane surface and further to estimate the abrasive resistance of the membrane surface, FT-IR method was employed to analyze the interaction between nano-TiO2and SPES. X-ray photoelectron spectroscopic (XPS) was carried out for investigating the change of membrane surface elements under various UF conditions.

    Figure 4 FT-IR spectra of pure SPES and SPES/TiO2composites

    a—SPES; b—SPES/TiO2

    Figure 5 Chemical bond structure models of SPES/TiO2composite

    The constituent elements of the composite membrane surface are hydrogen, carbon, oxygen, sulfur, chlorine, and titanium. XPS analyses were performed on the elements of carbon, oxygen, sulfur, chlorine, and titanium, but not on hydrogen because its photoelectron cross-section is too small to be characterized by XPS. The core-electron binding energies of the constituent elements are typically 287eV (C1s), 537eV (O1s), 23eV (O2s), 229eV (S2s), 270eV (Cl2s), 199eV (Cl2p) and 458eV (Ti2p) [23]. Fig. 6 shows the resulting spectrum, in which all the photoelectron peaks appear at positions similar to the above values and Ti peaks appear. The results provide the evidence of TiO2self-assembly on the composite membrane surface.

    On the basis of the observed photoelectron peaks and corresponding sensitivity factors, the relative atomic concentrations of the individual elements can be calculated:

    Figure 6 XPS spectra of the elements on the composite membrane

    whereAis the photoelectron peak area of element,Sis the sensitivity factor for element, andis the number of the elements in the sample. In Table 2, the elemental compositions determined by an angle-resolved XPS analysis are summarized for the composite membranes with different washing conditions and UF operation time. There is an initial drop in the relative atomic concentration of Ti element after washing the composite membrane, which attaches to the surface when dipping into the TiO2colloidal solution. An additional loss of TiO2nanoparticles is observed in the UF operation for 5 h. The UF process was operated in the cross-flow mode where the feed solution was pumped across the composite membrane parallel to its surface. Some TiO2particles are wiped out and the loosely bound TiO2nanoparticles cannot overcome the shear force. However, the TiO2loss does not continue as the UF operation time increases, and the amount of TiO2changes little after 15 h of UF operation as shown by the samples No. 4 and No. 5. This result indicates that a considerable amount of TiO2nanoparticles remains tightly bound on the membrane surface under actual UF operation conditions, which is expected to improve the hydrophilicity of SPES membrane and prevent the membrane from fouling. The results of samples No. 4 and No. 6 indicate that the washing resistance of the SPES/TiO2composite membrane increases remarkably compared to the PES/TiO2composite membrane [16]. Thus the increase of active site, functional group and electronegativity on the SPES membrane surface enhances the interaction between SPES and nano-TiO2based on the FT-IR and XPS analyses.

    Table 2 Elements compositions of the SPES/TiO2composite membrane under various washingconditions and UF time

    ①Analyses for the TiO2self-assembled SPES UF membranes (1) just after preparation, (2) after washing with flowing water, (3) after UF operation for 5.0 h, (4) after UF operation for another 15.0 h, and (5) after UF operation for another 45.0 h; (6) analysis for the TiO2self-assembled PES UF membranes after the same UF operation time as No. 4 sample [16].

    Table 3 Contact angle and UF separationperformance of membrane

    ① (7) neat SPES; (8) SPES/TiO2; (9) PES/TiO2UF membranes [16].

    3.3 Anti-fouling mechanism and separation performance of the composite membrane

    TiO2nanoparticles in the anatase form are very hydrophilic, photoactive and practical for wide environmental applications such as water purification, wastewater treatment, hazardous waste control, air purification, and water disinfection [24]. In this work, the composite UF membrane is devised by the self-assembly between TiO2nanoparticle and SPES with the ether bond, sulfuryl group and sulfonic group (as shown in Fig. 5) because of the strong electronegative oxygen in the ether bond, sulfuryl group and sulfonic group of the SPES. As the UF process was operated in the cross-flow mode under high pressure, simply adsorbed particles may be detached from the membrane surface. XPS results in Table 2 indicate that some TiO2particles in the composite membrane have sufficient binding strength for the actual operation, which agrees with other researches on the interaction behavior of TiO2nanoparticles [25]. It is concluded that a novel organic-inorganic membrane is successfully prepared by self-assembly process.

