• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pervaporation Separation of Butanol-Water Mixtures UsingPolydimethylsiloxane/Ceramic Composite Membrane*

    2011-05-15 08:52:28LIUGongping劉公平HOUDan侯丹WEIWang衛(wèi)旺XIANGLIFenjuan相里粉娟andJINWanqin金萬勤
    關(guān)鍵詞:公平

    LIU Gongping (劉公平), HOU Dan (侯丹), WEI Wang (衛(wèi)旺), XIANGLI Fenjuan (相里粉娟) and JIN Wanqin (金萬勤)

    ?

    Pervaporation Separation of Butanol-Water Mixtures UsingPolydimethylsiloxane/Ceramic Composite Membrane*

    LIU Gongping (劉公平), HOU Dan (侯丹), WEI Wang (衛(wèi)旺), XIANGLI Fenjuan (相里粉娟) and JIN Wanqin (金萬勤)**

    State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China

    Pervaporation has attracted considerable interest owing to its potential application in recovering biobutanol from biomass acetone-butanol-ethanol (ABE) fermentation broth. In this study, butanol was recovered from its aqueous solution using a polydimethylsiloxane (PDMS)/ceramic composite pervaporation membrane. The effects of operating temperature, feed concentration, feed flow rate and operating time on the membrane pervaporation performance were investigated. It was found that with the increase of temperature or butanol concentration in the feed, the total flux through the membrane increased while the separation factor decreased slightly. As the feed flow rate increased, the total flux increased gradually while the separation factor changed little. At 40°C and 1% (by mass) butanol in the feed, the total flux and separation factor of the membrane reached 457.4 g·m-2·h-1and 26.1, respectively. The membrane with high flux is suitable for recovering butanol from ABE fermentation broth.

    pervaporation, butanol, PDMS, ceramic, composite membrane

    1 INTRODUCTION

    In recent years, with the increase of petroleum price and shortage of petroleum resource, the utilization of renewable biomass to produce biofuel is increasing. Although the widely used biofuel is ethanol, it is found that butanol, as a new liquid fuel, has more superior properties, such as higher energy content, easy to transport, less evaporation, direct use without modification to the engine of the car [1]. Therefore, production of butanol has received more and more attention.

    Acetone-butanol-ethanol (ABE) fermentation is one of the largest biotechnological processes to product butanol. The scale of butanol fermentation is only second to that of ethanol [2]. However, the fermentation process suffers from severe inhibition due to the high toxicity of butanol to microorganisms even at low concentrations (4-6 g·L-1). The microorganisms stop growth completely at the butanol concentration of approximately 20 g·L-1[3]. The yield and productivity of ABE fermentation process are low. Therefore, it is desirable to develop an effective butanol recovery method. A variety of recovery techniques, such as adsorption [4, 5], gas stripping [6, 7], membrane distillation, extraction and pervaporation (PV) [8-12] have been developed. Among these methods, pervaporation is considered to be particularly promising, because of its general advantages in environmental issue and energy-saving, particularly no harmful effects on microorganisms and no medium ingredients removed from the fermentation broth [13]. A lot of work has been done on recovering butanol from the ABE fermentation broth by pervaporation. One of the key points of this process is to prepare the pervaporation membranes with high permeability and selectivity. In our early work, polydimethylsiloxane (PDMS)/ceramic composite membrane is prepared by dip-coating the cross-linked PDMS layer on the tubular ceramic support. This type of membrane exhibited high performance, especially high permeate flux, for pervaporation of ethanol-water mixtures [14, 15] and removal of thiophene from model gasoline [16], compared to other PDMS membranes reported.

    In this study, we adopt the PDMS/ceramic composite membrane for pervaporation of model butanol/ water mixtures in the concentration range in ABE fermentation process. The effects of operating temperature, feed concentration and feed flow rate on the membrane performance are investigated. The long- term stability of membrane is also examined.

    2 EXPERIMENTAL

    2.1 Materials

    2.2 Preparation and characterization of PDMS/ ceramic composite membrane

    The PDMS/ceramic composite membrane was prepared by conventional dip-coating method, which was similar to that in our previous work [14]. The PDMS polymer was dissolved in-heptane with a certain proportion, then the cross-linker TEOS and catalyst dibutyltin dilaurate were added into the polymer solution. The PDMS solutions were stirred at room temperature for 30 min and degassed under vacuum to be coating precursors. The ceramic support was sealed with two Teflon caps at both ends, then immersed slowly in the dip-coating solution for 60 s and pulled out of the solution at the same speed. Subsequently, the membrane was dried overnight at room temperature, and then cured at 120°C for 12 h to remove the residual solvent.

