• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Simulation and Analysis of Industrial Purified TerephthalicAcid Solvent Dehydration Process*

    2011-05-15 11:23:30LIChengfei李澄非

    LI Chengfei (李澄非)

    ?

    Dynamic Simulation and Analysis of Industrial Purified TerephthalicAcid Solvent Dehydration Process*

    LI Chengfei (李澄非)**

    Wuyi University, Jiangmen 529020, China

    Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process. A temperature differential expression is presented, which ensures the equation to convergence and short computation time. The model is used to study the dynamic behavior of an azeotropic distillation column separating acetic acid and water using-butyl acetate as the entrainer. Responses of the column to feed flow and aqueous reflux flow are simulated. The movement of temperature front is also simulated. The comparison between simulation and industrial values shows that the model and algorithm are effective. On the basis of simulation and analysis, control strategy, online optimization and so on can be implemented effectively in dehydration process of purified terephthalic acid solvent.

    dynamic simulation, purified terephthalic acid, solvent dehydration, azeotropy

    1 Introduction

    Purified terephthalic acid (PTA) is an important raw material for polyester production widely used in textile and packaging industries. It is produced by catalytic oxidization of PX (paraxylene) fo1lowed by subsequent purification of the crude terephthalic acid by selective hydrogenation.

    Acetic acid is the solvent in the PTA production process and its concentration is an important quality criterion. The content of acetic acid at the bottom of solvent dehydration column directly influences the product quality of upstream oxidation unit. Less acetic acid lost at the top of solvent dehydration column results in more energy consumption. Thus it is necessary to investigate the separation of acetic acid and water in the recovery unit for saving energy and ensuring the purity of PTA in the oxidation unit.

    PTA production process is a typical heterogeneous azeotropic distillation system. The simulation for steady state PTA production process has been carried out [1, 2]. However, heterogeneous azeotropic distillation is very unstable and it is difficult to be controlled [3-8]. Because the azeotropic distillation shows extremely complex dynamic behavior and is sensitive to slight disturbances, it is difficult to operate it and to design its controller, and a dynamic simulation is needed to understand the nonlinear characteristics of the system. Acetic acid dehydration is an important operation in the azeotropic distillation, so its dynamic simulation and analysis is important to control and optimization of industrial PTA process. Design for acetic acid dehydration system using an entrainer, which is used to reduce the organic reflux and heat duty in the dehydrating column, were reported in several publications [9]. Pham and Doherty took ethyl acetate as entrainer [10], and Tanaka and Yamada used-butyl acetate [11]. Siirola used acetic ethyl acetate as entrainer to design a complete acetic acid dehydration process with multiple effect azeotropic distillation [12]. Wasylkiewicz. used geometric method for optimum process design of an acetic acid dehydration column with-butyl acetate as entrainer [13]. Luyben and Tyreus used vinyl acetate monomer as an example for simulation, design, and control studies [14]. Kurooka. proposed a nonlinear control system for the acetic acid dehydration column with-butyl acetate as entrainer [15, 16]. Gaubert. studied the industrial dehydration operation of an unnamed organic acid using an immiscible entrainer [17], in which multiple steady states were confirmed for the heterogeneous column by simulation and experimental data. Chien. designed an acetic acid dehydration systemheterogeneous azeotropic distillation [18], with iso-butyl acetate as the entrainer. The optimum process design and operating condition were determined for high acetic acid concentration at the bottom and small loss of acetic acid through the top aqueous flow. Chien and Kuo added a pre-concentrator column in the upstream of the heterogeneous azeotropic distillation column [19] and investigated the necessity of the pre-concentrator column from aspect of design and control. For a typical waste isopropyl alcohol stream with equal moles of isopropyl alcohol and water, the design and control of the overall isopropyl alcohol dehydration process were investigated [20] and a novel side-stream operating strategy was proposed to maintain the impurity concentration inside the column for an energy-efficient operation[21]. The optimum process design and operating condition were determined by intelligence method [22].

    Figure 1 Industrial purified terephthalic acid solvent dehydration system

    The flowsheet of this study is similar to the column system in literature, with components of acetic acid and water. The dynamic simulation and analysis on industrial PTA solvent dehydration with-butyl acetate as entrainer are investigated in this work to understand and characterize the process, which have been little discussed in literature.

    2 Industrial Purified Terephthalic Acid solvent dehydration system

    Figure 1 shows the industrial purified terephthalic acid solvent dehydration system. The solvent recovery section recovers and purifies the acetic acid solvent with an azeotropic distillation system, before it is recycled to other section. The condensate from the reflux drum containing water and small amount of organics formed in the reaction step and that from oxidation unit are collected in drum acetic acid. This dilute acetic acid solution is fed to 15th tray of distillation column TT501 through pumps with flow control. This azeotropic distillation system utilizes another solvent,-butyl acetate (NBA) called the entrainer, which is relatively immiscible with water. The entrainer forms azeotrope with water and increases the relative volatility of water to acetic acid, which leads to less reflux ratio and fewer distillation stages. The water containing 0.1% (by mass) acetic acid is removed as distillate. The tower is operated at an external reflux ratio of approximate 0.6. The overhead azeotropic vapor at 90°C is condensed, cooled to 40°C in the condenser and flows into the reflux drum. TD501 is internally divided by weir into the phase separating zone, in which the condensate is separated into entrainer phase and aqueous phase by decantation, and the entrainer overflows the weir into the entrainer collecting zone. The entrainer is refluxed to the top of TT501 with flow control. A portion of aqueous phase containing some dissolved entrainer is refluxed from the bottom of the phase separating zone to the top of TT501 with flow control through water reflux pumps. The remainder is fed to the NBA recovery tower TT511 with interface level controller of the phase separating zone. Purified acetic acid as bottom product of TT501 flows into the bottom acetic acid drum with level control.