    The hydrophilic and separation performance of the membrane surface untreated and treated by TiO2colloidal solution are presented in Table 3. The area of UF membrane is 38.5 cm2, the applied pressure is 0.2 MPa, operation temperature is 25°C, and the feed concentration is 0.02% (by mass) (PEG-5000) in this test. As shown in Table 3, the contact angle of the UF membrane treated by TiO2colloidal solution is smaller, but the flux and retention increase to some degree. Combined to the results of FT-IR and XPS analysis, it is shown that the hydrophilicity of the PES itself is improved through sulfonation and nano-TiO2self-assembly on the SPES membrane surface and the antifouling performance is better. On the other hand, the SEM and AFM photographs show that the microstructure of SPES membrane surface is changed due to nano-TiO2self-assembly. The ridge-and-valley structure with micro- or nano-scale is distinct on the SPES membrane surface (Fig. 3) and the surface roughness is changed (Table 1). Generally, the contact angle of hydrophilic surface decreases with the increases of roughness [26], so the contact angle of the composite UF membrane declines remarkably. Since the hydroxyl is rich on the nano-TiO2surface and TiO2nanoparticles have high hydrophilicity and large specific surface, the hydroxyl content on the composite membrane is increased greatly by the self-assembly of nanoparticles on the membrane surface and the membrane hydrophilicity is higher. The water molecules are easy to permeate through the membrane and the flux increases significantly. At the same time, the pore structure is changed with TiO2incorporated into membrane. The pore sizes become more uniform and the surface becomes more compact, so the retention is improved.

    4 CONCLUSIONS

    Membrane fouling by hydrophobic substances is the main cause to deteriorate the ultrafiltration (UF) performance of polyethersulfone (PES)-type membranes. A new type of composite membrane is developed as an approach to solve the fouling problem. TiO2nanoparticles are incorporated onto the sulfonated polyethersulfone membrane surface by self-assembly. The micro- or nano-scale ridge-and-valley structure of the composite UF membrane is examined with scanning electron microscopy (SEM) and atomic force microscopy (AFM) and the roughness of membrane surface is determined. The FT-IR and X-ray photoelectron spectroscopy (XPS) demonstrate that TiO2particles are tightly self-assembled with sufficient bonding strength for the actual UF process. The contact angle test of the composite membrane shows that the hydrophilicity of the membrane surface is improved remarkably. The separation experiment verifies the prevention of the composite membrane from the fouling of hydrophobic substances, suggesting a possible use as a new type of antifouling composite membrane.

    1 Wang, Y., Kim, J.H., Choo, K.H., Lee, Y.S., Lee, C.H., “Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization”,..., 169 (2), 269-276 (2000).

    2 Luo, M.L., Tang, W., Zhao, J., Q, Pu, C.S., “Hydrophilic modification of polyethersulfone used TiO2nanoparticles by a sol-gel process”,..., 172 (3), 431-436 (2006).

    3 Nystrom, M., Jarvinen, P., “Modification of polysulfone ultrafiltration membranes with UV irradiation and hydrophilicity increasing agents”,..., 60 (2-3), 275-296 (1991).

    4 Wu, Y.T., Shi, Y.J., “Polysulfone ultrafiltration membranes modified by irradiation grafting with acrylic acid monomer”,, 21 (1), 21-25 (1995). (in Chinese)

    5 Fujimoto, K., Takebayashi, Y., Inoue, H., Ikada, Y., “Polyurethane surface modification by graft polymerization of acrylamide for reduced protein adsorption and platelet adhesion”,, 14 (6), 442-448 (1993).

    6 Suzuki, M., Kishida, A., Iwata, H., Ikada, Y., “Graft copolymerization of acrylamide onto a polyethylene surface pretreated with a glow discharge”,, 19 (7), 1804-1808 (1986).

    7 Fujimoto, K., Takebayashi, Y., Inoue, H., Ikada, Y., “Ozone-induced graft polymerization onto polymer surface”,....., 31 (4), 1035-1043 (1993).

    8 Yamauchi, J., Yamaoka, A., Ikemoto, K., Matsui, T., “Graft copolymerization of methyl methacrylate onto polypropylene oxidized with ozone”,...., 43 (6), 1197-1203(1991).

    9 Kim, K.M., Park, N.G., Ryu, K.S., Chang, S.H., “Characteristics of PVdF-HFp/TiO2compositemembrane electrolytes prepared by phase inversion and conventional casting methods”,., 51 (26), 5636-5644 (2006).