    The surface and cross section morphologies of the PDMS/ceramic composite membranes were characterized by scanning electron microscope (SEM, QUANTA-2000). The dried composite membrane was fractured in liquid nitrogen and then sputtered with gold in vacuum. FT-IR spectra of the pristine PDMS and PDMS membrane were recorded in spectrophotometer (AVATAR-FT-IR-360, Thermo Nicolet, USA) with the range of 4000 to 400 cm-1, using the KBr disk technique. 32 scans were accumulated with a resolution of 2 cm-1for each spectrum.

    2.3 Pervaporation experiment

    Pervaporation experiment was conducted using a homemade apparatus [16]. The water bath was used to control the temperature of the feed tank. The permeate sample was collected in the cold trap. The butanol concentrations in the feed and the permeate side were analyzed using gas chromatography (GC-2014, SHIMADZU, Japan) equipped with a thermal conductivity detector, using a3 m×2 m stainless steel packed column and helium (He) as the carrier gas. In many cases, the butanol of permeate side separated into two phases. Under this circumstance, the permeate sample was diluted with deionized water to one phase prior to injection.

    The permeate flux () at steady state is calculated using the following equation:

    whereis the mass of the collected permeation, g·m-2·h-1;is the effective area of the membrane, m2; andis the collection time for the pervaporation, h.

    The separation factor () of the PV membrane is defined as

    whereA,BandA,Bare the mass fractions of butanol and water in the permeate and feed side, respectively.

    3 RESULTS AND DISCUSSION

    3.1 Morphology and structure of PDMS/ceramic composite membrane

    Figure 1 shows the SEM images of the surface (a) and cross section (b) of the PDMS/ceramic composite membrane. The membrane surface is dense and defect-free, and three-layer structures (from left to right, Al2O3layer, ZrO2layer, and PDMS layer, respectively) can be observed clearly from the cross section image (b). The PDMS layer with a thickness of about 10 μm is well adhered to the porous ceramic surface, with a part penetrated into its pores to form an interface layer, which will improve the interaction between PDMS layer and ceramic support [14].

    Figure 1 SEM images of the PDMS/ceramic composite membrane

    Figure 2 FT-IR spectra of the pristine PDMS and PDMS membrane

    3.2 Pervaporation performance of the PDMS/ ceramic composite membrane

    3.2.1

    The effect of operating temperature on PV performance of the PDMS/ceramic composite membrane is illustrated in Fig. 3. The total flux increases from 307 to 822 g·m-2·h-1as the temperature increases from 30 to 60°C. When the temperature increases, on the one hand, the rubbery PDMS swells and the polymer segments have more free volume and chain mobility; on the other hand, the vapor pressure difference is higher, which enhances the transport driving force. Both factors favor the diffusion of butanol and water molecules through the PDMS membrane, leading to higher permeate flux. However, since water molecule is smaller than that of butanol, the diffusion rate of water is faster, decreasing the separation factor slightly.

    Generally, the temperature dependence of the total or partial flux (butanol or water flux) follows the Arrhenius expression [18]:

    wherePis the total flux,P0is a constant,Pis the apparent activation energy for permeation,is the gas constant, andis the operating temperature in Kevin.

    Figure 3 Effect of operating temperature on the PV performance of the PDMS/ceramic membrane (Feed mass concentration: 1% butanol)

    ■?separation factor;○?total flux

    According to the slope of the Arrhenius plot presented in Fig. 4, the apparent activation energy values for water and butanol are obtained, which are 27.45 kJ·mol-1and 25.82 kJ·mol-1, respectively. It indicates that the water flux is more dependent on the temperature than that of butanol, so that the separation factor decreases as temperature increases.

    Figure 4 Arrhenius plots of partial flux for PDMS/ceramic membrane (Feed mass concentration: 1% butanol)

    ■?butanol;▼?water

    3.2.2

    The feed concentration is an important variable in the pervaporation. Fig. 5 shows the effect of the feed concentration of butanol on total flux and separation factor of the PDMS/ceramic composite membrane. As the butanol concentration increases, the total flux increases while the separation factor changes slightly. Increasing the butanol concentration in the feed facilitates the butanol sorption into the PDMS membrane and the PDMS chains swells more, which enhances the diffusion of the permeate components, increasing the total flux. Moreover, the diffusion rate of water is larger than that of butanol owing to the smaller molecule of water, decreasing the separation factor.

    Figure 5 Effect of feed concentration on the PV performance of the PDMS/ceramic membrane (Temperature: 40°C)

    ■?separation factor;○?total flux

    3.2.3

    Figure 6 shows the effect of feed flow rate on the PV performance of the PDMS/ceramic composite membrane. The total flux increases with the flow rate, but the separation factor changes little. The increased feed flow rate reduces the thickness of the liquid boundary layer and the mass transport resistance in the pervaporation process, so that the total flux is increased. Due to the low butanol concentration in the feed, the concentration polarization is not obvious, so the flow rate has little effect on the separation factor.