    3 formation OF AN Improved Dynamic Model

    Figure 2 shows the three phase equilibrium model used in this study. Because the industrial PTA solvent dehydration system shows extremely complex dynamic and nonlinear characteristics, the model is developed with following assumptions: perfect mixing in vapor and liquid phases, equilibrium vapor-liquid-liquid phases, ideal stage, negligible vapor holdup, and steam condensation at saturated temperature in reboiler.

    Figure 2 Sketch of three phase equilibrium model

    Vapor-liquid-liquid equilibrium (VLLE) is represented with the non-random two liquids (NSTL) equation. The model equations are described as follows:

    Phase equilibrium equations are

    The values of enthalpy are as follows:

    HAC vapor:

    water vapor:

    NBA vapor:

    HAC vapor:

    NBA liquid:

    On the basis of the above assumptions, the equilibrium constants are obtained as follows:

    HAC equilibrium constant:

    H2O equilibrium constant:

    NBA equilibrium constant:

    whereis the system pressure, andis the temperature.

    This differential equation of liquid composition and flux represents well the dynamic characteristic of distillation column. Vapor flow changes sharply, so it has little effect on the equation, while temperature is an important process variable that represents the characteristic of distillation process. In steady state simulations, temperature is obtained using bubble-point method based on phase equilibrium. In dynamic simulations, the bubble-point equation is nonlinear with complicated iterative process and it is difficulty to convergence and even leads to calculation failure. In order to improve the convergence and reduce computation time, the differential equation for temperature is obtained.

    Equations (21)-(24), and (29) are changed to

    The algorithm for solving the problem is as follows.

    Step 1 Calculate initial value.

    Step 5 Repeat Step 2 to Step 4 until the convergence within a tolerance level is achieved.

    The differential equation is solved with the ODE (ordinary differential equation) algorithm in Matlab, which is for solving nonlinear problem so convergence is ensured. The calculation results are shown in Table 1 and Fig. 3. The simulation is satisfactory, indicating that the model is appropriate.

    Table 1 Comparison of the simulation and industrialvalues (feed flow rate 19565 kg·h-1)

    Figure 3 Comparison of simulation with industrial data

    4 Dynamic simulation and analysis

    The optimum operating condition is determined for high concentration of bottom acetic acid and small acetic acid loss through the top aqueous stream. The nonrandom two-liquids (NRTL) activity coefficient model is used for vapour-liquid-liquid equilibrium for the ternary system.

    Since the relative volatility between water and acetic acid is very small,-butyl acetate is used as the entrainer for efficient separation. In the heterogeneous azeotropic distillation column, water is obtained from the heavy phase in the decanter and acetic acid is withdrawn from the bottom of the column. With this three-component mixture, the liquid phase is heterogeneous not only in the decanter but also in the upper part of the column. The column has two reflux flows,.., the entrainer reflux and water reflux. The top vapor stream forms two liquid phases. The organic phase is refluxed to the column to provide enough entrainer, and the aqueous phase containing mostly water is drawn out from the system for further treatment. Some of the aqueous phase is refluxed to the column if the organic reflux is too small to fulfill the column specifications. Therefore, there are three manipulated variables,.., entrainer reflux flow, water reflux flow, and vapor flow.

    Figure 4 shows three parts of the temperature profile. The temperature in the trays above the feed tray, 15#, changes slowly, where vapor and two liquids are in equilibrium. The main compositions are water and NBA and the concentration of acetic acid is very low. At stage 20#, three phases become two phases, so that the temperature and composition change sharply. The sharp decrease in concentration of NBA is accompanied by a steep increase of acetic acid, as shown in Fig. 5. In those trays beneath the feed tray, NBA is very little and does not function in the distillation. Thus no azeotropic phenomenon happens in these stages and it is a binary acetic-water distillation.

    Figure 4 Temperature. the number of tower stage

    Figure 5 Liquid composition. the number of tower stage

    Figure 6 Temperature profile at different reflux flow

    1—reflux flow in crease 2%; 2—reflux flow constant;3—reflux flow decrease 2%; 4—reflux flow decrease 4%

    The NBA concentration at trays toward tower bottom lower than tray 15#decreases rapidly. The temperature at the tray at which the temperature changes sharply (sensitive point) must be controlled to ensure the HAC concentrations at the bottom and the top. The temperature of sensitive point is manipulated by controlling the reflux flow. Fig. 6 shows that temperature profile changes with reflux flow. If the temperature is increased (temperature front shifting toward the tower top), the HAC concentration in the vapor increases, losing more HAC. The strategy is implemented by increasing the reflux flow. However, the NBA reflux flow can not be excessive. It is seen from Figs. 5 and 6 that as the NBA reflux flow increases, the NBA concentration in the liquid near the bottom of tower increases. The NBA at the bottom is sent to the oxidation unit of PTA to be dissolved, so the cost increases. Moreover, HAC concentration at the bottom will decrease.

