• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enzyme-catalyzed Synthesis of Vitamin E Succinate Using aChemically Modified Novozym-435*

    2011-05-15 08:52:22YINChunhua尹春華ZHANGCong張聰andGAOMing高明
    關(guān)鍵詞:高明春華

    YIN Chunhua (尹春華), ZHANG Cong (張聰) and GAO Ming (高明)

    ?

    Enzyme-catalyzed Synthesis of Vitamin E Succinate Using aChemically Modified Novozym-435*

    YIN Chunhua (尹春華)**, ZHANG Cong (張聰) and GAO Ming (高明)

    Department of Biological Science and Technology, School of Applied Science, University of Science and Technology Beijing, Beijing 100083, China

    Vitamin E succinate was synthesized in organic solvents using a modified Novozym-435 as catalyst. In order to improve the catalytic performance of Novozym-435, the enzyme was modified using acetic anhydride, propionic anhydride and succinic anhydride separately. We found that both the hydrolytic activity and the thermal stability of the modified Novozym-435 were enhanced compared with the unmodified enzyme. The modified Novozym-435 catalysts were used to synthesize the succinate derivative of vitamin E. Compared with the native Novozym-435, the catalytic activity of the modified novozym-435 in promoting the synthesis of vitamin E succinate was dramatically increased, with the novozym-435 modified with succinic anhydride (N435-S) as the most active catalyst. Conditions for the synthesis of vitamin E succinate were also optimized. A mixture of-butanol and DMSO (volume ratio of 2︰3) was the most suitable medium for the reaction, whereas the appropriate molar ratio of vitamin E to succinic anhydride and reaction temperature were 1︰5 and 40°C, respectively. Under these reaction conditions, the yield of vitamin E succinate reached 94.4%. N435-S could be reused for five batches.

    lipase, vitamin E succinate, vitamin E, modification

    1 introduction

    Vitamin E, a major natural antioxidant, comprises a group of eight naturally occurring tocopherols and tocotrienols of subtypes α, β, γ and δ. α-tocopherol has the highest vitamin E activity among all tocopherol isoforms [1, 2]. Vitamin E has many health benefits, such as preventing cardiovascular diseases, cancers and cataracts [3-8], and finds extensive applications in cosmetics and pharmaceutical industries. However, vitamin E is readily oxidized by light, air, oxidizing agents or heat, reducing its antioxidant value. To increase its stability and/or to adjust solubility and miscibility, vitamin E is generally administered as prodrug in the form of all-rac-α-tocopheryl acetate (vitamin E acetate) or all-α-tocopheryl succinate (vitamin E succinate). The vitamin E succinate derivative (VES) of α-tocopherol has received increasing attention for its potential use against cancer [9-11]. The vitamin E esters are synthesized by chemical acylation of all-rac- α-tocopherol with carboxylic acids or acid anhydrides as acyl donors, in which metal or toxic chemicals such as tertiary amine or pyridine are used as catalysts [12, 13]. As a green alternative, the use of lipases to catalyze synthesis of vitamin E ester may be a promising method. Lipase-catalyzed reactions are superior to conventional chemical methods, owing to their mild reaction conditions, high catalytic efficiency and the inherent selectivity of natural catalysts that have been used in the synthesis of a variety of esters [14-16]. Torres. [17] described for the first time the enzymatic acylation of the phenolic group of tocopherols (vitamin E) by transesterification with vinyl acetate in 2-methyl-2-butanol, in which Novozym-435 was chosen as catalyst, reaching a yield of vitamin E acetate of about 65% after 18 days, illustrating that Novozym- 435 lipase presents low synthetic activity for vitamin E esters. Chemical modification of enzymes is widely used for improving their catalytic performance such as overall catalytic activity, stability, specificity and enantioselectivity [18-22]. Novozym-435 is the isoform B of the lipase from(CAL-B), immobilized onto a macroporous acrylic polymer resin, and is one of the most sensitive enzymes to chemical modification [18, 19, 23].

    In the present work, Novozym-435 is modified using a variety of organic acid anhydrides to improve its catalytic performance. Using such modified Novozym-435 as catalyst, we determine the efficiency of the enzymatic synthesis of vitamin E succinate by lipase-catalyzed acylation of vitamin E with succinate anhydride.

    2 Materials and methods

    2.1 Materials

    Novozym-435 (lipase from, immobilized on a macroporous acrylic resin) was purchased from Novozymes (China). Vitamin E (all-rac- α-tocopherol, 97%) was obtained from Alfa Aesar (USA). Vitamin E succinate (99.9%) was obtained from Sigma-Aldrich. HPLC-grade methanol was from Dima Technology Inc. All other chemicals were of analytical grade and obtained from Beijing Chemicals Factory (China).

    2.2 General procedure for modification of Novozym-435

    Novozym-435 was modified with 0.15-0.20 mol·L-1acetic, propionic or succinic anhydride dissolved in dimethyl sulfoxide [20]. 3 ml of anhydride solution was slowly added dropwise over a period of 5 min to 10 ml 0.1 mol·L-1phosphate buffer at pH 8.0 containing 1.0 g Novozym-435, under rapid stirring at 35°C. The pH was kept at a constant by adding 0.1 mol·L-1sodium hydroxide. When the addition of the organic anhydride was complete, the mixture was allowed to react for an additional 25 min. After that, the modified Novozym-435 was filtered and washed with an excess of 0.1 mol·L-1phosphate buffer, and then freeze-dried to constant mass.