    Figure 6 Effect of feed flow rate on the PV performance of the PDMS/ceramic membrane (Temperature: 40°C, feed mass concentration: 1% butanol)

    ■?separation factor;○?total flux

    Figure 7 Effect of operation time on the PV performance of the PDMS/ceramic membrane (Temperature: 40°C, feed mass concentration: 1% butanol)

    ■?separation factor;○?total flux

    3.2.4

    The effect of the operating time on the PV performance of the PDMS/ceramic composite membrane was also studied. Fig. 7 shows that the total flux and separation factor change little over a period of 100 h. Different from the symmetric or organic/organic composite membranes, the PDMS layer was dip-coated on the inorganic ceramic support, which exhibits sufficient chemical, mechanical and thermal stability, forming a type of organic/inorganic composite membrane. Due to the ceramic supports and the interface layer between PDMS layer and ceramic support [Fig. 1 (b)], the three-dimensional swelling of the rubbery PDMS is restricted [19], which is beneficial to the long-term stability of the PDMS/ceramic composite membrane.

    Table 1 Pervaporation performance of different membranes in butanol-water mixtures

    3.3 Comparison of pervaporation performance with those in literature

    Many researchers have investigated the recovery of butanol from its aqueous solution by pervaporation, and Table 1 shows the PV performance of different membranes in butanol-water mixtures. The PDMS/ceramic membrane in this work has a total flux of 457.4 g·m-2·h-1with the separation factor of 26.1 at 40°C for 1% (by mass) butanol in the feed. The total flux of the PDMS/ceramic composite membrane is much higher, while its separation factor is also relatively good. This is mainly attributed to the ceramic support with high porosity and the thin PDMS layer formed on the ceramic support, which reduces the transport resistance of the permeate components.

    4 CONCLUSIONS

    The prepared PDMS/ceramic composite membrane was applied for pervaporation removal of butanol from its dilute aqueous solution. The composite membrane shows high flux of 457.4 g·m-2·h-1and acceptable separation factor of 26.1 [1% (by mass) butanol in the feed at 40°C], and exhibits good long-term stability. Our study demonstrates that the PDMS/ceramic composite membrane will be useful for its application in the ABE fermentation-PV coupled process.

    1 Schoutens, G.H., Groot, W.J., “Economic-feasibility of the production of-propanol-butanol-ethanol fuels from whey permeate”,., 20, 117-121 (1985).

    2 Ezeji, T.C., Qureshi, N., Blaschek, H.P., “Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping”,..., 63, 653-658 (2004).

    3 Qureshi, N., Ezeji, T.C., “Butanol, ‘a(chǎn) superior biofuel’ production from agricultural residues (renewable biomass): recent progress in technology”,.., 2, 319-330 (2008).

    4 Yang, X.P., Tsao, G.T., “Enhanced acetone-butanol fermentation using repeated fed-batch operation coupled with cell recycle by membrane and simultaneous removal of inhibitory products by adsorption”,.., 47, 444-450 (1995).

    5 Yang, X.P., Tsai, G.J., Tsao, G.T., “Enhancement of-adsorption on the acetone-butanol fermentation by-”,.., 4, 81-92 (1994).

    6 Ezeji, T.C., Qureshi, N., Blaschek, H.P., “Production of acetone, butanol and ethanol byBA101 andrecovery by gas stripping”,..., 19, 595-603 (2003).

    7 Ezeji, T.C., Karcher, P.M., Qureshi, N., Blaschek, H.P., “Improving performance of a gas stripping-based recovery system to remove butanol fromfermentation”,..., 27, 207-214 (2005).

    8 Friedl, A., Qureshi, N., Maddox, I.S., “Continuous acetone-butanol-ethanol (ABE) fermentation using immobilized cells ofin a packed-bed reactor and integration with product removal by pervaporation”,.., 38, 518-527 (1991).

    9 Favre, E., Nguyen, Q.T., Bruneau, S., “Extraction of 1-butanol from aqueous solutions by pervaporation”,...., 65, 221-228 (1996).

    10 Groot, W.J., Vandenoever, C.E., Kossen, N., “Pervaporation for simultaneous product recovery in the butanol isopropanol batch fermentation”,.., 6, 709-714 (1984).

    11 Boddeker, K.W., Bengtson, G., Pingel, H., “Pervaporation of isomeric butanols”,..., 54, 1-12 (1990).

    12 Fadeev, A.G., Selinskaya, Y.A., Kelley, S.S., Meagher, M.M., Litvinova, E.G., Khotimsky, V.S., Volkov, V.V., “Extraction of butanol from aqueous solutions by pervaporation through poly(1-trimethylsilyl- 1-propyne)”,..., 186, 205-217 (2001).

    13 Huang, J., Meagher, M.M., “Pervaporative recovery of-butanol from aqueous solutions and ABE fermentation broth using thin-film silicalite-filled silicone composite membranes”,..., 192, 231-242 (2001).

    14 Xiangli, F.J., Chen, Y.W., Jin, W.Q., Xu, N.P., “Polydimethylsiloxane (PDMS)/ceramic composite membrane with high flux for pervaporation of ethanol-water mixtures”,...., 46, 2224-2230 (2007).