    Figure 7 shows that the heat flow of reboiler affects the tray temperature obviously. The temperature increases with the heat flow.

    Figure 7 Temperature profile at different reboil duties

    reboil duty/kW: 0—13061.2; 1—13067.2; 2—13074.5;3—13087.3; 4—13113.4; 5—13057.3; 6—13035.1

    The dynamic analysis is as follows.

    (1) Response of temperature to the change of reflux flow

    Figures 8 and 9 indicate that the tray temperature decreases as reflux flow increases, and increases as reflux flow decreases.

    Figure 8 Response of temperature at the top to increase in the reflux flow

    Figure 9 Response of temperature at the top to decrease in the reflux flow

    (2) Response of concentration to the change of feed flow

    Figures 10 and 11 show that the change of feed flow does not affect the concentration of top product. Figs. 12 and 13 indicate that HAC concentration at the bottom increases with feed flow increasing and decreases as the feed flow decreases.

    Figure 10 Response of top HAC concentration to increase in the feed flow

    Figure 11 Response of top HAC concentration to decrease in the feed flow

    Figure 12 Response of bottom HAC concentration to increase in the feed flow

    Figure 13 Response of bottom HAC concentration to decrease in the feed flow

    (3) Response of concentration to the change in reflux flow

    Figures 14 and 15 show that top and bottom HAC concentrations increase as reflux flow decreases. The increase of top HAC concentration should be prevented, but the increase in bottom HAC concentration is desired, so it must be careful to decrease the reflux flow. In PTA industry, the decision-maker usually ensures that the top HAC concentration is in the range of preset values. Figs. 16 and 17 show that top and bottom HAC concentrations decrease as reflux flow increases. The decrease in top HAC concentration is desired, so it must be careful to manipulate the reflux flow.

    Figure 14 Response of top HAC concentration to increase in the reflux flow rate

    Figure 15 Response of bottom HAC concentration to increase in the reflux flow

    Figure 16 Response of top HAC concentration to decrease in the reflux flow

    Figure 17 Response of bottom HAC concentration to decrease in the reflux flow

    Table 2 Specification for the azeotropic distillation column

    When the feed flow increases, tray temperature front will move to the top. Increase in tray temperature will lead to an increase in the HAC concentration at the top after a while. The measure is taken to decrease the top HAC concentration by increasing the reflux flow. On the other hand, less feed flow will lead to a decrease in the bottom HAC concentration. The measure is taken to increase the bottom HAC concentration by decreasing the reflux flow.

    In conclusion, reflux flow is an important manipulating variable in industrial operation and temperature is also important to the HAC concentration. Increase of reflux flow decreases top HAC concentration to prevent the loss of HAC at the top, with bottom HAC concentration decreased. Feed flow does not affect top HAC concentration, but changing bottom HAC concentration. In practical operation, reflux flow is adjusted when tray temperature changes. According to the above simulation result and analysis, some control scheme is implemented. Table 2 is the specification for the azeotropic distillation column. Fig. 18 givesthe control strategy as follows: using reflux flow FC1504 to control temperature TC1503 and using the heat flow of reboiler FC1507 to control temperature TC1501. The above control strategy is consistent with the industrial control strategy, verifying our analysis results.

    Figure 18 Schematic diagram of control structure

    5 ConclusionS

    This work introduces an improved model and algorithm for the dynamic simulation of industrial PTA solvent dehydration tower. A new model for temperature is derived. Dynamic analysis is presented. The comparison between the simulation and industrial values shows that the model and algorithm are particularly effective for the separation of HAC and water with NBA. Based on this model, advanced process control, online optimization, performance monitoring, and production evaluation can be implemented.

    ACKNOWLEDGEMENTS

    .

    NOMENCLATURE

    amount of product in tower bottom

    the number of components

    amount of product in tower top

    energy hold up on tray j, J

    feed flow, kmol·h-1

    enthalpy, kJ·kmol-1

    equilibrium constant

    holdup, kmol

    the number of tower tray

    pressure, kPa

    heat duty, kJ·h-1

    temperature, K

    time, s

    liquid holdup, kmol

    ,flow of vapor and liquid phases, kmol·h-1

    ,mole fraction of liquid and vapor phases

    phase separation parameter

    Superscripts

    l the first liquid phase

    ll the second liquid phase

    v vapor phase

    Subscripts

    f feed

    index of component

    index of tray

    1 Wang, L.J., Li, X., Zhang, H.J., “Thermodynamic analysis and azeotropic distillation simulation for aceticacid-water-butylacetate system”,, 56 (7), 1260-1266 (2005).(in Chinese)

    2 Geng, J., Wu, Y., T., Liu, Q.L., Zhang, Z.B., “The vapor-liquid equilibrium of acetic acid-water system and its simulation of the distillation process”,, 36 (4), 491-496 (2000). (in Chinese)

    3 Kannan, A., Joshi, M.R., Reddy, G.R., Shah, D.M., “Multiple-steady states identification in homogeneous azeotropic distillation using a process simulator”,, 44, 4386-4399 (2005).