    2.3 Enzyme hydrolytic activity assay

    The lipase hydrolytic activity was determined by the olive oil emulsion method [24]. One unit of activity is defined as the amount of enzyme that liberates 1μmol of free fatty acid from olive oil per minute at 40°C.

    2.4 Thermal stability tests

    The stability tests of modified enzymes were performed in 100 mmol·L-1phosphate buffer (pH 8.0) at 70°C. 5 mg of enzyme was added to 5 ml of 0.1 mol·L-1phosphate buffer at pH 8 and incubated at 70°C for a defined period of time and then the residual activity of the enzyme was determined by using the olive oil emulsion method described above.

    2.5 Succinylation of vitamin E

    The succinylation reaction was conducted in 50 ml glass vials with plastic screw caps. 100 mg of the native Novozym-435 or of modified Novozym-435 was added to 5 ml of DMSO/-butanol containing 1.0 mmol (0.43 g) of vitamin E and 1.0 mmol (0.10 g) of succinic anhydride. The reaction was carried out in a shaker (200 r·min-1) at 37°C in the dark. These conditions were used unless stated otherwise. At 1-4 h intervals, samples were withdrawn for HPLC analysis to determine the yield.

    2.6 HPLC analysis

    Figure 1 Comparison of activities of acetyl Novozym-435 (N435-A), propionyl Novozym-435 (N435-P), succinyl Novozym-435 (N435-S) and unmodified Novozym-435 (N435)

    Figure 2 Thermal stability of N435-A, N435-S, N435-P and N435

    3 Results and discussion

    3.1 Hydrolytic activity and thermal stability of modified lipases

    The reactions of organic acid anhydrides with the primary amino groups of enzymes can enhance catalytic activity and stability [19-22]. In the present study, Novozym-435 was modified using acetic, propionic, and succinic anhydride separately as chemical modifier. As indicated in Fig. 1, treatment of Novozym-435 with organic acid anhydrides results in a noticeable enhancement of its catalytic activity. In comparison with unmodified Novozym-435, the hydrolytic activity of the modified enzymes increases 24%-34% in phosphate buffer (pH 8.0). Among these modified Novozym-435 forms, propionyl Novozym-435 (N 435-P) exhibits the highest catalytic activity. Fig. 2 illustrates that the thermal stability of the modified Novozym-435 forms is distinctly better compared to unmodified Novozym-435. The half life of all of the modified Novozym-435 forms exceeds 13 h at 70°C, while that of the native Novozym-435 is only 5 h. These results show that the chemical modification of Novozym-435 increases the enzyme hydrolytic activity for olive oil and its thermal stability. One explanation may be the change of the net charge of the enzyme by the modifying groups. Monocarboxylic acid anhydrides (acetic and propionic anhydrides) neutralize some of the positive charges of the amino groups, whereas succinic anhydride introduces negative charges into the enzyme structure, changing the ionic interactions of the enzyme and producing positive effects on its catalytic characteristics.

    Table 1 Catalytic activity of the modified novozym-435 forms in promoting vitamin E succinate synthesis

    3.2 Synthesis of vitamin E succinate using native and modified Novozym-435 forms

    The reaction mixture consisted of vitamin E, 0.43 g; succinic anhydride, 0.10 g; DMSO, 5 ml and native or modified Novozym-435, 100 mg. This reaction mixture was placed in 50 ml screw-caped glass vials and incubated at 37°C under constant agitation in an orbital shaking air-bath at 200 r·min-1in the dark for 48 h. At the end of the incubation, the yield of vitamin E succinate was determined by HPLC. As shown in Table 1, all modified Novozym-435 forms exhibit good synthesis activity for vitamin E succinate, whereas native Novozym-435 is much less efficient. The modifications of novozym-435 neutralize or reverse the positive charges on the primary amino groups of the enzyme molecule owing to the negative charges of the modifying groups, which may lead to the change of the tertiary structure of the enzyme in organic solvents, increasing the activity for the synthesis of vitamin E succinate from succinic anhydride and vitamin E in organic solvents. Szabo. [20] found that the papain modified with organic acid anhydrides exhibited higher stability and catalytic activity in aqueous organic solvents than the native papain. In view of the relatively high activity for the synthesis of vitamin E succinate, modified Novozym-435 with succinic anhydride (N435-S) was used for further studies.

    3.3 Effect of reaction medium on the synthesis of vitamin E succinate using N435-S

    Organic solvents have various physicochemical effects on enzymes, and in particular the nature and polarity of organic media affect the activity of lipases [25]. The organic solvents change the native conformation of the enzyme by disrupting hydrogen bonds and hydrophobic interactions, changing the activity and stability [26]. lg(the logarithm of the partition coefficient of a given solvent between water and 1-octanol) is commonly used to measure the polarity of solvents and to predict enzymatic activity. Organic solvents with lgvalues <2.0 are generally not considered suitable for biocatalysts [27]. Nonpolar solvents, such as hexane and isooctane, are unable to remove substantial amounts of water from the enzyme, and therefore have little effect on the enzymatic activity [28]. In this study, eight commonly used organic solvents were tested in the lipase-catalyzed esterification of vitamin E and succinic anhydride (Table 2). The yields of vitamin E succinate did not appear to relate to lgvalues of the different solvents used. Very low yield of vitamin E succinate was achieved using nonpolar solvents such as hexane and petroleum ether. This may be due to the poor solubility of succinic anhydride in such solvents in spite of a good solubility of vitamin E. On the other hand, the yield of vitamin E succinate is higher in DMF (,-dimethylformamide) and DMSO, possibly because of the relatively better solubility of both succinic anhydride and vitamin E in these solvents. However, DMF and DMSO have a strong polarity, which reportedly has negative effects on the activity and stability of most enzymes, even disrupting their tertiary and secondary structure and thus preventing them from acting as a catalyst [29].