    15 Xiangli, F.J., Wei, W., Chen, Y.W., Jin, W.Q., Xu, N.P., “Optimization of preparation conditions for polydimethylsiloxane (PDMS)/ ceramic composite pervaporation membranes using response surface methodology”,..., 311, 23-33 (2008).

    16 Xu, R., Liu, G.P., Dong, X.L., Jin, W.Q., “Pervaporation separation of-octane/thiophene mixtures using polydimethylsiloxane/ceramic composite membranes”,, 258, 106-111 (2010).

    17 Hijon, N., Manzano, M., Salinas, A.J., Vallet-Regi, M., “CaO-SiO2-PDMS coatings on Ti6Al4V substrates”,.., 17, 1591-1596 (2005).

    18 Feng, X.S., Huang, R.Y.M., “Estimation of activation energy for permeation in pervaporation processes”,..., 118, 127-131 (1996).

    19 Chen, Y.W., Xiangli, F.J., Jin, W.Q., Xu, N.P., “Organic-inorganic composite pervaporation membranes prepared by self-assembly of polyelectrolyte multilayers on macroporous ceramic supports”,..., 302, 78-86 (2007).

    20 Jonquieres, A., Fane, A., “Filled and unfilled composite GFT PDMS membranes for the recovery of butanols from dilute aqueous solutions: influence of alcohol polarity”,..., 125, 245-255 (1997).

    21 Vrana, D.L., Meagher, M.M., Hutkins, R.W., Duffield, B., “Pervaporation of model acetone-butanol-ethanol fermentation product solutions using polytetrafluoroethylene membranes”,..., 28, 2167-2178 (1993).

    22 Liu, F.F., Liu, L., Feng, X.S., “Separation of acetone-butanol-ethanol (ABE) from dilute aqueous solutions by pervaporation”,..., 42, 273-282 (2005).

    23 Jitesh, K., Pangarkar, V.G., Niranjan, K., “Pervaporative stripping of acetone, butanol and ethanol to improve ABE fermentation”,, 9, 145-154 (2000).

    ** To whom correspondence should be addressed. E-mail: wqjin@njut.edu.cn

    2010-05-25,

    2010-11-07.

    the National Basic Research Program of China (2009CB623406), the National Natural Science Foundation of China (20990222), the Natural Science Foundation of Jiangsu Province (SBK200930313) and the “Six Kinds of Important Talents” Program of Jiangsu Province (2007007).