    4 Rovaglio, M.R., Doherty, M.F., “Dynamics of heterogeneous azeotropic distillation columns”,, 36 (1), 39-52(1990).

    5 Widagdo, S., Seider, W.D., Sebastian, D.H., “Dynamic analysis of heterogeneous azeotropic distillation”,, 38 (8), 1229-1242 (1992).

    6 Chien, I.L., Wang, C.J., Wong, D.S.H., “Dynamics and control of a heterogeneous azeotropic distillation column: Conventional control approzch”,, 38 (2), 468-478 (1999).

    7 Chien, I.L., Wang, C.J., Wong, K.S.H., Lee, C.H., Cheng, S.H., Shih, R.F., Liu, W.T., “Experimental investigation of conventional control strategies for a heterogeneous azeotropic distillation column”,, 10 (4), 333-340 (2000).

    8 Chien, I.L., Zeng, K.L., Chao, H.Y., Liu, J.H., “Design and control of actic acid hydration systemheterogeneous azeotropic distillation”,, 59 (21), 4547-4567 (2004).

    9 Rovaglio, M., Faravelli, T., Biardi, G., Gaffuri, P., Soccol, S., “The key role of entrainer inventory for operation and control of heterogeneous azeotropic distillation column towers”,, 17 (5), 535-547 (1993).

    10 Pham, H.N., Doherty, M.F., “Design and synthesis of heterogeneous azeotropic distillations (III) Column sequences”,, 45 (7), 1845-1854 (1990).

    11 Tanaka, S., Yamada, J., “Graphical calculation method for minimum reflux ratio in azeotropic distillation”,, 5, 20-26 (1972).

    12 Siirola, J.J., “An industrial perspective on process synthesis”,., 91 (304), 222-233 (1995).

    13 Wasylkiewicz, S.K., Kobylka, L.C., Castillo, F.J.L., “Optimal design of complex azeotropic distillation columns”,, 79 (3), 219-227 (2000).

    14 Luyben, M.L., Tyreus, B.D., “An industrial design/control study for the vinyl acetate monomer process”,, 22 (7), 867-877 (1998).

    15 Kurooka, T., Yamashita, Y., Nishitani, H., “Multivariable control of a distillation column by exact input-output linearization”,, 26 (3), 406-416(2000). (in Japanese)

    16 Kurooka, T., Yamashita, Y., Nishitani, H., Hashimoto, Y., Yoshida, M., Numata, M., “Dynamic simulation and nonlinear control system design of a heterogeneous azeotropic distillation column”,, 24 (2), 887-892 (2000).

    17 Gaubert, M.A., Gerbaud, V., Joulia, X., Peyrigain, P.S., Pons, M., “Analysis and multiple steady states of an industrial heterogeneous azeotropic distillation”,, 40 (13), 2914-2924 (2001).

    18 Chien, I.L., Chen, W.H., Chang, T.S., “Operation and decoupling control of a heterogeneous azeotropic distillation column”,, 24, 893-899 (2004).

    19 Chien, I.L., Kuo, C.L., “Investigating the need of a pre-concentrator column for acetic acid dehydration systemheterogeneous azeotropic distillation”,, 61, 569-585 (2006).

    20 Arifin, S., Chen, I.L., “Combined preconcentrator/recovery column design for isopropyl alcohol dehydration process”,, 46 (8), 2535-2543 (2007).

    21 Lee, H.Y., Huang, H.P., Chien, I.L., “Design and control of an acetic acid dehydration column with-xylene or-xylene feed impurity (2) Bifurcation analysis and control”,, 47 (9), 3046-3059 (2008).

    22 Xu, Y., Zhu, Q.X., “Research and implementation of decreasing the acetic acid consumption in purified terephthalic acid solvent system”,, 16 (4), 650-655 (2008).

    23 Fu, J.Q., Phase Equilibrium and Simulation Calculation of Distillation for Special System,, Beijing, 106 (2001). (in Chinese)

    ** To whom correspondence should be addressed. E-mail: chengfeili@sina.com.cn

    2009-12-11,

    2010-07-12.

    the National Natural Science Foundation of China (61072127) and the Outstanding Young Innovative Personnel Project of Guangdong Colleges (LYM08098).