    10 Cao, X.C., Ma, J., Shi, X.H., Ren, Z.J., “Effect of TiO2nanoparticle size on the performance of PVDF membrane”,..., 253 (4), 2003-2010 (2006).

    11 Molinari, R., Mungari, M., Drioli, E., Di Paola, A., Loddo, V., Palmisano, L., Schiavello, M., “Study on a photocatalytic membrane reactor for water puri?cation”,., 55 (1-2), 71-78 (2000).

    12 Molinari, R., Grande, C., Drioli, E., Palmisano, L., Schiavello, M., “Photocatalytic membrane reactors for degradation of organic pollutants in water”,., 67 (1-3), 273-279 (2001).

    13 Molinari, R., Palmisano, L., Drioli, E., Schiavello, M., “Studies on various reactor con?gurations for coupling photocatalysis and membrane process in water puri?cation”,..., 206 (1-2), 399-415 (2002).

    14 Kwak, S.Y., Kim, S.H., Kim, S.S., “Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling (I) Preparation and characterization of TiO2nanoparticle self-assembled aromatic polyamide thin ?lm composite (TFC) membrane”,..., 35 (11), 2388-2394 (2001).

    15 Kim, S.H., Kwak, S.Y., Sohn, B.H., Park, T.H., “Design of TiO2nanoparticle self-assembled aromatic polyamide thin-?lm-composite (TFC) membrane as an approach to solve biofouling problem”,..., 211(1), 157-165 (2003).

    16 Luo, M.L., Zhao, J.Q., Tang, W., Pu, C.S., “Hydrophilic modi?cationof polyethersulfone ultra?ltration membrane surface by self-assembly of TiO2nanoparticles”,..., 249 (1-4), 76-84 (2005).

    17 Yang, Y.N., Wang, P., Zheng, Q.Z., “Polysulfone/TiO2hybrid ultrafiltration membrane prepared by the sol-gel process”,, 64 (6), 569-573 (2006).

    18 Lu, Y.Q., Deng, Z.H., Applied Infrared Spectra Analysis, Electronic Industry Press, Beijing (1989). (in Chinese)

    19 Lu, H.J., Shen, L.S., Wang, C.X., Jiang, D.Z., “Sulphonation and characterization of polyethersulfone(PES)”,..., 17 (5), 833-835 (1998).

    20 Wang, X.L., Organic Chemistry, Higher Education Press, Beijing (1987). (in Chinese)

    21 Sun, H.W., Zhong, S.H., “Preparation of IR spectra analysis of TiO2-polyethylene complex membrane”,..., 17 (5), 42-46 (1997). (in Chinese)

    22 Tang, F.Q., Hou, L.P., Guo, G.S., “Preparation of TiO2nanometer powders”,..., 16 (4), 615-619 (2001).

    23 Wang, J.Q., Wu, W.H., Feng, D.M., Electron Spectroscopy, National Defence Industry Press, Beijing (1992). (in Chinese)

    24 Mills, A., Davies, R.H., Worsley, D., “Water purification by semiconductor photocatalysis”,..., 22 (6), 417-434 (1993).

    25 Mills, A., Hunte, S.L., “An overview of semiconductor photocatalysis”,...:., 108 (1), 1-35 (1997).

    26 Xu, J.H., Li, M., Zhao, Y., “Advance of wetting behavior research on the superhydrophobic surface with micro- and nano- structures”,, 18 (11), 1425-1433 (2006). (in Chinese)

    ** To whom correspondence should be addressed. E-mail: yfsailing_wxg@163.com

    2009-12-08,

    2010-09-20.

    the Natural Science Foundation of Shandong Province (Q2007B01).