    Table 2 Synthesis of vitamin E succinate indifferent organic solvents

    Note: Reaction conditions: 0.43 g vitamin E, 0.10 g succinic anhydride, 5 ml organic solvent, 100 mg N435-S, 37°C, 48 h.

    An effective strategy to achieve an optimal balance between substrate solubility and enzyme efficiency is to use a weak polar solvent such as tertiary alcohol with DMSO so as to obtain a solvent mixture of medium polarity [30]. As shown in Fig. 3, a mixture of DMSO/-butanol (volume ratio of 3︰2) is found to be optimal, yielding an effective balance between substrate solubility and biocatalyst efficiency.

    Figure 3 Effect of the composition of solvent mixture (DMSO/-butanol) on the reaction yield

    [Reaction conditions: 0.43 g vitamin E, 0.10 g succinic anhydride,5 ml organic solvent (DMSO/-butanol), 100 mg N435-S, 37°C, 48 h]

    3.4 Effect of molar ratio of substrates on the synthesis of vitamin E succinate

    The synthesis reactions were run using various molar ratios of substrates in DMSO/-butanol at 37°C. The molar ratio of the reactants was found to be an important parameter affecting the reaction equilibrium. Theoretically, excess succinic anhydride shifts the equilibrium to vitamin E succinate synthesis. In our study, the vitamin E content was kept at 1 mmoles (0.43 g) while the succinic anhydride content varied from 1.0 to 6 mmol (Fig. 4). Increasing the succinic anhydride/vitamin E molar ratio increased yields of vitamin E succinate, with a maximum yield at a ratio of 5︰1. Further increase in succinic anhydride content did not produce higher yields.

    Figure 4 Effect of molar ratio of vitamin E to succinic anhydride on the yield of vitamin E succinate

    [Reaction conditions: 5 ml DMSO/-butanol(volume ratio of 3︰2), 100 mg N435-S, 37°C, 48 h]

    3.5 Effect of reaction temperature on the synthesis of vitamin E succinate

    Temperature is another important factor affecting enzymatic activity and vitamin E stability. In this study, the optimal temperature for synthesis was 40°C, with 94.4% of input vitamin E converted into vitamin E succinate (Fig. 5). When the temperature was kept at below 30°C, the enzyme activity limited the efficacy of the synthesis reaction, whereas at higher temperature the stability of vitamin E decreased, decreasing the yield of vitamin E succinate.

    Figure 5 Effect of temperature on the yield of vitamin E succinate

    [Reaction conditions: 0.43 g vitamin E, 0.50 g succinic anhydride, 5 ml DMSO/-butanol(volume ratio of 3︰2), 100 mg N435-S, 48 h)

    3.6 Reuse stability of N435-S

    N435-S was used repeatedly to synthesize vitamin E succinate since reuse stability was important for an immobilized enzyme (Fig. 6). The reaction of each batch was carried out at 40°C for 48 h. From the first batch to the fifth batch, the yields of vitamin E succinate were all around 90%. However, from the sixth batch, the yield of vitamin E decreased obviously. Thus, the reuse of immobilized lipase was five batches.

    Figure 6 Reuse stability of N435-S

    [Reaction conditions: 0.43 g vitamin E, 0.50 g succinic anhydride, 5 ml DMSO/-butanol(volume ratio of 3︰2), 100 mg N435-S, 40 °C, 48 h]

    4 CONCLUSIONS

    Our studies have shown that Novozym-435 can be modified by acetic anhydride, propionic anhydride and succinic anhydride, thus improving enzymatic performance. The hydrolytic activity and the thermal stability of such modified Novozym-435 forms were increased in comparison with unmodified enzyme. Propionic anhydride-modified Novozym-435 (N435-P) was found to possess the highest hydrolytic activity, whereas succinic anhydride-modified Novozym-435 (N435-S) was the most efficient catalyst for the succinylation reaction of vitamin E using succinic anhydride as succinyl donor. As compared with the native Novozym-435, the catalytic activity of the modified novozym-435 for the synthesis of vitamin E succinate was dramatically increased. The conditions for the synthesis of vitamin E succinate were also optimized. The mixture of-butanol and DMSO (volume ratio of 2︰3) was the most suitable medium for the reaction, with the most effective molar ratio of vitamin E to succinic anhydride and reaction temperature being 1︰5 and 40°C, respectively. In conclusion, our collective results indicate that vitamin E succinate can be successfully synthesized using a modified Novozym- 435 as a catalyst and vitamin E and succinic anhydride as substrates, which may be a green and more practicalalternative to conventional chemical synthesis methods.

    1 Valentin, H.E., Qi, Q.G., “Biotechnological production and application of vitamin E: Current state and prospects”,..., 68 (4), 436-44 (2005).

    2 Barros, L., Correia, D.M., Ferreira, I. C.F.R., Baptista, P., Santos-Buelga, C., “Optimization of the determination of tocopherols in. edible mushrooms by a normal phase liquid chromatographic method”,, 110 (4), 1046-1050 (2008).

    3 Diplock, A.T., “Antioxidants and disease prevention”,34, 1013-1023 (1996).

    4 Knekt, P., “Vitamin E and cancer prevention”, Natural Antioxidants in Human Health and Disease, Academic Press, New York, 199-228 (1994).