    50天的宝宝边吃奶边哭怎么回事| 精品国产国语对白av| 麻豆乱淫一区二区| 久热这里只有精品99| 国产一区二区激情短视频| 91国产中文字幕| av网站在线播放免费| 精品国内亚洲2022精品成人 | 在线观看免费午夜福利视频| 两个人看的免费小视频| 一级a爱视频在线免费观看| 老汉色∧v一级毛片| 国产xxxxx性猛交| 成年人免费黄色播放视频| 国产欧美日韩精品亚洲av| 国产深夜福利视频在线观看| 搡老岳熟女国产| 99国产精品免费福利视频| videosex国产| 最近最新中文字幕大全免费视频| 久久久国产成人免费| 熟女少妇亚洲综合色aaa.| 淫妇啪啪啪对白视频| 国产成+人综合+亚洲专区| 在线观看www视频免费| 日本五十路高清| 搡老岳熟女国产| 久热这里只有精品99| 久久久久精品人妻al黑| 久久中文字幕一级| 久久精品91无色码中文字幕| 国产熟女午夜一区二区三区| 日本wwww免费看| 午夜激情久久久久久久| 国产aⅴ精品一区二区三区波| 国产精品电影一区二区三区 | 一区二区三区国产精品乱码| 欧美人与性动交α欧美软件| 久久久久久免费高清国产稀缺| 狠狠精品人妻久久久久久综合| 精品一区二区三卡| 啦啦啦 在线观看视频| 99国产精品一区二区蜜桃av | 中文字幕色久视频| 岛国在线观看网站| 考比视频在线观看| 母亲3免费完整高清在线观看| 欧美一级毛片孕妇| 国产精品1区2区在线观看. | 精品久久久久久久毛片微露脸| 欧美日韩福利视频一区二区| 99久久99久久久精品蜜桃| 国产在线一区二区三区精| 美女高潮到喷水免费观看| 久久午夜亚洲精品久久| 日日摸夜夜添夜夜添小说| 飞空精品影院首页| 久久中文字幕人妻熟女| 91麻豆av在线| 九色亚洲精品在线播放| 久久久欧美国产精品| 中国美女看黄片| 男女高潮啪啪啪动态图| 手机成人av网站| av欧美777| 99国产精品99久久久久| 侵犯人妻中文字幕一二三四区| 日韩欧美一区视频在线观看| 国产精品偷伦视频观看了| 久久影院123| 亚洲欧美日韩另类电影网站| 久久久久精品人妻al黑| 亚洲免费av在线视频| 国产亚洲精品一区二区www | 人成视频在线观看免费观看| 如日韩欧美国产精品一区二区三区| 2018国产大陆天天弄谢| 精品一区二区三区av网在线观看 | 成年动漫av网址| 成年人免费黄色播放视频| 欧美日韩亚洲综合一区二区三区_| 视频在线观看一区二区三区| 99久久精品国产亚洲精品| 久久影院123| 欧美 亚洲 国产 日韩一| 热re99久久精品国产66热6| 一个人免费看片子| 人人妻人人爽人人添夜夜欢视频| 免费观看av网站的网址| 中文字幕人妻熟女乱码| 久久毛片免费看一区二区三区| 亚洲精品国产精品久久久不卡| 一级,二级,三级黄色视频| 最新在线观看一区二区三区| 九色亚洲精品在线播放| 亚洲精品粉嫩美女一区| 午夜老司机福利片| 成年人午夜在线观看视频| 日韩精品免费视频一区二区三区| 国产欧美日韩一区二区精品| 亚洲中文日韩欧美视频| 欧美在线黄色| 日本av免费视频播放| 日本av手机在线免费观看| 纯流量卡能插随身wifi吗| 亚洲av日韩精品久久久久久密| 免费不卡黄色视频| 国产精品1区2区在线观看. | 亚洲一码二码三码区别大吗| 国产一区二区 视频在线| 12—13女人毛片做爰片一| 国产亚洲欧美在线一区二区| av片东京热男人的天堂| 亚洲欧美精品综合一区二区三区| 国产一区二区三区综合在线观看| 十分钟在线观看高清视频www| 国产精品熟女久久久久浪| 午夜福利乱码中文字幕| 69精品国产乱码久久久| 欧美国产精品va在线观看不卡| 久久久精品免费免费高清| 国产黄频视频在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲第一av免费看| 国产熟女午夜一区二区三区| 高清欧美精品videossex| 91字幕亚洲| 久久久久精品人妻al黑| 丝袜美腿诱惑在线| tube8黄色片| 亚洲人成77777在线视频| 99热国产这里只有精品6| 日本wwww免费看| 窝窝影院91人妻| 另类精品久久| 免费在线观看完整版高清| 精品少妇黑人巨大在线播放| 久久亚洲真实| 国产区一区二久久| 人人妻人人添人人爽欧美一区卜| 一二三四在线观看免费中文在| 丁香六月天网| 啦啦啦 在线观看视频| 久久九九热精品免费| 久久久精品94久久精品| 国产精品国产高清国产av | 激情在线观看视频在线高清 | 日韩有码中文字幕| 