    猜你喜歡
    劉洪
    Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
    劉洪:我當“網紅”是為家鄉(xiāng)圈粉
    廉政瞭望(2021年6期)2021-07-13 14:45:15
    Suppression of ice nucleation in supercooled water under temperature gradients
    Lagrangian analysis of the formation and mass transport of compressible vortex rings generated by a shock tube?
    臺北“國家圖書館”藏明劉洪慎獨齋《文獻通考》刻本考
    天一閣文叢(2019年0期)2019-11-25 01:32:08
    In-situ Observation of the Growth of Fibrous and Dendritic Crystals in Quasi-2-dimensional Poly(ethylene oxide) Ultrathin Films*
    最大涉案金額欠薪案宣判勞務公司老總獲刑6年
    斯人已逝 浩氣長存—— 『最美消防員戰(zhàn)士』劉洪坤、劉洪魁
    Translocation of Polymer Through a Nanopore Studied by Langevin Dynamics: Effect of the Friction Coefficient*
    Modeling of Surface Tension and Viscosity for Non-electrolyte Systems by Means of the Equation of State for Square-wellChain Fluids with Variable Interaction Range*
    性欧美人与动物交配| 舔av片在线| 亚洲熟妇熟女久久| 91久久精品国产一区二区成人 | 国产熟女xx| 老汉色∧v一级毛片| 国产主播在线观看一区二区| 亚洲aⅴ乱码一区二区在线播放| 国产日本99.免费观看| 国内精品久久久久精免费| 亚洲av二区三区四区| 色在线成人网| 国产黄色小视频在线观看| 欧美色视频一区免费| 丰满人妻熟妇乱又伦精品不卡| 内射极品少妇av片p| 国产三级中文精品| 最近视频中文字幕2019在线8| 久9热在线精品视频| 天堂影院成人在线观看| 波野结衣二区三区在线 | 亚洲人与动物交配视频| 91在线观看av| 国产一区二区在线观看日韩 | 欧美zozozo另类| 黄色片一级片一级黄色片| 在线播放国产精品三级| 免费无遮挡裸体视频| 啦啦啦免费观看视频1| 亚洲美女黄片视频| 亚洲激情在线av| 老鸭窝网址在线观看| 女人被狂操c到高潮| 韩国av一区二区三区四区| 最近最新免费中文字幕在线| 欧美另类亚洲清纯唯美| 又紧又爽又黄一区二区| 亚洲精品在线观看二区| 亚洲成人中文字幕在线播放| 国产精品影院久久| 成熟少妇高潮喷水视频| 婷婷丁香在线五月| 又爽又黄无遮挡网站| 熟女少妇亚洲综合色aaa.| 国产单亲对白刺激| 国产主播在线观看一区二区| 亚洲专区中文字幕在线| 亚洲片人在线观看| 色综合亚洲欧美另类图片| 18禁国产床啪视频网站| 高清日韩中文字幕在线| 午夜福利免费观看在线| 男女视频在线观看网站免费| 啪啪无遮挡十八禁网站| 午夜老司机福利剧场| 日韩亚洲欧美综合| 麻豆国产av国片精品| 美女 人体艺术 gogo| 久99久视频精品免费| 午夜精品在线福利| 欧美成狂野欧美在线观看| 最近最新免费中文字幕在线| 深夜精品福利| 变态另类丝袜制服| 黄色视频,在线免费观看| 国产精品av视频在线免费观看| 香蕉av资源在线| 老熟妇仑乱视频hdxx| 久久久久亚洲av毛片大全| 在线观看一区二区三区| 他把我摸到了高潮在线观看| 久久中文看片网| 