    猜你喜歡
    公平
    不公平
    公平對抗
    怎樣才公平
    面對『不公平』的正確姿勢
    愿你金榜題名,更愿你被公平對待
    “不公平”的比賽
    笨柴兄弟
    必須公平
    公平比較
    社會公平 教育公平
    今日重慶(2017年2期)2017-03-04 01:59:32
    91久久精品国产一区二区成人| 黄片播放在线免费| 一级片'在线观看视频| 精品久久久久久电影网| 免费观看a级毛片全部| 一级,二级,三级黄色视频| 日本黄大片高清| 性高湖久久久久久久久免费观看| 一级毛片aaaaaa免费看小| 在线观看www视频免费| 日本欧美国产在线视频| 国产成人a∨麻豆精品| 综合色丁香网| 久久影院123| 男女边吃奶边做爰视频| 久久久久视频综合| 亚洲av男天堂| 亚洲美女视频黄频| 国产极品天堂在线| 美女大奶头黄色视频| 精品国产露脸久久av麻豆| 伦理电影大哥的女人| 国产伦理片在线播放av一区| 午夜免费观看性视频| av在线app专区| 999精品在线视频| 久久人人爽人人片av| 午夜激情福利司机影院| 亚洲四区av| 久久人人爽人人爽人人片va| 亚洲av成人精品一二三区| 免费播放大片免费观看视频在线观看| 婷婷色麻豆天堂久久| 亚洲第一区二区三区不卡| 亚洲少妇的诱惑av| 熟女人妻精品中文字幕| 一区二区三区免费毛片| 美女福利国产在线| 久久国产亚洲av麻豆专区| 日本av手机在线免费观看| 精品一区在线观看国产| 国产精品三级大全| 国产精品三级大全| av一本久久久久| 国产亚洲最大av| 黑人猛操日本美女一级片| 久久久国产一区二区| 国产一区亚洲一区在线观看| 色吧在线观看| 99久久中文字幕三级久久日本| 精品国产一区二区久久| 日韩伦理黄色片| 亚洲熟女精品中文字幕| 亚洲精品日韩av片在线观看| 亚洲精品日韩av片在线观看| 成人黄色视频免费在线看| 亚洲色图 男人天堂 中文字幕 | 丰满饥渴人妻一区二区三| 99热6这里只有精品| 国产精品一区www在线观看| 国产老妇伦熟女老妇高清| 老司机影院成人| 午夜福利影视在线免费观看| av电影中文网址| 亚洲综合精品二区| 国语对白做爰xxxⅹ性视频网站| 王馨瑶露胸无遮挡在线观看| 日韩欧美精品免费久久| 成人无遮挡网站| 精品久久久精品久久久| videossex国产| 一本久久精品| 亚洲精品日本国产第一区| 久久久久网色| 国产成人aa在线观看| 亚洲精品成人av观看孕妇| 秋霞在线观看毛片| 午夜激情福利司机影院| 久久精品久久久久久久性| 亚洲精品中文字幕在线视频| 国产精品蜜桃在线观看| 成年av动漫网址| 黑人巨大精品欧美一区二区蜜桃 | 欧美 日韩 精品 国产| 在线亚洲精品国产二区图片欧美 | 欧美亚洲 丝袜 人妻 在线| 街头女战士在线观看网站| 中文欧美无线码| 午夜av观看不卡| 午夜av观看不卡| 人人妻人人澡人人看| 免费播放大片免费观看视频在线观看| av免费在线看不卡| 精品久久国产蜜桃| 青春草亚洲视频在线观看| 在线观看美女被高潮喷水网站| 亚洲精品av麻豆狂野| 18禁在线无遮挡免费观看视频| 日韩欧美精品免费久久| 亚洲欧美中文字幕日韩二区| 久久人人爽人人片av| 欧美3d第一页| 欧美成人午夜免费资源| 午夜影院在线不卡| 久久毛片免费看一区二区三区| 亚洲精华国产精华液的使用体验| 国产精品99久久久久久久久| 日韩,欧美,国产一区二区三区| 人妻制服诱惑在线中文字幕| videosex国产| 在线天堂最新版资源| 高清黄色对白视频在线免费看| 91久久精品电影网| 这个男人来自地球电影免费观看 | videosex国产| 国产白丝娇喘喷水9色精品| 久久久久久久久久人人人人人人| 2021少妇久久久久久久久久久| 在线 av 中文字幕| 人妻系列 视频| 亚洲国产成人一精品久久久| 如何舔出高潮| 十八禁高潮呻吟视频| 午夜影院在线不卡| 国产精品不卡视频一区二区| 黄色一级大片看看| 欧美日韩一区二区视频在线观看视频在线| 久久热精品热| av免费观看日本| 亚洲av男天堂| 一级a做视频免费观看| 欧美性感艳星| 嫩草影院入口| 午夜福利影视在线免费观看| 精品人妻熟女av久视频| 青春草国产在线视频| 欧美成人精品欧美一级黄| 精品99又大又爽又粗少妇毛片| 97在线人人人人妻| 免费人成在线观看视频色| 久久亚洲国产成人精品v| 国产在线视频一区二区| 黑丝袜美女国产一区| 欧美精品人与动牲交sv欧美| 免费人妻精品一区二区三区视频| 九九久久精品国产亚洲av麻豆| 在线观看三级黄色| a级毛片免费高清观看在线播放| 