久久久精品94久久精品| 精品福利观看| 一级毛片精品| 国产97色在线日韩免费| 国产一区二区 视频在线| 侵犯人妻中文字幕一二三四区| 亚洲国产毛片av蜜桃av| 国产欧美日韩精品亚洲av| a在线观看视频网站| 黑人猛操日本美女一级片| 欧美性长视频在线观看| 亚洲伊人色综图| 19禁男女啪啪无遮挡网站| 男人操女人黄网站| 久久热在线av| 免费日韩欧美在线观看| 国产男靠女视频免费网站| 国产在线免费精品| 欧美乱妇无乱码| 国产高清国产精品国产三级| 亚洲一区中文字幕在线| 日本欧美视频一区| 日韩熟女老妇一区二区性免费视频| 久9热在线精品视频| 看免费av毛片| 欧美 日韩 精品 国产| 人妻一区二区av| 高清毛片免费观看视频网站 | 男女无遮挡免费网站观看| tocl精华| 五月天丁香电影| 99精品欧美一区二区三区四区| 国产精品秋霞免费鲁丝片| 两性午夜刺激爽爽歪歪视频在线观看 | 精品一品国产午夜福利视频| 一进一出抽搐动态| 精品少妇一区二区三区视频日本电影| 久久久国产精品麻豆| 老司机福利观看| 久久久精品区二区三区| 大型av网站在线播放| 91老司机精品| 国产真人三级小视频在线观看| 91国产中文字幕| 午夜福利影视在线免费观看| 亚洲熟妇熟女久久| www.精华液| 每晚都被弄得嗷嗷叫到高潮| 电影成人av| 久久 成人 亚洲| 免费少妇av软件| 亚洲熟女精品中文字幕| 女性被躁到高潮视频| 高清视频免费观看一区二区| 大片电影免费在线观看免费| 蜜桃国产av成人99| 一级片免费观看大全| 国精品久久久久久国模美| av在线播放免费不卡| 亚洲天堂av无毛| 两性午夜刺激爽爽歪歪视频在线观看 | 动漫黄色视频在线观看| 啪啪无遮挡十八禁网站| 丰满少妇做爰视频| 国产精品九九99| 欧美另类亚洲清纯唯美| 最近最新中文字幕大全免费视频| 精品少妇内射三级| 天堂动漫精品| 久久ye,这里只有精品| 国产在线一区二区三区精| 男女边摸边吃奶| 亚洲午夜理论影院| 日本精品一区二区三区蜜桃| www.精华液| 久久精品国产a三级三级三级| 国产精品久久久久久人妻精品电影 | 男女无遮挡免费网站观看| 别揉我奶头~嗯~啊~动态视频| 在线 av 中文字幕| 国产男女超爽视频在线观看| 精品少妇久久久久久888优播| 国产xxxxx性猛交| 日韩有码中文字幕| 999久久久精品免费观看国产| 肉色欧美久久久久久久蜜桃| 午夜日韩欧美国产| 中文字幕人妻丝袜一区二区| 2018国产大陆天天弄谢| 免费黄频网站在线观看国产| 亚洲国产av新网站| 老司机靠b影院| 大型av网站在线播放| 国产免费视频播放在线视频| 考比视频在线观看| 亚洲精品国产一区二区精华液| 午夜精品国产一区二区电影| 亚洲色图 男人天堂 中文字幕| 国产精品久久久久久精品电影小说| 亚洲av日韩精品久久久久久密| 国产高清videossex| 十八禁高潮呻吟视频| 嫁个100分男人电影在线观看| 一本久久精品| 91成年电影在线观看| 丰满迷人的少妇在线观看| 亚洲国产毛片av蜜桃av| e午夜精品久久久久久久| 日本黄色视频三级网站网址 | 亚洲精品国产一区二区精华液| 黑人巨大精品欧美一区二区蜜桃| 精品熟女少妇八av免费久了| 妹子高潮喷水视频| 汤姆久久久久久久影院中文字幕| 手机成人av网站| 国产亚洲欧美在线一区二区| 一本—道久久a久久精品蜜桃钙片| 婷婷丁香在线五月| 色综合欧美亚洲国产小说| 国产亚洲av高清不卡| 亚洲久久久国产精品| a在线观看视频网站| av国产精品久久久久影院| 国产精品久久久久成人av| 日韩视频在线欧美| 夜夜爽天天搞| 亚洲精品国产一区二区精华液| 亚洲五月色婷婷综合| www.999成人在线观看| 18禁黄网站禁片午夜丰满| 高清欧美精品videossex| 日韩欧美一区视频在线观看| 青草久久国产| 少妇猛男粗大的猛烈进出视频| 精品亚洲成国产av| a级毛片在线看网站| 久久人妻av系列| 男人舔女人的私密视频| 精品国产乱码久久久久久男人| 免费久久久久久久精品成人欧美视频| 建设人人有责人人尽责人人享有的| 日本黄色日本黄色录像| 夜夜夜夜夜久久久久| 老司机在亚洲福利影院| 美女高潮喷水抽搐中文字幕| 免费不卡黄色视频| 亚洲精品一卡2卡三卡4卡5卡| 国产欧美亚洲国产| 久久热在线av| 美女高潮喷水抽搐中文字幕| 亚洲情色 制服丝袜| 80岁老熟妇乱子伦牲交| 丰满人妻熟妇乱又伦精品不卡| 丁香欧美五月| 大码成人一级视频| 