亚洲国产欧洲综合997久久,| 亚洲精品色激情综合| 少妇的逼好多水| 亚洲国产欧美人成| 深爱激情五月婷婷| 亚洲av一区综合| 欧美成人a在线观看| 亚洲av免费在线观看| 波多野结衣高清作品| 国产亚洲欧美98| 成人性生交大片免费视频hd| 别揉我奶头~嗯~啊~动态视频| 日韩有码中文字幕| 欧美成狂野欧美在线观看| 最近在线观看免费完整版| 国产麻豆成人av免费视频| 麻豆成人午夜福利视频| 亚洲国产色片| 非洲黑人性xxxx精品又粗又长| 午夜激情欧美在线| 很黄的视频免费| 狂野欧美激情性xxxx| 午夜福利成人在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲乱码一区二区免费版| 久久久久亚洲av毛片大全| 久久精品夜夜夜夜夜久久蜜豆| 国产精品香港三级国产av潘金莲| 国产一区二区亚洲精品在线观看| 九九热线精品视视频播放| 日本a在线网址| 欧美成人a在线观看| 俺也久久电影网| 午夜精品在线福利| 美女 人体艺术 gogo| 国产单亲对白刺激| 国产精品永久免费网站| 国产成人a区在线观看| 夜夜躁狠狠躁天天躁| 免费人成在线观看视频色| 中文字幕高清在线视频| 人人妻人人看人人澡| 亚洲午夜理论影院| 伊人久久精品亚洲午夜| 婷婷精品国产亚洲av| 老汉色∧v一级毛片| 999久久久精品免费观看国产| 757午夜福利合集在线观看| 全区人妻精品视频| 在线a可以看的网站| 身体一侧抽搐| 国产高清视频在线播放一区| 国内精品美女久久久久久| tocl精华| 欧美性猛交╳xxx乱大交人| 国产一区二区三区在线臀色熟女| 一个人免费在线观看的高清视频| 女人十人毛片免费观看3o分钟| 久久久久久久精品吃奶| 日本一二三区视频观看| 国内精品久久久久久久电影| 狂野欧美白嫩少妇大欣赏| 制服丝袜大香蕉在线| 日本 欧美在线| 精品欧美国产一区二区三| 中出人妻视频一区二区| 国产激情偷乱视频一区二区| 老司机深夜福利视频在线观看| 久久精品91蜜桃| 搡老岳熟女国产| 日本免费a在线| 国模一区二区三区四区视频| 色视频www国产| 丁香六月欧美| 亚洲精品一卡2卡三卡4卡5卡| 97碰自拍视频| 亚洲激情在线av| 日日干狠狠操夜夜爽| 老司机午夜十八禁免费视频| 国产色爽女视频免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 两个人的视频大全免费| 精品国产美女av久久久久小说| 天美传媒精品一区二区| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站高清观看| 国语自产精品视频在线第100页| 亚洲美女黄片视频| 久久久国产精品麻豆| 男插女下体视频免费在线播放| 亚洲久久久久久中文字幕| 欧美+日韩+精品| 精品电影一区二区在线| 亚洲国产欧洲综合997久久,| 国模一区二区三区四区视频| 午夜福利成人在线免费观看| 在线观看舔阴道视频| 亚洲专区中文字幕在线| 老汉色av国产亚洲站长工具| 一本久久中文字幕| 精品久久久久久久久久久久久| 国内精品一区二区在线观看| 啦啦啦免费观看视频1| 男女之事视频高清在线观看| bbb黄色大片| 久久国产精品人妻蜜桃| 国产精品98久久久久久宅男小说| 中文字幕人成人乱码亚洲影| 日韩欧美免费精品| 在线看三级毛片| 看黄色毛片网站| 在线观看av片永久免费下载| 亚洲精品色激情综合| 久久久久国内视频| 亚洲不卡免费看| 国产毛片a区久久久久| 亚洲美女黄片视频| 欧美性感艳星| 日本撒尿小便嘘嘘汇集6| 小蜜桃在线观看免费完整版高清| 伊人久久大香线蕉亚洲五| 男女床上黄色一级片免费看| 免费看十八禁软件| 法律面前人人平等表现在哪些方面| 久久精品国产亚洲av涩爱 | 国产精品野战在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 熟女电影av网| 五月伊人婷婷丁香| 俄罗斯特黄特色一大片| 国产日本99.