啦啦啦中文免费视频观看日本| av电影中文网址| 99热全是精品| 久久精品国产亚洲av天美| 在线观看一区二区三区激情| 一级毛片aaaaaa免费看小| 人人妻人人爽人人添夜夜欢视频| 性高湖久久久久久久久免费观看| 天堂中文最新版在线下载| 男女啪啪激烈高潮av片| 欧美日韩精品成人综合77777| 亚洲一级一片aⅴ在线观看| 亚洲内射少妇av| 久久97久久精品| 99久国产av精品国产电影| 久久精品国产亚洲网站| 乱人伦中国视频| 久久精品熟女亚洲av麻豆精品| 人妻一区二区av| 国产男女超爽视频在线观看| 午夜福利网站1000一区二区三区| 婷婷色麻豆天堂久久| 极品人妻少妇av视频| 男女边吃奶边做爰视频| 大片免费播放器 马上看| 精品人妻熟女av久视频| 亚洲人成网站在线播| 欧美一级a爱片免费观看看| 久久亚洲国产成人精品v| 大陆偷拍与自拍| 亚洲一区二区三区欧美精品| 亚洲国产av影院在线观看| 多毛熟女@视频| 精品卡一卡二卡四卡免费| 日韩 亚洲 欧美在线| 99热这里只有精品一区| 日韩精品免费视频一区二区三区 | 久久精品久久久久久久性| 十八禁高潮呻吟视频| 另类亚洲欧美激情| 免费av不卡在线播放| 纵有疾风起免费观看全集完整版| 日韩中字成人| 一级毛片电影观看| 啦啦啦视频在线资源免费观看| 色婷婷久久久亚洲欧美| 91精品国产九色| 精品视频人人做人人爽| 日韩,欧美,国产一区二区三区| 永久免费av网站大全| 3wmmmm亚洲av在线观看| 国产精品免费大片| 国产免费视频播放在线视频| 美女国产高潮福利片在线看| 亚洲av不卡在线观看| 午夜免费观看性视频| 亚洲av二区三区四区| 欧美亚洲 丝袜 人妻 在线| 一本—道久久a久久精品蜜桃钙片| 18禁在线播放成人免费| 亚洲精品国产av成人精品| 国产精品国产三级国产专区5o| 精品人妻一区二区三区麻豆| 亚洲在久久综合| 国产成人精品无人区| 日本wwww免费看| 制服人妻中文乱码| 国产亚洲精品久久久com| 欧美3d第一页| 久久精品熟女亚洲av麻豆精品| 国产精品一区二区在线观看99| 一级,二级,三级黄色视频| 99久久中文字幕三级久久日本| 国产成人av激情在线播放 | 日本91视频免费播放| 欧美激情国产日韩精品一区| 大话2 男鬼变身卡| 日韩不卡一区二区三区视频在线| 亚洲精品国产色婷婷电影| 我要看黄色一级片免费的| 美女视频免费永久观看网站| 80岁老熟妇乱子伦牲交| 成人亚洲欧美一区二区av| 国产一区二区三区av在线| 久久久国产一区二区| 最近2019中文字幕mv第一页| 欧美成人精品欧美一级黄| 国产成人午夜福利电影在线观看| 天天操日日干夜夜撸| 一本—道久久a久久精品蜜桃钙片| 免费观看性生交大片5| 99久久综合免费| 欧美 亚洲 国产 日韩一| a 毛片基地| 国产乱来视频区| 亚洲第一av免费看| 免费av不卡在线播放| 免费观看a级毛片全部| 日本猛色少妇xxxxx猛交久久| 精品国产国语对白av| 蜜桃国产av成人99| 免费看不卡的av| 亚洲国产精品一区二区三区在线| 日韩制服骚丝袜av| 人人澡人人妻人| 国产成人aa在线观看| 午夜福利视频在线观看免费| 性高湖久久久久久久久免费观看| av播播在线观看一区| 午夜久久久在线观看| 人妻人人澡人人爽人人| 亚洲精品国产av蜜桃| 考比视频在线观看| 成人毛片a级毛片在线播放| 97超视频在线观看视频| 久久韩国三级中文字幕| 婷婷成人精品国产| 欧美老熟妇乱子伦牲交| av网站免费在线观看视频| 最近最新中文字幕免费大全7| 日日爽夜夜爽网站| 国产亚洲一区二区精品| 亚洲人成网站在线观看播放| 制服丝袜香蕉在线| 色婷婷av一区二区三区视频| 黄色毛片三级朝国网站| 妹子高潮喷水视频| 亚洲欧美成人精品一区二区| 亚洲精品亚洲一区二区| 2018国产大陆天天弄谢| 国内精品宾馆在线| 老女人水多毛片| 最近中文字幕2019免费版| 国产极品粉嫩免费观看在线 | 最近的中文字幕免费完整| 国产成人精品福利久久| 亚洲色图 男人天堂 中文字幕 | 男的添女的下面高潮视频| 亚州av有码| av不卡在线播放| 日日啪夜夜爽| 女人久久www免费人成看片| 这个男人来自地球电影免费观看 | 日本猛色少妇xxxxx猛交久久| 国产精品久久久久成人av| av在线app专区| 国产高清不卡午夜福利| 精品久久久久久久久亚洲| 在线观看美女被高潮喷水网站| 99热这里只有是精品在线观看| av视频免费观看在线观看| 日韩av在线免费看完整版不卡| 欧美少妇被猛烈插入视频| 亚洲欧美一区二区三区国产| 午夜免费观看性视频| 