    5 Morrissey, P.A., Sheehy, P.J.A., “Optimal nutrition: vitamin E”,..., 58 (2), 459-468 (1999).

    6 Muller, D.P.R., “Vitamin E and other antioxidants in neurological function and disease”, Natural Antioxidants in Human Health and Disease, Academic Press, New York, 535-558(1994).

    7 Richard, M.J., Roussel, A.M., “Micronutrients and ageing: intakes and requirements”,..., 58 (3), 573-578 (1999).

    8 Xu, Z., “Comparison of extraction methods for quantifying vitamin E from animal tissues”,.., 99 (18), 8705-8709 (2008).

    9 Turley, J.M., Fu, T., Ruscetti, F.W., “Vitamin E succinate induces fas-mediated apoptosis in estrogen receptor-negative human breast cancer cells”,., 57 (5), 881-890 (1997).

    10 Mokenge, P, Neitzel, L.T., “Vitamin E succinate promotes breast cancer tumor dormancy”,..., 93 (1), 163-170 (2000).

    11 Quin, J., Engle, D., Litwiller, A., Peralta, E., Grasch, A., Boley, T., Hazelrigg, S., “Vitamin E succinate decreases lung cancer tumor growth in mice”,..., 127 (2), 139-143 (2005).

    12 Bonrath, W., Giraudi, L., “Process for the manufacture of tocyl and tocopheryl acylates”, WO Pat., 096791 (2004).

    13 Werner, B., Fabio, C., “Process for the preparation of tocol acylates and tocopherol acylates”, U.S. Pat., 6444098 (2002).

    14 Yin, C., Liu, T., Tan, T., “Synthesis of vitamin A esters by immobilized. lipase in organic media”,...., 14, 81-86 (2006).

    15 Adnani, A., Basri, M., Malek, E.A., Salleh, A.B., Rahman, M.B.A., Chaibakhsh, N., Rahman, R.N.Z., “Optimization of lipase-catalyzed synthesis of xylitol ester by Taguchi robust design method”,..., 31 (2), 350-356 (2010).

    16 Dhake, K.P., Qureshi, Z.S., Singhal, R.S., Bhanage, B.M., “l(fā)ipase B-catalyzed synthesis of acetamides using [BMIm(PF6)] as a reaction medium”,, 50 (23), 2811-2814 (2009).

    17 Torres, P., Reyes-Duarte, D., Lopez-Cortes, N., Ferrer, M., Ballesteros, A., Plou, F., “Acetylation of vitamin E bylipase B immobilized on different carriers”,., 43 (2), 145-153 (2008).

    18 Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., Fernandez-Lafuente, R., “Modulation of immobilized lipase enantioselectivitychemical amination”,..., 349, 1119-1127 (2007).

    19 Cabrera, Z., Fernandez-Lorente, G., Fernandez-Lafuente, R., Palomo, J.M., Guisan, J.M., “Enhancement of Novozym-435 catalytic properties by physical or chemical modification”,., 44 (2), 226-231 (2009).

    20 Szabo, A., Kotorman, M., Laczko, I., Simon, L.M., “Improved stability and catalytic activity of chemically modified papain in aqueous organic solvents”,., 44 (2), 199-204 (2009).

    21 Khajeh, K., Naderi-Manesh, H., Ranjbarb, B., Moosavi-Movahedia, A., Nemat-Gorgania, M., “Chemical modification of lysine residues inα-amylases: Effect on activity and stability”,.., 28 (6), 543-549 (2001).

    22 Sangeetha, K., Abraham, T.E., “Chemical modification of papain for use in alkaline medium”,..., 38, 171-177 (2006).

    23 Palomo, J.M., Fernandez-Lorente, G., Mateo, C., Fuentes M., Fernandez-Lafuente, R., Guisan, J.M., “Modulation of the enantioselectivity ofB lipaseconformational engineering: Kinetic resolution of hydroxy-phenylacetic acid derivatives”,:, 13 (12), 1337-1345 (2002).

    24 Gargouri, M., Legoy, M.D., “Bienzymatic reaction for hydroperoxide production in a multiphasic system”,.., 21 (2), 79-84 (1997).

    25 Lanne, C., Boeren, S., Vos, K., Veeger, C., “Rules for optimization of biocatalysis in organic solvents”,.., 30 (1), 81-87 (1987).

    26 Cremonesi, P., Carrea, P.J., Ferrara, L., Antonini, E., “Enzymatic dehydrogenation of testosterone coupled to pyruvate in a two-phase system”,..., 44, 401-407 (1974).

    27 Claon, P.A., Akoh, C.C., “Enzymatic synthesis of geranyl acetate in-hexane withlipase”,....., 71 (6), 575-578 (1994).

    28 Gorman, L.S., Dordick, J.S., “Organic solvents strip water of enzymes”,.., 38 (1), 75-81 (1992).

    29 Knubovets, T., Osterhout, J.J., Klibanov, A.M., “Structure of lysozyme dissolved in neat organic solvents as assessed by NMR and CD spectroscopies”,.., 63 (2), 242-248 (1999).

    30 Plou, F.J., Cruces, M.A., Ferrer, M., Fuentes, G., Pastor, E., Bernabe, M., “Enzymatic acylation of di- and trisaccharides with fatty acids: Choosing the appropriate enzyme, support and solvent”,.., 96 (1), 55-66 (2002).