免费观看| 欧美高清成人免费视频www| 波多野结衣高清无吗| 久久久久久大精品| 中文字幕精品亚洲无线码一区| 国产欧美日韩精品一区二区| 精品人妻偷拍中文字幕| 国产精品日韩av在线免费观看| av女优亚洲男人天堂| 国产激情欧美一区二区| 麻豆久久精品国产亚洲av| 老汉色av国产亚洲站长工具| 99精品久久久久人妻精品| 免费在线观看日本一区| 欧美三级亚洲精品| 亚洲av成人av| 国产欧美日韩一区二区精品| 脱女人内裤的视频| 国产爱豆传媒在线观看| 国产亚洲欧美在线一区二区| 一本一本综合久久| 国产在线精品亚洲第一网站| 国产精品1区2区在线观看.| 五月伊人婷婷丁香| 51午夜福利影视在线观看| 色视频www国产| 美女被艹到高潮喷水动态| 国产精品亚洲一级av第二区| www日本黄色视频网| 色综合站精品国产| 麻豆成人午夜福利视频| 天堂影院成人在线观看| 久久久久国产精品人妻aⅴ院| 男人舔奶头视频| 长腿黑丝高跟| 高清毛片免费观看视频网站| 午夜福利成人在线免费观看| 欧美乱码精品一区二区三区| 好男人电影高清在线观看| 日韩欧美一区二区三区在线观看| 欧美成人a在线观看| 国产aⅴ精品一区二区三区波| 每晚都被弄得嗷嗷叫到高潮| 免费观看精品视频网站| 99视频精品全部免费 在线| 亚洲,欧美精品.| 日韩亚洲欧美综合| 国产色爽女视频免费观看| 日韩欧美 国产精品| 天天添夜夜摸| 内地一区二区视频在线| 啦啦啦观看免费观看视频高清| 欧美日韩综合久久久久久 | 男人和女人高潮做爰伦理| 麻豆一二三区av精品| 五月伊人婷婷丁香| 高清毛片免费观看视频网站| 国产av麻豆久久久久久久| 国产野战对白在线观看| 欧美成人a在线观看| av黄色大香蕉| 国产熟女xx| 色在线成人网| 亚洲精品影视一区二区三区av| 亚洲av成人精品一区久久| 欧美一区二区精品小视频在线| 我要搜黄色片| av黄色大香蕉| 日韩中文字幕欧美一区二区| 丰满乱子伦码专区| 亚洲欧美精品综合久久99| 欧美最新免费一区二区三区 | 国产99白浆流出| 亚洲精品色激情综合| aaaaa片日本免费| 特级一级黄色大片| 亚洲国产精品999在线| 国产精品 国内视频| 国产又黄又爽又无遮挡在线| 1000部很黄的大片| 国产欧美日韩精品亚洲av| 在线观看免费午夜福利视频| 亚洲久久久久久中文字幕| 亚洲专区国产一区二区| 国产欧美日韩精品亚洲av| 亚洲欧美一区二区三区黑人| 午夜福利成人在线免费观看| 国产精品久久久久久久电影 | 欧美高清成人免费视频www| 亚洲乱码一区二区免费版| 嫩草影院精品99| 久久草成人影院| 欧美+日韩+精品| 国产一区在线观看成人免费| 黄色视频,在线免费观看| 蜜桃亚洲精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 亚洲18禁久久av| 亚洲欧美激情综合另类| 免费无遮挡裸体视频| 99精品欧美一区二区三区四区| 美女 人体艺术 gogo| 日本熟妇午夜| 亚洲18禁久久av| 两人在一起打扑克的视频| 国内精品一区二区在线观看| 高清日韩中文字幕在线| 日韩有码中文字幕| 亚洲一区二区三区不卡视频| 国内揄拍国产精品人妻在线| 久久九九热精品免费| 小蜜桃在线观看免费完整版高清| 2021天堂中文幕一二区在线观| 日韩av在线大香蕉| 久久久久精品国产欧美久久久| 精品国产超薄肉色丝袜足j| 国产一区二区在线av高清观看| 国内精品久久久久久久电影| 99久久九九国产精品国产免费| 国产精品免费一区二区三区在线| 久久久国产成人免费| 欧美日本视频| 最新中文字幕久久久久| 嫁个100分男人电影在线观看| 啦啦啦观看免费观看视频高清| 国内少妇人妻偷人精品xxx网站| 淫秽高清视频在线观看| 97超级碰碰碰精品色视频在线观看| 在线播放无遮挡| 午夜影院日韩av| 国产高清有码在线观看视频| 精品99又大又爽又粗少妇毛片 | 欧美成狂野欧美在线观看| 欧美黄色淫秽网站| 欧美最新免费一区二区三区 | 日本黄大片高清| 久久久久久国产a免费观看| 非洲黑人性xxxx精品又粗又长| 