母亲3免费完整高清在线观看 | 亚洲精品国产av成人精品| av线在线观看网站| 久久精品人人爽人人爽视色| 国产伦精品一区二区三区视频9| 日日爽夜夜爽网站| 午夜精品国产一区二区电影| 免费看光身美女| 少妇被粗大猛烈的视频| 国产免费视频播放在线视频| 99久久人妻综合| 日本-黄色视频高清免费观看| 亚洲精品乱久久久久久| 国产片特级美女逼逼视频| 成年女人在线观看亚洲视频| 满18在线观看网站| 国产男女内射视频| 黄色视频在线播放观看不卡| 国产午夜精品一二区理论片| 久久久亚洲精品成人影院| 精品久久久久久久久av| 丝袜脚勾引网站| 午夜免费观看性视频| 国产黄色免费在线视频| 国产精品一区二区在线不卡| 天堂俺去俺来也www色官网| 久久久欧美国产精品| 日韩av不卡免费在线播放| 爱豆传媒免费全集在线观看| 国内精品宾馆在线| 晚上一个人看的免费电影| 久久鲁丝午夜福利片| 久久精品国产自在天天线| 国产成人免费无遮挡视频| 99久久人妻综合| 色网站视频免费| 亚洲精品色激情综合| 亚洲国产色片| 男女无遮挡免费网站观看| 三级国产精品欧美在线观看| 欧美国产精品一级二级三级| 亚洲五月色婷婷综合| 久久av网站| 国产欧美日韩综合在线一区二区| 国产成人免费无遮挡视频| 国产亚洲av片在线观看秒播厂| 男女免费视频国产| 国产精品欧美亚洲77777| 女性被躁到高潮视频| 亚洲av.av天堂| h视频一区二区三区| 久久久久国产精品人妻一区二区| 欧美日本中文国产一区发布| 精品久久蜜臀av无| 久久精品国产鲁丝片午夜精品| 丁香六月天网| 十分钟在线观看高清视频www| 天堂俺去俺来也www色官网| 亚洲精品乱码久久久久久按摩| 男人爽女人下面视频在线观看| 老司机影院毛片| 亚洲精品久久午夜乱码| 国产成人午夜福利电影在线观看| 精品久久国产蜜桃| 亚洲丝袜综合中文字幕| 高清av免费在线| 日韩电影二区| 自拍欧美九色日韩亚洲蝌蚪91| 纯流量卡能插随身wifi吗| 免费人妻精品一区二区三区视频| 在线免费观看不下载黄p国产| 边亲边吃奶的免费视频| 人妻少妇偷人精品九色| av网站免费在线观看视频| 色婷婷久久久亚洲欧美| 国产女主播在线喷水免费视频网站| 亚洲精品国产av成人精品| 欧美最新免费一区二区三区| 王馨瑶露胸无遮挡在线观看| 熟女电影av网| 欧美 亚洲 国产 日韩一| 国产av码专区亚洲av| 国产免费一区二区三区四区乱码| 人体艺术视频欧美日本| 久久国内精品自在自线图片| 午夜福利在线观看免费完整高清在| 午夜福利影视在线免费观看| 国产高清不卡午夜福利| 国产在视频线精品| 大话2 男鬼变身卡| 国产精品一区www在线观看| 人妻夜夜爽99麻豆av| 国产精品熟女久久久久浪| 亚洲第一区二区三区不卡| 最近手机中文字幕大全| 亚洲第一区二区三区不卡| 在现免费观看毛片| 欧美精品人与动牲交sv欧美| 免费黄色在线免费观看| av在线观看视频网站免费| 久久精品国产亚洲网站| 亚洲美女黄色视频免费看| 国产无遮挡羞羞视频在线观看| 国产黄频视频在线观看| 欧美亚洲日本最大视频资源| 国产欧美日韩综合在线一区二区| 亚洲国产精品国产精品| 精品一区二区免费观看| 一个人免费看片子| 亚洲内射少妇av| 成年女人在线观看亚洲视频| 精品一区在线观看国产| 伦精品一区二区三区| 国产黄片视频在线免费观看| 伦理电影大哥的女人| 国产成人a∨麻豆精品| 99国产精品免费福利视频| 黑人高潮一二区| 天堂俺去俺来也www色官网| 欧美日韩一区二区视频在线观看视频在线| 国产精品欧美亚洲77777| 少妇人妻精品综合一区二区| 国产成人精品在线电影| 中国三级夫妇交换| 麻豆乱淫一区二区| 99国产综合亚洲精品| 亚洲情色 制服丝袜| 国产色爽女视频免费观看| 欧美日韩在线观看h| 国产精品一区www在线观看| 国产精品久久久久久久电影| 女性被躁到高潮视频| 人成视频在线观看免费观看| 欧美xxxx性猛交bbbb| 亚洲精品日韩在线中文字幕| 建设人人有责人人尽责人人享有的| 国内精品宾馆在线| 精品亚洲乱码少妇综合久久| 一级,二级,三级黄色视频| 精品少妇内射三级| 久热这里只有精品99| 日韩伦理黄色片| 午夜激情av网站| 国产有黄有色有爽视频| 大片免费播放器 马上看| 精品国产一区二区三区久久久樱花| 夜夜骑夜夜射夜夜干| 高清黄色对白视频在线免费看| a 毛片基地| 亚洲精品久久久久久婷婷小说| 天堂俺去俺来也www色官网| 日韩中字成人| 中文字幕人妻熟人妻熟丝袜美| 黑人高潮一二区| 欧美变态另类bdsm刘玥| 亚洲精品久久午夜乱码| 99视频精品全部免费 