    ** To whom correspondence should be addressed. E-mail: chyin@sina.com

    2010-07-15,

    2010-11-15.

    the Fundamental Research Funds for the Central Universities and the State Key Development Program for Basic Research of China (2007CB714304).

    猜你喜歡
    高明春華
    Propagation of surface magnetoplasmon polaritons in a symmetric waveguide with two-dimensional electron gas
    FeS介導(dǎo)下的1,2-二溴乙烷非生物自然衰減
    Heredity of clusters in the rapidly cooling processes of Al-doped Zr50Cu50 melts and its correlation with the glass-forming ability*
    Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment
    待到春華爛漫時
    黃河之聲(2020年5期)2020-05-21 08:24:38
    爸爸的“高明”之處
    Study on the Perturbation Characteristics of Two-Channel Laser Propagation in Atmospheric Turbulence
    我們該如何表達(dá)苦難?——讀黃春華《扁腦殼》
    肉被騙以后
    寒木守春華
    火花(2016年7期)2016-02-27 07:45:24
    日本欧美国产在线视频| 日韩,欧美,国产一区二区三区| 人体艺术视频欧美日本| 成人国产av品久久久| 99热国产这里只有精品6| 欧美另类一区| 狂野欧美白嫩少妇大欣赏| av黄色大香蕉| av天堂中文字幕网| 少妇丰满av| 欧美少妇被猛烈插入视频| 日本欧美国产在线视频| 欧美一级a爱片免费观看看| www.av在线官网国产| av在线观看视频网站免费| 精品久久久久久久久av| 国产 精品1| 夜夜爽夜夜爽视频| 91久久精品电影网| 大片电影免费在线观看免费| 老司机影院成人| 免费黄频网站在线观看国产| 最近中文字幕2019免费版| 亚洲欧洲国产日韩| 欧美成人一区二区免费高清观看| 最近最新中文字幕大全电影3| 国产黄片美女视频| 99久久中文字幕三级久久日本| 六月丁香七月| 丝袜喷水一区| 大话2 男鬼变身卡| 国国产精品蜜臀av免费| 国产乱来视频区| 午夜视频国产福利| 国产精品无大码| 欧美日韩视频高清一区二区三区二| 欧美精品亚洲一区二区| 亚洲欧美成人精品一区二区| 国产 一区精品| 亚洲国产精品一区三区| 中文字幕制服av| 亚洲欧美日韩东京热| 黄片无遮挡物在线观看| 天堂8中文在线网| 国产视频内射| 五月开心婷婷网| 美女主播在线视频| 亚洲高清免费不卡视频| 精品亚洲乱码少妇综合久久| 大话2 男鬼变身卡| 激情 狠狠 欧美| 熟女人妻精品中文字幕| 久久精品国产鲁丝片午夜精品| 亚洲最大成人中文| 身体一侧抽搐| 少妇被粗大猛烈的视频| 深爱激情五月婷婷| 免费在线观看成人毛片| 国产成人freesex在线| 亚洲熟女精品中文字幕| 亚洲高清免费不卡视频| 男女无遮挡免费网站观看| 在线看a的网站| 久久99精品国语久久久| 国产av国产精品国产| 蜜桃亚洲精品一区二区三区| 大香蕉久久网| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美一区二区三区国产| 成人午夜精彩视频在线观看| 国产永久视频网站| 天堂8中文在线网| 免费看日本二区| 国产在线视频一区二区| 成人国产麻豆网| 亚洲欧美日韩卡通动漫| 日韩亚洲欧美综合| 国产一区有黄有色的免费视频| 日本黄色日本黄色录像| 蜜臀久久99精品久久宅男| 成人18禁高潮啪啪吃奶动态图 | 久久ye,这里只有精品| 免费黄色在线免费观看| 亚洲最大成人中文| 亚州av有码| 女性被躁到高潮视频| 男人添女人高潮全过程视频| 中文字幕av成人在线电影| 狂野欧美激情性xxxx在线观看| 免费在线观看成人毛片| h日本视频在线播放| 亚洲av男天堂| 在现免费观看毛片| 亚洲性久久影院| 黄片wwwwww| av卡一久久| 日日啪夜夜爽| 22中文网久久字幕| 免费观看性生交大片5| 午夜精品国产一区二区电影| av天堂中文字幕网| av免费观看日本| 99久久中文字幕三级久久日本| 99re6热这里在线精品视频| 