老熟妇乱子伦视频在线观看| 九九热线精品视视频播放| 欧美色欧美亚洲另类二区| 特级一级黄色大片| 国产欧美日韩一区二区三| 中文字幕精品亚洲无线码一区| 三级男女做爰猛烈吃奶摸视频| 国产精品爽爽va在线观看网站| 精品久久久久久久久久久久久| 免费看a级黄色片| 久久九九热精品免费| 特级一级黄色大片| 日本精品一区二区三区蜜桃| 精品日产1卡2卡| 2021天堂中文幕一二区在线观| 1024手机看黄色片| 国产乱人伦免费视频| 19禁男女啪啪无遮挡网站| 色尼玛亚洲综合影院| 男女午夜视频在线观看| 精品欧美国产一区二区三| 波野结衣二区三区在线 | 俺也久久电影网| 欧美日韩国产亚洲二区| 在线免费观看的www视频| 夜夜夜夜夜久久久久| 国产乱人伦免费视频| 国产精品三级大全| 亚洲不卡免费看| 国产野战对白在线观看| 美女cb高潮喷水在线观看| 国产伦一二天堂av在线观看| 精品乱码久久久久久99久播| 久久久久国内视频| 精品一区二区三区视频在线 | 97超视频在线观看视频| 日韩国内少妇激情av| 午夜a级毛片| 国产成人av教育| 麻豆成人av在线观看| 日日干狠狠操夜夜爽| 中文字幕av在线有码专区| 深夜精品福利| 婷婷丁香在线五月| 国产高潮美女av| 欧美成人一区二区免费高清观看| 欧美日韩国产亚洲二区| 床上黄色一级片| 亚洲天堂国产精品一区在线| 最好的美女福利视频网| 给我免费播放毛片高清在线观看| 欧美日本视频| 国产高清视频在线观看网站| 法律面前人人平等表现在哪些方面| 日本五十路高清| 一级作爱视频免费观看| 亚洲人成网站在线播放欧美日韩| 免费观看人在逋| 一级毛片高清免费大全| 亚洲精品色激情综合| www国产在线视频色| 少妇高潮的动态图| 99视频精品全部免费 在线| 亚洲av成人av| 成熟少妇高潮喷水视频| 国产高清视频在线播放一区| 嫩草影视91久久| 嫩草影院入口| 欧美不卡视频在线免费观看| a级毛片a级免费在线| 制服人妻中文乱码| 免费看a级黄色片| 99精品久久久久人妻精品| 亚洲成人免费电影在线观看| 两个人视频免费观看高清| 看片在线看免费视频| 国产免费av片在线观看野外av| 亚洲成a人片在线一区二区| 亚洲中文字幕一区二区三区有码在线看| 狠狠狠狠99中文字幕| 国产色婷婷99| 18禁黄网站禁片免费观看直播| 亚洲国产色片| 国产精品久久久久久久电影 | 中文字幕久久专区| 亚洲18禁久久av| 最近最新中文字幕大全电影3| 国产真实伦视频高清在线观看 | 美女高潮喷水抽搐中文字幕| 99久久成人亚洲精品观看| 男女做爰动态图高潮gif福利片| 校园春色视频在线观看| 日本与韩国留学比较| 日韩亚洲欧美综合| 在线观看66精品国产| 国产伦人伦偷精品视频| 国产亚洲精品综合一区在线观看| 国产精品av视频在线免费观看| 精品午夜福利视频在线观看一区| 99热这里只有精品一区| 少妇熟女aⅴ在线视频| 一个人免费在线观看的高清视频| 可以在线观看毛片的网站| 美女高潮喷水抽搐中文字幕| xxx96com| 久久精品国产清高在天天线| 色综合欧美亚洲国产小说| 久久久久亚洲av毛片大全| 熟女人妻精品中文字幕| 午夜两性在线视频| 国产精品久久久久久人妻精品电影| 国产伦一二天堂av在线观看| 乱人视频在线观看| 亚洲中文日韩欧美视频| 在线免费观看的www视频| 成人亚洲精品av一区二区| 成人三级黄色视频| 欧美3d第一页| 国产亚洲精品久久久久久毛片| 性色av乱码一区二区三区2| 18+在线观看网站| 天堂√8在线中文| 国产成人a区在线观看| 美女高潮喷水抽搐中文字幕| 国产 一区 欧美 日韩| 18禁国产床啪视频网站| 精品人妻一区二区三区麻豆 | 日韩欧美一区二区三区在线观看| 国产精品久久电影中文字幕| 一进一出抽搐gif免费好疼| 一级作爱视频免费观看| h日本视频在线播放| 99国产精品一区二区蜜桃av| 757午夜福利合集在线观看| 国产伦人伦偷精品视频| 国产成+人综合+亚洲专区| 中文字幕熟女人妻在线| 小蜜桃在线观看免费完整版高清| 亚洲内射少妇av| 黑人欧美特级aaaaaa片| 18禁国产床啪视频网站| 中文在线观看免费www的网站| 热99在线观看视频| 亚洲av电影不卡..