亚洲精品在线观看二区| 99热国产这里只有精品6| 久久久久久免费高清国产稀缺| 日韩人妻精品一区2区三区| 成人永久免费在线观看视频 | 日日摸夜夜添夜夜添小说| 免费在线观看完整版高清| 夫妻午夜视频| 国产日韩欧美在线精品| 欧美一级毛片孕妇| 日韩视频在线欧美| 2018国产大陆天天弄谢| av在线播放免费不卡| 18禁裸乳无遮挡动漫免费视频| 男人舔女人的私密视频| 国产成人一区二区三区免费视频网站| 狠狠精品人妻久久久久久综合| tocl精华| 欧美 日韩 精品 国产| 亚洲精华国产精华精| 成人免费观看视频高清| 国产精品久久久久久精品古装| 黄网站色视频无遮挡免费观看| 18禁美女被吸乳视频| 亚洲 欧美一区二区三区| 久久精品aⅴ一区二区三区四区| 国产欧美日韩一区二区精品| 777久久人妻少妇嫩草av网站| 免费在线观看完整版高清| 少妇的丰满在线观看| 大型黄色视频在线免费观看| 汤姆久久久久久久影院中文字幕| 欧美 亚洲 国产 日韩一| 欧美激情极品国产一区二区三区| 成人18禁在线播放| 欧美av亚洲av综合av国产av| 日本av免费视频播放| 欧美人与性动交α欧美软件| 日韩欧美免费精品| 桃红色精品国产亚洲av| 夜夜骑夜夜射夜夜干| 在线观看免费视频网站a站| av福利片在线| 亚洲自偷自拍图片 自拍| 18在线观看网站| 老司机午夜福利在线观看视频 | 国产野战对白在线观看| 久久久久国内视频| 高清欧美精品videossex| 亚洲熟妇熟女久久| 久久午夜综合久久蜜桃| 一个人免费看片子| 麻豆av在线久日| 一夜夜www| 欧美大码av| 一级a爱视频在线免费观看| 久久国产精品大桥未久av| 大片电影免费在线观看免费| 亚洲专区中文字幕在线| 久久国产精品大桥未久av| 丰满迷人的少妇在线观看| 午夜免费成人在线视频| 桃红色精品国产亚洲av| 色婷婷久久久亚洲欧美| 日韩欧美三级三区| 制服诱惑二区| 国产精品国产高清国产av | 亚洲成人国产一区在线观看| 国产成人av教育| 精品福利观看| 久久国产精品大桥未久av| 国产精品一区二区免费欧美| 欧美精品高潮呻吟av久久| 国产色视频综合| 午夜福利视频精品| 欧美黑人精品巨大| 亚洲人成电影免费在线| 黄色成人免费大全| 99国产精品免费福利视频| 久久精品国产99精品国产亚洲性色 | 一进一出抽搐动态| 精品国产亚洲在线| 亚洲av日韩在线播放| 热re99久久国产66热| 黄片小视频在线播放| 国产成人啪精品午夜网站| 亚洲少妇的诱惑av| 久久九九热精品免费| 热99国产精品久久久久久7| 一个人免费在线观看的高清视频| av一本久久久久| 日韩制服丝袜自拍偷拍| 精品福利永久在线观看| xxxhd国产人妻xxx| 精品视频人人做人人爽| 亚洲熟女精品中文字幕| 亚洲午夜精品一区,二区,三区| 亚洲精品粉嫩美女一区| 国产精品欧美亚洲77777| 亚洲精品在线观看二区| 久久午夜亚洲精品久久| 欧美成人午夜精品| 亚洲中文av在线| 欧美国产精品一级二级三级| 韩国精品一区二区三区| 汤姆久久久久久久影院中文字幕| 又黄又粗又硬又大视频| 国产欧美亚洲国产| 久久久久久久久免费视频了| 国产不卡一卡二| 亚洲一卡2卡3卡4卡5卡精品中文| 91九色精品人成在线观看| 黄色视频不卡| 91老司机精品| 久热这里只有精品99| 欧美日韩福利视频一区二区| 麻豆成人av在线观看| 国产一区二区三区在线臀色熟女 | 日韩视频在线欧美| 一级,二级,三级黄色视频| 99久久99久久久精品蜜桃| 日本精品一区二区三区蜜桃| 一本—道久久a久久精品蜜桃钙片| 97人妻天天添夜夜摸| 色94色欧美一区二区| 亚洲欧洲日产国产| 好男人电影高清在线观看| 国产精品 国内视频| 国产一区二区 视频在线| 欧美亚洲日本最大视频资源| 人人妻人人澡人人爽人人夜夜| 精品欧美一区二区三区在线| 三上悠亚av全集在线观看| 中国美女看黄片| 午夜日韩欧美国产| 考比视频在线观看| 午夜老司机福利片| 一区二区三区激情视频| 国产精品av久久久久免费| 波多野结衣一区麻豆| 妹子高潮喷水视频| 岛国毛片在线播放| 高清在线国产一区| 亚洲少妇的诱惑av| 1024视频免费在线观看| 日韩免费高清中文字幕av| 欧美日本中文国产一区发布| 国产精品 欧美亚洲| 大型黄色视频在线免费观看| 免费观看人在逋| 精品一区二区三区av网在线观看 | 18禁国产床啪视频网站| 亚洲免费av在线视频| 黄色视频在线播放观看不卡| 精品人妻熟女毛片av久久网站| 