国产白丝娇喘喷水9色精品| 2022亚洲国产成人精品| 国产亚洲午夜精品一区二区久久| 久久国内精品自在自线图片| 麻豆精品久久久久久蜜桃| 国产色爽女视频免费观看| 最近中文字幕2019免费版| 国产伦精品一区二区三区视频9| 亚洲一级一片aⅴ在线观看| 亚洲av电影在线观看一区二区三区| 九九久久精品国产亚洲av麻豆| 国产视频首页在线观看| 亚洲成人手机| 国产精品熟女久久久久浪| 老司机影院成人| 夜夜骑夜夜射夜夜干| 少妇人妻精品综合一区二区| 视频中文字幕在线观看| 一级二级三级毛片免费看| 我要看黄色一级片免费的| 激情 狠狠 欧美| 国产精品三级大全| 爱豆传媒免费全集在线观看| 午夜日本视频在线| 国产乱人视频| 男女下面进入的视频免费午夜| 国产黄频视频在线观看| 欧美bdsm另类| 日韩制服骚丝袜av| 伦理电影免费视频| 男女国产视频网站| 美女福利国产在线 | 亚洲精品中文字幕在线视频 | 秋霞在线观看毛片| 欧美成人午夜免费资源| 在线观看人妻少妇| 少妇的逼水好多| 精品久久久噜噜| 国产探花极品一区二区| 久久婷婷青草| 亚洲丝袜综合中文字幕| 亚洲成色77777| 看非洲黑人一级黄片| 欧美bdsm另类| 欧美一区二区亚洲| 我要看黄色一级片免费的| videossex国产| 18禁在线无遮挡免费观看视频| 一级毛片我不卡| a级毛色黄片| 亚洲国产成人一精品久久久| 国产一区有黄有色的免费视频| 伦理电影大哥的女人| 欧美区成人在线视频| 亚洲天堂av无毛| 国产亚洲最大av| 美女xxoo啪啪120秒动态图| 97热精品久久久久久| 中文字幕免费在线视频6| 一级爰片在线观看| 国产精品.久久久| 边亲边吃奶的免费视频| 国产欧美另类精品又又久久亚洲欧美| 啦啦啦中文免费视频观看日本| 女性被躁到高潮视频| 99热这里只有是精品50| 欧美+日韩+精品| 成人亚洲精品一区在线观看 | 亚洲欧美日韩卡通动漫| 国产精品熟女久久久久浪| 中文在线观看免费www的网站| 免费av不卡在线播放| 中国三级夫妇交换| 亚洲va在线va天堂va国产| 中文字幕人妻熟人妻熟丝袜美| 国产黄片美女视频| 日韩中字成人| 欧美zozozo另类| 欧美成人午夜免费资源| 黄色日韩在线| 一级毛片 在线播放| 免费观看无遮挡的男女| 欧美xxxx黑人xx丫x性爽| 日韩一区二区三区影片| 性色av一级| 在线观看一区二区三区激情| 中文字幕久久专区| 亚洲性久久影院| 成人高潮视频无遮挡免费网站| 免费看不卡的av| 91精品一卡2卡3卡4卡| 国产在线免费精品| 成年美女黄网站色视频大全免费 | 午夜精品国产一区二区电影| 欧美成人午夜免费资源| 在线观看人妻少妇| 亚洲人成网站高清观看| 亚洲国产高清在线一区二区三| 久久人妻熟女aⅴ| 欧美精品一区二区大全| 纵有疾风起免费观看全集完整版| 最新中文字幕久久久久| 久久国内精品自在自线图片| 日韩欧美一区视频在线观看 | 日韩精品有码人妻一区| 免费观看性生交大片5| 韩国av在线不卡| 国产午夜精品一二区理论片| 亚洲av男天堂| 国产精品伦人一区二区| 日韩av不卡免费在线播放| 欧美成人a在线观看| 99久久精品一区二区三区| 3wmmmm亚洲av在线观看| 国产精品久久久久久精品电影小说 | 日本wwww免费看| 狂野欧美激情性bbbbbb| 永久网站在线| 国产成人a∨麻豆精品| 少妇的逼水好多| 国产成人91sexporn| 亚洲精品成人av观看孕妇| 久久国产精品大桥未久av | 国产亚洲一区二区精品| 91久久精品电影网| 美女cb高潮喷水在线观看| 亚洲无线观看免费| 免费av中文字幕在线| 国产深夜福利视频在线观看| 免费观看a级毛片全部| 精品一区二区三区视频在线| 国产精品久久久久久久电影| 毛片一级片免费看久久久久| 不卡视频在线观看欧美| 97在线视频观看| 极品少妇高潮喷水抽搐| 成人国产麻豆网| 久久久久性生活片| 亚洲国产高清在线一区二区三| 久久青草综合色| 精品一品国产午夜福利视频| 99久久中文字幕三级久久日本| 亚洲成人一二三区av| av在线蜜桃| 一二三四中文在线观看免费高清| 国产精品99久久久久久久久| 一级a做视频免费观看| 国产在线一区二区三区精| 日本与韩国留学比较| 国产老妇伦熟女老妇高清| 女人久久www免费人成看片| 我的女老师完整版在线观看| 老司机影院成人| 亚州av有码| 日日摸夜夜添夜夜爱| 久久精品国产a三级三级三级| 国产精品久久久久久久电影| 国产欧美另类精品又又久久亚洲欧美| 女性被躁到高潮视频| 国产成人freesex在线| 爱豆传媒免费全集在线观看| 国产亚洲一区二区精品| 高清午夜精品一区二区三区| 精品久久国产蜜桃| 国产69精品久久久久777片| 秋霞伦理黄片| 亚洲一区二区三区欧美精品| 国产精品爽爽va在线观看网站| 性色av一级| 日韩,欧美,国产一区二区三区| 在线观看一区二区三区| 18禁在线无遮挡免费观看视频| 