在线观看| 午夜a级毛片| 精品99又大又爽又粗少妇毛片 | 天堂网av新在线| 精品国产三级普通话版| 老司机午夜福利在线观看视频| 好男人电影高清在线观看| 黄片大片在线免费观看| 激情在线观看视频在线高清| 男女视频在线观看网站免费| 黄色日韩在线| 中亚洲国语对白在线视频| av天堂中文字幕网| 99久久无色码亚洲精品果冻| 亚洲欧美日韩东京热| 欧美日韩乱码在线| 国产亚洲精品一区二区www| 中文字幕熟女人妻在线| 午夜免费男女啪啪视频观看 | 精品熟女少妇八av免费久了| 色哟哟哟哟哟哟| 久久久色成人| 精品一区二区三区人妻视频| 亚洲av免费高清在线观看| 成年女人看的毛片在线观看| 一本久久中文字幕| 久久精品91蜜桃| 免费观看的影片在线观看| 熟女电影av网| 高清毛片免费观看视频网站| 动漫黄色视频在线观看| 日韩亚洲欧美综合| 国产免费一级a男人的天堂| 1024手机看黄色片| 久久久久久人人人人人| 非洲黑人性xxxx精品又粗又长| 伊人久久大香线蕉亚洲五| 色视频www国产| 国产真实伦视频高清在线观看 | 日本撒尿小便嘘嘘汇集6| 国产三级中文精品| 十八禁人妻一区二区| 在线观看免费视频日本深夜| 一进一出抽搐动态| 国产精品av视频在线免费观看| av专区在线播放| 国内毛片毛片毛片毛片毛片| 亚洲国产高清在线一区二区三| 亚洲人与动物交配视频| 草草在线视频免费看| 亚洲av中文字字幕乱码综合| 天天躁日日操中文字幕| 又粗又爽又猛毛片免费看| 国产精品久久电影中文字幕| 丰满人妻一区二区三区视频av | 一个人看视频在线观看www免费 | 亚洲精品粉嫩美女一区| 中文在线观看免费www的网站| 亚洲成人精品中文字幕电影| 两人在一起打扑克的视频| 午夜福利18| 女人被狂操c到高潮| 啦啦啦免费观看视频1| 国产久久久一区二区三区| 久久精品国产清高在天天线| 天堂网av新在线| 亚洲精品国产精品久久久不卡| 午夜视频国产福利| 舔av片在线| 在线十欧美十亚洲十日本专区| 99国产精品一区二区蜜桃av| 三级男女做爰猛烈吃奶摸视频| 国产亚洲av嫩草精品影院| 成人av一区二区三区在线看| 日韩有码中文字幕| 精品人妻1区二区| 国产69精品久久久久777片| 欧美bdsm另类| 最新美女视频免费是黄的| 有码 亚洲区| 老司机深夜福利视频在线观看| 久久天躁狠狠躁夜夜2o2o| 精品不卡国产一区二区三区| 国产精华一区二区三区| 两个人的视频大全免费| 狂野欧美白嫩少妇大欣赏| 亚洲美女黄片视频| 亚洲精品乱码久久久v下载方式 | 少妇的丰满在线观看| 午夜福利欧美成人| 国产久久久一区二区三区| 精品乱码久久久久久99久播| 免费观看精品视频网站| 露出奶头的视频| 久久精品亚洲精品国产色婷小说| 久久久久久久精品吃奶| 在线观看免费视频日本深夜| 久久久国产成人免费| 国产精品影院久久| 99久久综合精品五月天人人| 九九久久精品国产亚洲av麻豆| 日本一本二区三区精品| 欧美日韩中文字幕国产精品一区二区三区| 欧美乱码精品一区二区三区| 久久6这里有精品| 亚洲国产高清在线一区二区三| 亚洲成人久久爱视频| 最好的美女福利视频网| 一卡2卡三卡四卡精品乱码亚洲| 美女黄网站色视频| 亚洲av中文字字幕乱码综合| 亚洲av一区综合| 国产黄片美女视频| 亚洲欧美日韩高清专用| 久久欧美精品欧美久久欧美| 亚洲av不卡在线观看| 欧美黄色片欧美黄色片| 午夜免费男女啪啪视频观看 | 99久久综合精品五月天人人| 国产精品免费一区二区三区在线| 国产探花极品一区二区| 亚洲成人久久爱视频| 国产91精品成人一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲人成电影免费在线| 九色成人免费人妻av| av专区在线播放| 一个人免费在线观看电影| 在线a可以看的网站| 国产欧美日韩一区二区精品| 日本五十路高清|