在线| 亚洲av免费高清在线观看| 日韩人妻高清精品专区| 国产无遮挡羞羞视频在线观看| 视频区图区小说| 91成人精品电影| 国产成人精品婷婷| 97超碰精品成人国产| 91在线精品国自产拍蜜月| 久久精品人人爽人人爽视色| 久久国内精品自在自线图片| 2022亚洲国产成人精品| 免费黄网站久久成人精品| 免费不卡的大黄色大毛片视频在线观看| 中文字幕久久专区| 成人18禁高潮啪啪吃奶动态图 | 欧美亚洲日本最大视频资源| 久久久久久久久大av| 精品久久久噜噜| 少妇人妻久久综合中文| 亚洲av在线观看美女高潮| 一本—道久久a久久精品蜜桃钙片| 一区二区日韩欧美中文字幕 | 精品少妇内射三级| 两个人的视频大全免费| 天堂俺去俺来也www色官网| 国产国语露脸激情在线看| 在线观看人妻少妇| 欧美国产精品一级二级三级| 91精品三级在线观看| 热re99久久国产66热| 你懂的网址亚洲精品在线观看| 免费日韩欧美在线观看| 欧美日韩成人在线一区二区| 亚洲精品国产av蜜桃| 最近最新中文字幕免费大全7| 久久精品熟女亚洲av麻豆精品| 丰满迷人的少妇在线观看| 成人免费观看视频高清| 亚洲av免费高清在线观看| 久久99精品国语久久久| 亚洲不卡免费看| 777米奇影视久久| 亚洲欧美成人精品一区二区| 人人妻人人添人人爽欧美一区卜| 免费高清在线观看日韩| 国产 精品1| 男人操女人黄网站| 久久久国产欧美日韩av| 男女国产视频网站| 亚洲经典国产精华液单| 欧美日韩av久久| 午夜日本视频在线| 久久久久国产精品人妻一区二区| 日本91视频免费播放| 午夜福利在线观看免费完整高清在| av国产久精品久网站免费入址| 国产免费现黄频在线看| 亚洲精品av麻豆狂野| 人妻一区二区av| 久久ye,这里只有精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产日韩欧美视频二区| 18在线观看网站| 99热这里只有是精品在线观看| 日本色播在线视频| 熟妇人妻不卡中文字幕| 亚洲国产av新网站| 国产日韩欧美亚洲二区| 中国三级夫妇交换| 国产色婷婷99| 日本猛色少妇xxxxx猛交久久| 久久婷婷青草| 黑人猛操日本美女一级片| 免费看不卡的av| 天美传媒精品一区二区| 不卡视频在线观看欧美| 久久 成人 亚洲| 免费av不卡在线播放| 我要看黄色一级片免费的| 中文天堂在线官网| 在线免费观看不下载黄p国产| 国产精品成人在线| 中文字幕亚洲精品专区| 亚洲美女视频黄频| 亚洲国产毛片av蜜桃av| 2018国产大陆天天弄谢| 午夜免费男女啪啪视频观看| 中国国产av一级| 91精品三级在线观看| 高清不卡的av网站| 黄色配什么色好看| 久久人人爽av亚洲精品天堂| 国产午夜精品一二区理论片| 国产日韩一区二区三区精品不卡 | 精品人妻偷拍中文字幕| 老司机影院成人| 成年美女黄网站色视频大全免费 | 哪个播放器可以免费观看大片| 国产高清三级在线| 视频中文字幕在线观看| 高清黄色对白视频在线免费看| 女的被弄到高潮叫床怎么办| 久久人人爽人人爽人人片va| 精品酒店卫生间| 丝袜脚勾引网站| 久久精品久久久久久噜噜老黄| 久久这里有精品视频免费| 久久国产亚洲av麻豆专区| 男的添女的下面高潮视频| 亚洲图色成人| 黑人欧美特级aaaaaa片| 日本-黄色视频高清免费观看| 亚洲av综合色区一区| 最近最新中文字幕免费大全7| 大又大粗又爽又黄少妇毛片口| 精品久久国产蜜桃| 国产伦理片在线播放av一区| 久久久久久久精品精品| 九草在线视频观看| 91精品伊人久久大香线蕉| 美女脱内裤让男人舔精品视频| 性色avwww在线观看| 亚洲第一区二区三区不卡| 成年人午夜在线观看视频| 久久久久久久久久久久大奶| 51国产日韩欧美| 九九久久精品国产亚洲av麻豆| 日韩在线高清观看一区二区三区| 婷婷色综合www| 欧美bdsm另类| 欧美变态另类bdsm刘玥| 亚洲精品国产av成人精品| 观看av在线不卡| 午夜免费观看性视频| 好男人视频免费观看在线| 成人手机av| 国产色婷婷99| 丝袜美足系列| 国产精品国产三级专区第一集| 国产一区有黄有色的免费视频| 久久99热这里只频精品6学生| 欧美精品一区二区大全| 久久精品国产亚洲av天美| 青春草亚洲视频在线观看| 精品熟女少妇av免费看| 成年av动漫网址| av天堂久久9| 我的老师免费观看完整版| 蜜桃久久精品国产亚洲av| 在线观看国产h片| 午夜福利在线观看免费完整高清在| 国产爽快片一区二区三区| 中文字幕最新亚洲高清| 高清黄色对白视频在线免费看| 久久精品国产鲁丝片午夜精品|