欧美老熟妇乱子伦牲交| 中文精品一卡2卡3卡4更新| 成年av动漫网址| av播播在线观看一区| 人妻少妇偷人精品九色| 亚洲精品aⅴ在线观看| 王馨瑶露胸无遮挡在线观看| 伦理电影大哥的女人| 免费大片18禁| 中国美白少妇内射xxxbb| 高清av免费在线| 精品亚洲成a人片在线观看 | 欧美成人精品欧美一级黄| 国产黄色免费在线视频| 亚洲四区av| av福利片在线观看| 在线观看免费高清a一片| 人妻一区二区av| 男女边吃奶边做爰视频| 男人添女人高潮全过程视频| 亚洲av福利一区| 久久精品国产亚洲av天美| 国产精品无大码| 在线免费观看不下载黄p国产| 欧美三级亚洲精品| 97热精品久久久久久| 国产精品一区二区三区四区免费观看| 国产高清有码在线观看视频| 日韩国内少妇激情av| 丰满乱子伦码专区| 久久久精品免费免费高清| 五月玫瑰六月丁香| tube8黄色片| 久久久成人免费电影| 亚洲国产成人一精品久久久| 欧美精品一区二区免费开放| 国产69精品久久久久777片| 午夜日本视频在线| 韩国av在线不卡| 精品人妻偷拍中文字幕| 久久久色成人| 日韩精品有码人妻一区| 国产精品蜜桃在线观看| 日本色播在线视频| 欧美日韩亚洲高清精品| 一区二区三区精品91| 97精品久久久久久久久久精品| 成年美女黄网站色视频大全免费 | 一区二区三区四区激情视频| 国产在线视频一区二区| 一区二区三区四区激情视频| 欧美激情极品国产一区二区三区 | 肉色欧美久久久久久久蜜桃| 啦啦啦视频在线资源免费观看| av在线app专区| av免费观看日本| 少妇 在线观看| 女性生殖器流出的白浆| 欧美一区二区亚洲| 亚洲在久久综合| 久久人人爽av亚洲精品天堂 | 大片免费播放器 马上看| 国产在线免费精品| 欧美成人a在线观看| 国产成人精品福利久久| 在线观看国产h片| 日韩一区二区视频免费看| 又粗又硬又长又爽又黄的视频| 99热这里只有是精品50| 高清av免费在线| 日韩视频在线欧美| 精品久久久久久久久av| 国产午夜精品一二区理论片| 在线观看国产h片| 欧美高清成人免费视频www| 夫妻午夜视频| 欧美老熟妇乱子伦牲交| 综合色丁香网| 岛国毛片在线播放| 大片免费播放器 马上看| h日本视频在线播放| 啦啦啦视频在线资源免费观看| 97超碰精品成人国产| 亚洲国产精品专区欧美| 高清欧美精品videossex| 午夜免费观看性视频| 欧美日韩精品成人综合77777| 热re99久久精品国产66热6| 国产黄频视频在线观看| 国产精品蜜桃在线观看| 搡女人真爽免费视频火全软件| 久久久久久人妻| 26uuu在线亚洲综合色| 18禁动态无遮挡网站| 熟女人妻精品中文字幕| 亚洲经典国产精华液单| 99热网站在线观看| 九九久久精品国产亚洲av麻豆| 午夜激情福利司机影院| 精品熟女少妇av免费看| 精品一区在线观看国产| 国产人妻一区二区三区在| 国产欧美亚洲国产| 国产精品一区二区在线不卡| 蜜桃久久精品国产亚洲av| 22中文网久久字幕| 性色avwww在线观看| 99久久精品一区二区三区| 在线精品无人区一区二区三 | 国产精品熟女久久久久浪| 精品少妇黑人巨大在线播放| 国产亚洲午夜精品一区二区久久| 又爽又黄a免费视频| 街头女战士在线观看网站| 日本一二三区视频观看| 精品少妇黑人巨大在线播放| 男女边吃奶边做爰视频| 中国美白少妇内射xxxbb| 天堂8中文在线网| 国产成人freesex在线| 亚洲aⅴ乱码一区二区在线播放| 看十八女毛片水多多多| 一本久久精品| 纵有疾风起免费观看全集完整版| 一级黄片播放器| 街头女战士在线观看网站| 亚洲精品456在线播放app| 精品国产乱码久久久久久小说| 蜜桃久久精品国产亚洲av| 精品久久久久久电影网| 国产日韩欧美在线精品| 亚洲精品国产成人久久av| 国产伦理片在线播放av一区| 女人十人毛片免费观看3o分钟| 色综合色国产| 春色校园在线视频观看| 亚洲精品aⅴ在线观看| 最近2019中文字幕mv第一页| 91aial.com中文字幕在线观看| 嘟嘟电影网在线观看| 街头女战士在线观看网站| 女的被弄到高潮叫床怎么办| 国产成人免费观看mmmm| 精品视频人人做人人爽| 成人18禁高潮啪啪吃奶动态图 | 精品99又大又爽又粗少妇毛片| 一区二区av电影网| 成人美女网站在线观看视频| 男女国产视频网站| 人妻制服诱惑在线中文字幕| 18禁裸乳无遮挡免费网站照片| 制服丝袜香蕉在线| 在线免费观看不下载黄p国产| 黄片无遮挡物在线观看| 久久精品国产亚洲av天美| 国产精品国产三级国产av玫瑰| 精品一区二区三卡| 18禁在线播放成人免费| 亚洲成色77777| 国产精品久久久久成人av| 国产免费一级a男人的天堂| 熟女人妻精品中文字幕| 欧美日韩视频精品一区| 国产深夜福利视频在线观看| 国产亚洲91精品色在线| 色5月婷婷丁香| 高清不卡的av网站| 国产av码专区亚洲av| 久久久久精品性色| 