高清av免费在线| 午夜视频精品福利| 91av网站免费观看| 亚洲国产欧美网| 宅男免费午夜| 国产精品亚洲av一区麻豆| 色老头精品视频在线观看| 99re6热这里在线精品视频| 在线av久久热| 动漫黄色视频在线观看| 国产成人精品在线电影| 久久久久久久久免费视频了| 少妇被粗大的猛进出69影院| 精品国产一区二区久久| 悠悠久久av| 亚洲熟女精品中文字幕| 激情视频va一区二区三区| 亚洲一区二区三区欧美精品| 9热在线视频观看99| 在线看a的网站| 香蕉久久夜色| 国产一区二区三区在线臀色熟女 | 久久狼人影院| 成人国语在线视频| 侵犯人妻中文字幕一二三四区| 欧美精品人与动牲交sv欧美| 国产免费视频播放在线视频| 亚洲男人天堂网一区| 久久久国产一区二区| 色婷婷久久久亚洲欧美| 国产不卡av网站在线观看| 最新在线观看一区二区三区| 国产一区二区三区视频了| 中亚洲国语对白在线视频| 免费在线观看日本一区| 午夜福利乱码中文字幕| 成人国语在线视频| 十八禁高潮呻吟视频| 热99re8久久精品国产| 成人av一区二区三区在线看| 两性夫妻黄色片| 午夜两性在线视频| 麻豆av在线久日| 在线观看66精品国产| 又大又爽又粗| 国产视频一区二区在线看| 中国美女看黄片| 亚洲五月色婷婷综合| 久久免费观看电影| 97人妻天天添夜夜摸| 色精品久久人妻99蜜桃| 久久国产精品影院| 十八禁人妻一区二区| 激情视频va一区二区三区| 男人操女人黄网站| 国产高清视频在线播放一区| 99热国产这里只有精品6| 大型黄色视频在线免费观看| 国产精品秋霞免费鲁丝片| 精品人妻1区二区| 久久久久久亚洲精品国产蜜桃av| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久亚洲精品国产蜜桃av| 少妇精品久久久久久久| 国产成人欧美在线观看 | 成年动漫av网址| 国产精品 欧美亚洲| 他把我摸到了高潮在线观看 | 1024香蕉在线观看| 50天的宝宝边吃奶边哭怎么回事| 精品人妻熟女毛片av久久网站| 啦啦啦视频在线资源免费观看| 岛国毛片在线播放| 黑人操中国人逼视频| 日韩欧美三级三区| 啦啦啦视频在线资源免费观看| 亚洲av电影在线进入| 久久精品国产综合久久久| 性色av乱码一区二区三区2| 下体分泌物呈黄色| 免费看十八禁软件| 超碰97精品在线观看| 99久久国产精品久久久| 丁香六月天网| av在线播放免费不卡| 2018国产大陆天天弄谢| www.自偷自拍.com| 少妇的丰满在线观看| av在线播放免费不卡| 日韩大片免费观看网站| 天天躁夜夜躁狠狠躁躁| 日本撒尿小便嘘嘘汇集6| 久久久国产欧美日韩av| 国产国语露脸激情在线看| 建设人人有责人人尽责人人享有的| 中亚洲国语对白在线视频| 在线观看66精品国产| 欧美精品人与动牲交sv欧美| 亚洲中文字幕日韩| 超色免费av| 国产无遮挡羞羞视频在线观看| 国产国语露脸激情在线看| 亚洲美女黄片视频| 欧美日韩福利视频一区二区| 91成人精品电影| 国产高清国产精品国产三级| 亚洲中文av在线| 精品少妇内射三级| 亚洲七黄色美女视频| 国产精品亚洲一级av第二区| 久久香蕉激情| 男女午夜视频在线观看| 欧美一级毛片孕妇| 欧美午夜高清在线| 黄片播放在线免费| 国产精品av久久久久免费| 在线观看66精品国产| 免费在线观看黄色视频的| 亚洲第一av免费看| 青青草视频在线视频观看| 精品国产一区二区三区久久久樱花| 久久精品亚洲精品国产色婷小说| 老司机影院毛片| 黄色成人免费大全| 午夜老司机福利片| av欧美777| 久久热在线av| 精品国产一区二区三区久久久樱花| 亚洲专区国产一区二区| 99热国产这里只有精品6| 少妇精品久久久久久久| 国产成人啪精品午夜网站| 黄色视频不卡| 一本久久精品| 久久久久国内视频| 亚洲伊人色综图| 欧美日韩亚洲国产一区二区在线观看 | 久久久国产一区二区| 久久毛片免费看一区二区三区| 国产免费视频播放在线视频| 国产有黄有色有爽视频| 一级a爱视频在线免费观看| bbb黄色大片| 精品人妻在线不人妻| 久久青草综合色| 丝袜美腿诱惑在线| 亚洲中文字幕日韩| 一区二区av电影网| av欧美777| 成人精品一区二区免费| 久久精品国产亚洲av高清一级| 久久久精品区二区三区| 久久久久久亚洲精品国产蜜桃av| 国产一卡二卡三卡精品| 国产1区2区3区精品| 国产成人精品久久二区二区91| 久久国产精品影院|