深夜a级毛片| 免费黄网站久久成人精品| 国产精品一及| 成人午夜精彩视频在线观看| av在线播放精品| 亚洲成人av在线免费| 国产精品熟女久久久久浪| 亚洲精品亚洲一区二区| 在线亚洲精品国产二区图片欧美 | 久久精品久久久久久噜噜老黄| 国产日韩欧美亚洲二区| 日本猛色少妇xxxxx猛交久久| 久久亚洲国产成人精品v| 亚洲欧美日韩卡通动漫| 永久网站在线| 久久99热6这里只有精品| 日韩精品有码人妻一区| 大又大粗又爽又黄少妇毛片口| 国产视频首页在线观看| 性高湖久久久久久久久免费观看| 99久久精品国产国产毛片| 国产爱豆传媒在线观看| 国产精品蜜桃在线观看| 日韩中文字幕视频在线看片 | 色综合色国产| 亚洲色图综合在线观看| 欧美日韩一区二区视频在线观看视频在线| 少妇人妻精品综合一区二区| 26uuu在线亚洲综合色| tube8黄色片| 91久久精品国产一区二区三区| 十八禁网站网址无遮挡 | 最近最新中文字幕大全电影3| 国产精品欧美亚洲77777| 日韩国内少妇激情av| 午夜福利影视在线免费观看| 亚洲精品视频女| 欧美日韩亚洲高清精品| 国产男人的电影天堂91| 99re6热这里在线精品视频| av国产久精品久网站免费入址| 国产高潮美女av| 日本黄色片子视频| 久久99热这里只有精品18| 久久婷婷青草| 女人十人毛片免费观看3o分钟| 精品熟女少妇av免费看| 日本黄色片子视频| 99久久中文字幕三级久久日本| 欧美最新免费一区二区三区| 下体分泌物呈黄色| 观看av在线不卡| 老女人水多毛片| 国产亚洲最大av| 久久久久久久久久久免费av| 国产精品一区www在线观看| av国产免费在线观看| 一级爰片在线观看| 天堂8中文在线网| 在线天堂最新版资源| 韩国av在线不卡| 九九久久精品国产亚洲av麻豆| 成年女人在线观看亚洲视频| 啦啦啦中文免费视频观看日本| 肉色欧美久久久久久久蜜桃| 性色av一级| 99久久中文字幕三级久久日本| 人人妻人人看人人澡| 欧美日韩视频高清一区二区三区二| 人体艺术视频欧美日本| 99热这里只有是精品在线观看| 亚洲综合色惰| 国产精品不卡视频一区二区| 亚洲婷婷狠狠爱综合网| 亚洲av国产av综合av卡| 伊人久久国产一区二区| 色哟哟·www| 黄色一级大片看看| 人妻少妇偷人精品九色| 精品国产三级普通话版| 小蜜桃在线观看免费完整版高清| 亚洲婷婷狠狠爱综合网| 婷婷色麻豆天堂久久| 免费黄网站久久成人精品| 色哟哟·www| 性高湖久久久久久久久免费观看| 精品人妻熟女av久视频| 国产精品秋霞免费鲁丝片| 在线观看免费视频网站a站| 欧美zozozo另类| 成人毛片a级毛片在线播放| 少妇熟女欧美另类| 国产精品一及| 亚洲,欧美,日韩| 99久国产av精品国产电影| 亚洲熟女精品中文字幕| 欧美97在线视频| 精品少妇久久久久久888优播| 亚洲欧美精品自产自拍| 香蕉精品网在线| 国产男人的电影天堂91| 岛国毛片在线播放| 日韩 亚洲 欧美在线| 亚洲av成人精品一二三区| 少妇的逼水好多| av国产久精品久网站免费入址| 久久久午夜欧美精品| 极品少妇高潮喷水抽搐| 青青草视频在线视频观看| 欧美xxⅹ黑人| 欧美极品一区二区三区四区| 国产精品人妻久久久影院| 亚洲国产日韩一区二区| 熟女人妻精品中文字幕| 亚洲综合色惰| 在线精品无人区一区二区三 | 欧美日韩视频精品一区| 男人添女人高潮全过程视频| 卡戴珊不雅视频在线播放| 国产女主播在线喷水免费视频网站| 欧美极品一区二区三区四区| 激情五月婷婷亚洲| 国产有黄有色有爽视频| 嘟嘟电影网在线观看| 精品久久久久久久久av| 欧美最新免费一区二区三区| 国产精品一二三区在线看| 久久久久视频综合| www.av在线官网国产| 51国产日韩欧美| 我的女老师完整版在线观看| 伊人久久精品亚洲午夜| 丝袜脚勾引网站| www.色视频.com| 国产成人一区二区在线| 色婷婷久久久亚洲欧美| 亚洲av成人精品一二三区| 97超碰精品成人国产| 亚洲四区av| 国内揄拍国产精品人妻在线| 欧美变态另类bdsm刘玥| 最近手机中文字幕大全| 久久国产乱子免费精品| 日韩一区二区视频免费看| 能在线免费看毛片的网站| 少妇人妻一区二区三区视频| 免费人成在线观看视频色| 好男人视频免费观看在线| 国产黄频视频在线观看| 男人添女人高潮全过程视频| 亚洲婷婷狠狠爱综合网| 国产午夜精品久久久久久一区二区三区| 美女中出高潮动态图| 99久久综合免费| 91aial.com中文字幕在线观看| 成年女人在线观看亚洲视频| 成人无遮挡网站| 国产精品无大码| 国产伦精品一区二区三区四那| 欧美xxxx黑人xx丫x性爽| 成人黄色视频免费在线看| 午夜视频国产福利| 中文字幕精品免费在线观看视频 | 成人综合一区亚洲| 久久韩国三级中文字幕| 一区二区三区精品91| 一级毛片aaaaaa免费看小| 亚洲国产最新在线播放| 观看av在线不卡| 免费看不卡的av|